Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масла смазочные материалов

    Основное значение смазки состоит в уменьшении трения между движущимися деталями, а следовательно, их износа. Кроме того, смазка охлаждает трущиеся поверхности и создает дополнительное уплотнение между ними. Выбор смазочного материала зависит от типа и конструкции подшипников, нагрузки на них, состава сжимаемого газа. Смазочные материалы бывают двух типов жидкие и консистентные (густые смазки). Каждый сорт жидкого масла характеризуется вязкостью, температурой вспышки и воспламенения, влажностью, маслянистостью и др. [c.95]


    Выбор смазочного материала зависит от типа и конструкции подшипников, нагрузки на них, состава перекачиваемой жидкости. Для смазки подшипников насосов применяют жидкие масла веретенное, турбинное, машинное, авиационное и др., а также густые консистентные смазки (солидолы и консталины). [c.189]

    Вязкость смазочного материала определяет возможность перекачивания и подачи масла (смазки) к узлу (зоне) трения. Зная вязкость, несложно рассчитать давление, обеспечивающее необходимый расход масла. Исходя из закона Ньютона, Пуазейлем было выведено уравнение, дающее зависимость между перепадом давления АР и расходом Q для цилиндрической трубки  [c.277]

    Химическим путем удаляют два вида загрязнений. Это загрязнения, химически не связанные с основным материалом, например масла, смазочный материал, остатки шлифовальных и полировальных паст, частицы пыли и т. д., которые удаляют обезжириванием. Остальные продукты, образовавшиеся в результате химического превращения материалов, например окалину, ржавчину или другие продукты коррозии, удаляют химическим травлением. [c.71]

    Покрытия смазочными материалами можно наносить толстыми слоями таким образом они будут обеспечивать более эффективную защиту, чем масляные покрытия. Толстый слой смазочного материала не допускает попадания частиц пыли на защищаемую металлическую поверхность, как это часто бывает при защите слоями масла. Смазочный материал применяют для долговременной защиты и в жестких климатических условиях. Однако необходимо учитывать, что точка каплепадения смазочных материалов составляет 60° С, что ограничивает их применение. Консервирующий слой должен быть сплошным, равномерным и по возможности иметь одинаковую толщину, составляющую не менее 0,4 мм. На мелкие детали покрытия наносят погружением в нагреваемые ванны. Свежеприготовленную ванну необходимо нагревать не менее 30 мин при температуре 110° С, а для ингибированных масел— до 95° С, чтобы удалить абсорбированную влагу. Рабочая температура должна равняться примерно 70° С. При нанесении двойного слоя первое погружение проводят в ванне температурой S5° С в течение 3—8 мин, второе — после охлаждения изделия до 40° С — в ванне температурой 70° С в течение 1—3 мин. Затем [c.105]

    В последнее время развиваются и другие направления получения стойких пленок, защищающих металл от износа и задиров. К ним относятся избирательный перенос, т. е. формирование на поверхности металла тонких пленок меди и некоторых других мягких металлов, и трибополимеризация. Механизм смазочного действия может быть не связан непосредственно с исходной смазочной способностью смазки или масла. Смазочный материал выступает в роли носителя реагентов химической реакции, а узел трения — как реактор, процессы в котором регулируются составом смазочного материала, природой трущейся поверхности и условиями трения. [c.305]


    Под действием больших энергий ионизирующих излучений, активирующих молекулы смазочного материала, в них происходит разрыв химических связей. При взаимодействии образовавшихся свободных радикалов между собой или с другими активированными молекулами получаются новые соединения, строение и свойства которых отличаются от исходных. Обычно протекают реакции полимеризации и окисления, при которых образуются летучие продукты малого молекулярного веса. Минеральные и синтетические масла после облучения темнеют, становятся более вязкими, а при поглощении больших доз излучений даже желатинируются или твердеют. То же происходит в консистентных смазках с масляной основой. На начальной стадии облучения структурный каркас мыльных смазок разрушается, и смазки размягчаются. В дальнейшем при желатинировании жидкой фазы смазки затвердевают, становятся хрупкими. Глубина изменений зависит от дозы поглощенных излучений и химического состава смазки. Значительные изменения свойств большинства смазок начинают проявляться при поглощенной дозе излучений 1-10 рад. Однако разработаны смазки, в 5—7 раз более стойкие [12]. [c.666]

    В случае поставки масел в емкостях производителя, на них имеются предварительно нанесенная маркировка - все необходимые надписи, которые характеризуют масло и которые должны сохранятся до полного его израсходования. Любая тара в хозяйстве, в которой находится смазочный материал, должна быть маркирована. Если в этой таре материалы не только хранятся, но и перевозятся, то необходима и транспортная маркировка, отвечающая международным правилам перевозок. [c.225]

    Большое значение имеют различные способы борьбы с питтингом. К их числу относятся изменение конструкции узла трения, выбор конструкционного материала, подбор смазочного материала. Смазочный материал следует подбирать с учетом его различных физико-химических показателей (химический состав основы масла, его вязкостно-температурная характеристика, поверхностная активность присадок, содержащихся в масле, и др.). [c.254]

    Вязкость масел и смазок, несомненно, влияет и на другие эксплуатационные характеристики, например на гигроскопичность, влаго- и газопроницаемость. Повышение вязкости замедляет диффузию газов и влаги через слой смазочного материала. Вязкость дисперсионной среды —один из важнейших факторов, определяющих коллоидную стабильность пластичных смазок. Увеличение вязкости резко уменьшает отделение масла из смазок при хранении. [c.278]

    Жидкий продукт, получающийся таким способом, полимеризуется в присутствии хлористого алюминия при атмосферном давлеиии и 25° с образованием вязкого масла, пригодного для использования в качество смазочного материала. [c.187]

    В гидравлическом редукторе масло используется как рабочая жидкость и как смазочный материал для подшипников. Масло заливается в бак емкостью 180 л. При неработающем дизеле уровень масла должен находиться внутри верхнего выреза щупа, что соответствует количеству масла в баке от 100 до 180 л. При работающем дизеле уровень масла должен находиться вну-ри нижнего выреза щупа. Заменяют при БПР и на основании данных лаборатории на МПР [c.74]

    Стальные канаты. При выборе смазочного материала для смазывания стальных канатов следует руководствоваться указаниями заводов-изготовителей или указаниями карт смазок на те механизмы, в состав которых они входят как элементы оборудования. При отсутствии таких указаний необходимо применять индустриальную канатную смазку марки ИК (ГОСТ 5570—50), солидолы УСс-2, УС-2 или масла, указанные в табл. 92. Расход смазочных материалов зависит от диаметра канатов. Так, для каждого погонного метра канатов диаметром 8,7 11 13 15 17,5 19,5 21,5 24 26 28 30 32,5 34,5 37 39 43,5 47,5 50 56 60 и 65 мм соответственно расходуется 15 18 21 24 27 32 35 38 41 43 46 51 54 60 67 73 79 85 86 и 100 г смазочных материалов. При нормальных условиях работы канатов их смазывают маслом один раз в 5 дней, смазкой один раз в 15 дней в пыльных условиях и на открытом воздухе — соответственно один раз в 3 дня и один раз в 7 дней. [c.279]

    Перед сдачей в эксплуатацию каждую машину следует испытать па холостом ходу и под рабочей нагрузкой. Цель испытаний на холостом ходу (обкатка) — определение правильности сборки всех узлов и нормальной работы агрегата в целом. Продолжительность испытаний определена ГОСТом на данный тип машины или руководством по эксплуатации как правило, продолжительность испытаний не менее 4 ч непрерывной работы. Перед началом обкатки необходимо удалить все инструменты, материалы и посторонние предметы, надежно затянуть все болтовые соединения, заполнить маслом н проверить работу систем подачи смазочного материала, гидравлической и пневматической систем, системы охлаждения — обогрева, контрольно-измерит( льШ)1х приборов, систем пуска и управления (включая аварийно-сигнальную блокировку). [c.23]

    Подшипники скольжения сферические самоустанавливающиеся, состоят из корпуса 17, крышки и нижнего вкладыша 16, который охлаждается водой. Система подачи масла в подшипники централизованная. При периферийном приводе в зацепление зубчатого венца с подвенцовой шестерней подводится густой смазочный материал от специальной установки. [c.188]


    Способность масла обеспечивать жидкостное трение (и тем самым сводить к минимуму износы и заедание трущихся поверхностей), а также нормальную работу механизма зависит от условий,в которых находится смазочный материал в масляной емкости механизма или в виде слоя смазки между трущимися поверхностями. [c.487]

    Минеральные масла в гидравлических системах одновременно выполняют функции рабочей жидкости, передающей гидравлическое усилие, и смазочного материала, обеспечивающего смазку всех трущихся деталей гидравлической системы. [c.492]

    До последнего времени индустриальные масла не имели нормируемых показателей, характеризующих их противоизносные свойства. Между тем во многих случаях оценка этих свойств для конкретных сортов и марок масел могла бы существенно облегчить правильный выбор смазочного материала для современных машин и механизмов. Высокие нагрузки в узлах трения или особо жесткие условия эксплуатации (горнорудные машины, металлургическое оборудование и др.) могут приводить к большим износам поверхностей трения, и поэтому для таких условий требуются масла с хорошими противоизносными свойствами, т. е. способные в максимально возможной степени предупреждать истирание, задиры и выкрашивание. Ранее уже указывалось, что правильный выбор вязкости масла может способствовать снижению износов в узлах трения. На рис. 9. 3 и 9. 4 показано влияние вязкости масла на истирание и выкрашивание металла при трении, возникающем между бронзовым и стальным роликами. [c.499]

    При текущем ремонте центрифуг чистят барабан, регулируют зазор между корпусом барабана и ножами, проверяют набивку сальников, смазочный материал подшипников шнека, заменяют масло в подшипниках барабана, проверяют отклонение от соосности валов электродвигателя и редуктора. При капитальном ремонте кроме указанных работ заменяют сопла, ножи, манжеты гидросистемы, пальцы и втулки муфты привода, подшипника барабана и редуктора привода, контролируют тормоз барабана с заменой тормозной ленты. [c.360]

    Способ (рис. 7.9) заключается-в очистке отработанного смазочного материала 1 обработкой дистиллята смазочного масЛа небольшим количеством щелочи 8 в присутствии опре- [c.238]

    Самостоятельное значение как смазочный материал для некоторых механизмов, в частности для авиационных двигателей, получило касторовое масло. [c.155]

    Антифрикционное действие масел (уменьшение силы или коэффициента трения) основано на объемном и граничном эффектах. В случае высокой скорости скольжения и малых контактных нагрузок поверхности соприкасающихся тел разделены непрерывным объемным слоем смазочного материала, и его антифрикционное действие определяется значением вязкости. При этом высокое внешнее трение между твердыми поверхностями заменяется низким внутренним трением вязкостного течения масла. [c.31]

    Применительно к химмотологическим системам очень интересно изучить влияние характера смазочного материала на склонность к питтингообразованию. Установлено, что масла близкого химического состава до вязкости (при температуре опыта), равной 20 мм / , практически не влияют на время до появления питтинга. Дальнейшее повышение вязкости масла (особенно сверх 40 мм / ) повышает это время. Снижение питтингообразования отмечается до вязкости 100—120 мм /с, выше которой наблюдается обратная закономерность [273]. В общем случае применительно к условиям испытания масла на четырехшариковой машине трения до вязкости смазочной среды, не превышающей экстремального значения, время до наступления питтинга рекомендуется оценивать, исходя из выражения [c.253]

    В последующем было обнаружено, что при работе на этилированном бензине свинец и двуокись свинца образуют отложения на поршнях и клапанах Двигателя. Вследствие значительно большей летучести галогенидов свинца для устранения этого недостатка начали добавлять вместе с ТЭС четыреххлористый углерод [174]. В дальнейшем стали добавлять специальный смазочный материал на основе хлорнафталина для поршневых колец (масло галовакс). [c.211]

    I объеме смазочного материала и образовывать на нем прочные сдсорбционные и хемосорбционные пленки, препятствующие развитию коррозионных процессов. Базовые нефтяные масла не способны /улительно защищать металльг от коррозии. Их защитные свойства улучшают введением небольших количеств ингибиторов коррозии. [c.132]

    Когда требуется создать смазочный материал для двигателя новой конструкции, сначаЛа выявляют предварительные требования к качеству масла, основываясь на имеющемся опыте применения масел в двигателях подобной конструкции и с близкими мощностными и экономическими характеристиками. Ориентировочно выбирают масло, наиболее подходящее по классификации группы, и подвергают это масло краткосрочным стендовым испытаниям на отсеке или на натурном образце нового двигателя. Если в результате испытаний установлены недостаточные эксплуатационные свойства выбранного масла, испытанию подвергают масло более высокой группы. Если при этом общий уровень моторных свойств масла оказывается в основном удовлетворительным, но обнаруживаются отдельные недостатки масла, например по коррозионной активности, решается вопрос о замене противокоррозионного компонента в стандартизованной композиции на более эффективный. Как правило, предварительный этап подбора смазочного материала для нового двигателя на этом завершается. Затем определяют физико-химические и функциональные свойства выбранного масла, проводят краткосрочные и длительные стендовые, а также эксплуатационные испытания масла на двигателе данного типа. В случае положительных результатов этих испытаний масло впись1вают в технические условия на двигатель как гарантирующее его надежную эксплуатацию в течение срока, установленного заводом-изготовителем. [c.215]

    Характер изменения степени износа от нагрузки показывает противоизносные свойства масла или смазки при постоянной нагрузке, которая ниже критической. В ходе испытания периодически измеряется диаметр пятен износа на нижних шарах и рассчитывается среднее значение износа (в мм). Зависимость износа (D) от нагрузки (Р) характеризуется кривой износа (рис. 2.11). Интенсивность износа от начала и до сваривания зависит от способности смазочного материала уменьшать износ и характеризуется индексом задира (нагрузки) load wear index - LWT). В начальном интервале нагрузки износ поверхностей трения происходит в условиях граничного трения и является пропорциональным нагрузке. В этом режиме соотношение между нагрузкой и соответствующим ей износом является постоянной величиной и может характеризовать противоизносные свойства масла или смазки. Индекс нафузки выражается в ньютонах. [c.55]

    Влияние смазочного материала на параметры трения в условиях граничной смазки оценивается, как правило, по величине адсорбции масла (среды) и по его химической активности. Адсорбционная способность учитывается преимущественно для случая использования химически инактивной смазочной среды. Так, Б. В. Дерягин предложил оценивать эффективность масляной пленки по критерию маслянистости, представляющему собой соотношение шероховатостей смазанной и несмазанной поверхностей. Другой критерий маслянистости характеризуется отношением разности работ сил трения несмазанных и смазанных поверхностей за время, ншбходимое для истирания пленки толщиной /г, к толщине этой пленки. Критерии маслянистости в основном определяются продолжительностью пребывания молекул масла (смазки) на поверхности трения и активностью смазки. [c.242]

    Для смазочных масел появление предела прочности за счет образования сверхмицеллярных структур при кристаллизации твердых углеводородов почти всегда вредно (в лучшем случае бесполезно). Застывшее, затвердевшее масло перестает подтекать к зоне трения, что вызывает масляное голодание. Масло не поступает к всасывающему патрубку насоса, что приводит к нарушению нормальной циркуляции масла в системе смазки механизма. В результате возможен опять-таки недостаток смазочного материала у трущихся поверхностей и ухудшение теплоотвода. Появление измеримого предела прочности исключает слив масла из тары. [c.275]

    По аналогии, аномальное снижение вязкости приводит к относительному уменьшению энергетических потерь при повышении скорости деформирования смазочного материала в узле трения. Именно этим объясняются сопоставимые результаты измерения моментов трения в подшипниках качения и скольжения при работе на маслах и пластичных смазках. В связи с малыми зазорами (измеряемыми микрометрами) градиенты скорости сдвига в подшипниках качения весьма велики (до 10 —10 с ) даже при относительно небольших частотах вращения. В этих условиях вязкость смазок резко снижается, практически до уровня вязкости базового масла, что и определяет снижение потерь на трение. В то же время при небольших градиентах скорости сдвига (10—10 с ) вязкость смазки на 2— 5 порядков превышает вязкость базовых масел. Влияние аномалии вязкости на силу трения при тяжелонагруженном упругогидродинамическом контакте может быть связано и с повышением времени релаксации масла в условиях высоких давлений. Тогда время пребывания смазочного материала в зоне контакта может стать соизмеримым с временем релаксации [288]. [c.278]

    Смазочный материал летом — осевое масло Л, зимой — осевое масло 3 (ГОСТ 610—48). Смазывание осуществляется фитильными масленками. При наличии приспособлений под консистентную смазку смазывание производят солидолом (ГОСТ 1033—51 и ГОСТ 4366—64). Шаровую связь электровоза ВЛ80 смазывают трансмиссионным маслом (ГОСТ 542—50) [c.23]

    В качестве смазочного материала для цилиндров, поршней, подшипников коленчатого вала и других частей дцзелей, смазываемых централизованно из картера или бачка, применяются масла, приведенные в табл. 12. [c.67]

    Магистральный газопровод включает в себя комплекс сооружений, обеопечивающих транспорт природного или нефтяного газа от газовых или нефтяных промыслов к потребителям газа. Состав сооружений зависит от назначения газопровода и включает следующие основные комплексы головные сооружения, состоящие из систем газосборных и подводящих газопроводов, компрессорного цеха и установок очистки и осушки газа линейные сооружения, состоящие из собственного магистрального газопровода с запорными устройствами, переходов через естественные и искусственные сооружения, станции катодной защиты, дренажных установок компрессорные станции с установками по очистке газа, контрольно-распределительным пунктом для редуцирования газа на собственные нужды станции, а также подсобно-вспомогательными сооружениями (включая склады горючего, смазочного материала, установки регенерации масла и ремонтно-эксплуатационные блоки)  [c.125]

    Из производных дитиофосфатов для предотвращения износа деталей и обеспечения стабильности масел при высоких нагрузках используется [124] новый смазочный материал на основе минерального или синтетического смазочного масла, в состав которого входит 0,2—10% комплексного сложного 0,0-диэфира — дитиомо-либдата дитиофосфорной кислоты / [c.127]

    Коррозионные и защитные свойства. Надежность и долговечность работы машин и механизмов во многом определяются эффективностью защиты металлических поверхностей от коррозии. Отсутствие коррозионного воздействия на металяь и защита их от корро.зионно-агресс1ив1ных компонентов внешней среды — требования ко всем нефтяным маслам. Особенно высоки эти требования к консервационным маслам, специально предназиаченньш для защиты машин и оборудования от атмосферной коррозии. Под слоем смазочного материала могут протекать химическая и электрохимическая коррозия металла. [c.35]

    Так как изменение только кислотности масел считается недостаточным критерием того или иного смазочного материала, то попутно определяют и твердый осадок в маслах. Для этого масло после окисления разбавляют легким бензином спустя 12 час. осадок от )Нльтровывают и промывают легким бензином. В фильтрате определяют кислотность окисленного масла, а осадок растворяют в горячем бензоле. После отгонки растворителя на водяной бане определяют количество осадка (в весовых процентах), как растворимого, так и не растворимого в бензоле. [c.581]

    Далее, в связи с тем, что деэмульгатор, введенный в смазочную композицию, не должен о сазывать отрицательного действия ва свойства масла, было исследова ю влияние производных ферроцена на одно из важнейших эксплуатационных свойств смазочного материала, а именно на его термоокислительную стабильность. Полученные результаты представлены в табл.2. [c.3]

    Условия разделения на этом. этапе обработки следующие отношение растворителя к маслу 10 1, температура верхней части колонны 90°С температура нижней части колонны 70°С давление 3.8 МПа. Экстрагированное масло после отде ления пропана подвергается вакуумной перегонке для извле чения основных компонентов смазочного материала в соответ [c.244]

    При высоких и продолжительных нагрузках граничный слой смазочного материала не предохраняет металл от разрушения. На нем появляются царапины, происходят схватывание и задир значительных участков поверх1Ности. Трение без задира обеспечивается при химическом модифицировании (пластифицировании) тонкого поверхностного слоя металла, который подвергается износу и разрушению. Химическая активность природных веществ, содержащихся 1в нефтяных маслах, низка для формировадия такого модифицир01ва1нного слоя металла. Поэтому для обеспечения нормальной работы узлов трения при тяжелых режимах в масла необходимо вводить серо-, фосфор- и хлорорганические соединения. [c.33]

    Электрохимическая коррозия — это разрушение металла при взаимодействии с коррозионной средой (электролитом), соправож-дающееся возникновением в металле электрического тока. Скорость электрохимической коррозии контролируется работой микро-гальванических пар на поверхности металла и зависит от разности потенциалов ее катодных и анодных участков. При электрохимических процессах продукты реакции отводятся с поверхности металла вглубь смазочного материала ионизация атомов металла (анодный процесс) и ассимиляция образующихся в металле избыточных электронов деполяризатором (катодный процесс) протекают в результате пространственного разделения участков реакции не единовременно. Применительно к электрохимической коррозии.говорят о защитных свойствам масла, т. е. о способности его тонкого слоя защищать металл от коррозионного воздействия внешних факторов (прежде всего электролитов). [c.36]


Смотреть страницы где упоминается термин Масла смазочные материалов: [c.614]    [c.254]    [c.499]    [c.18]    [c.65]    [c.278]    [c.278]    [c.316]    [c.246]   
Справочник механика химического завода (1950) -- [ c.414 , c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Масло масла смазочные

Смазочные масла



© 2025 chem21.info Реклама на сайте