Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура кристалличности

    Полиэтилен, получаемый при высоком давлении, представ-, ляет собой разветвленный полимер этилена с молекулярным весом около 30 000. Прямолинейная, в основном, структура це- пей определяет значительную кристалличность полимера (50— 75%). При повышении температуры кристалличность умень- , шается, и около 115° С полиэтилен становится аморфным (рис.)-21). Количественное соотношение кристаллической и аморфной, фаз зависит от скорости охлаждения. При быстром охлажде--кии увеличивается содержание аморфной части.  [c.72]


    С повышением температуры усиливается тепловое движение частиц, в частности—колебательное движение всех звеньев цепи, а вследствие этого уменьшается степень кристалличности, и, начиная с некоторой температуры, кристалличность полностью исчезает. Эту температуру называют температурой плавления полимера Термин тем- [c.578]

    Гидрированный полибутадиен близко напоминает по физическим свойствам полиэтилен. Принципиальное отличие его в том, что он имеет более высокую прочность на разрыв, более низкие жесткость, твердость и температуру хрупкости. Сопоставление всех этих свойств наводит на мысль, что гидрированный полибутадиен имеет более высокий молекулярный вес, чем промышленный полиэтилен, и до некоторой степени меньшую кристалличность. Это находится в соответствии с известными дан- [c.169]

    Из сказанного видно, что в нерегулярно разветвленных полимерах, как, например, промышленный полиэтилен, такие свойства, как температура плавления, температура размягчения при низких нагрузках, модуль упругости при малых нагрузках, предел текучести, твердость поверхности, зависят главным образом от кристалличности. [c.170]

    К цепным высокополимерам относятся также ряд пластмасс, волокнообразующие материалы и другие, однако только эластомеры обладают высокоэластическими свойствами в широкой области температур, важных для практического использования материалов. Эта особенность поведения эластомеров связана с тем, что помимо цепного строения необходимым условием высоко-эластичности является достаточная внутренняя подвижность системы, которая обеспечивается отсутствием значительной кристалличности и сравнительно слабым межмолекулярным взаимодействием цепей. [c.18]

    С увеличением степени кристалличности прочность полимеров увеличивается. Однако при синтезе эластомеров представляет интерес создание только такой структуры цепи, при которой и скорость, и степень кристаллизации в области обычных температур не очень велики, так как в противном случае материал быстро теряет эластичность при понижении температуры. Таким образом, особенность строения эластомерных цепей состоит в том, что кристаллизация их должна происходить только при растяжении полимера, Перечисленные выше каучуки регулярного строения при комнатных температурах являются практически полностью аморфными. [c.85]


    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]

    Кристалличность полимерных мембран связана с пространственным расположением составляющих их макромолекул и с величиной межмолекулярных сил. Во многих случаях быстрое охлаждение расплава приводит к получению полностью аморфной пленки, которую можно закристаллизовать термообработкой при температуре выше /ст- Однако для получения высоко кристалличного полимера можно воспользоваться и быстрым выделением растворителя из раствора путем испарения. [c.72]

    СЛОИСТОСТЬ. Хрупкие разрушения трубопроводов и сосудов возможны при существенном охрупчивании металлов и наличии микро- и макроскопических дефектов. Хрупкое разрушение характеризуется кристалличностью и наличием радиальных рубцов в изломе, малой величиной утяжки (менее 20%) и остаточной деформацией. Причинами хрупкого разрушения являются деформационное старение, низкая температура, динамичность нагрузки и др. [c.75]

    Наряду с этим в высокоэластичном состоянии полимеров степень кристалличности может сильно изменяться при вызываемых извне деформациях материала. Так, у натурального каучука кристалличность появляется при растяжении и полностью исчезает при возвращении в нормальное состояние (при обычных температурах). [c.578]

    При низких температурах каучук способен к кристаллизации и без растяжения. Ориентация и кристалличность полимера сильно [c.578]

    С повышением температуры прочность на разрыв линейных полимеров обычно уменьшается. На рис. 215 показан характер этого влияния на прочность образца полиэтилена в интервале От —70 до -МОО°С (при расчете на первоначальное сечение образца). Следует учесть, что в интервале температур от 60 до 100°С у полиэтилена происходит сильное уменьшение степени кристалличности, что оказывает влияние на прочность образца. [c.589]

    Полиформальдегид — новая пластическая масса, осваиваемая производством. Полиформальдегид представляет собой полимер с линейной структурой, состоящей из разветвленных цепей большой длины. Это строение полиформальдегида обусловливает высокую степень кристалличности полимера и его высокие прочностные показатели, в частности сопротивление изгибу. Сочетание в полиформальдегиде эластичности и высокой хими-ческо стойкости определяет широкие возможности применения этого материала в антикоррозионной технике. Имеются указания, что изменение температуры в широком интервале, от —40 до +120° С, практически ие влияет на ударную прочность полиформальдегида. [c.435]

    Полиформальдегид является термопластичным материалом с высокой степенью кристалличности. По внешнему виду — это порошок или гранулы белого цвета. При комнатной температуре имеет высокую химическую стойкость к действию многих растворителей алифатических, ароматических и галогенсодержащих углеводородов, спиртов, эфиров и др. При действии концентрированных минеральных кислот и щелочей разрушается. Полиформальдегид является одним из наиболее жестких материалов, обладает высокой стойкостью к истиранию (уступает только полиамидам) и сжатию, низким коэффициентом трения, имеет незначительную усадку даже при 100—110°С и стабильность размеров изделий. Однако при повышенных температурах прочность его значительно уменьшается. [c.50]

    Для модификации свойств полиамидов проводят совместную поликонденсацию солей АГ, СГ и капролактама, взятых в различных соотношениях. Полученные при этом смешанные полиамиды имеют меньшую степень кристалличности, плавятся при более низкой температуре, обладают большей растворимостью Б полярных растворителях (в частности, легко растворяются в низших спиртах). [c.84]

    Для оценки катализаторов важны три фактора, относящиеся к активным центрам число центров в единице массы, соотношение числа центров В и L и кислотная сила катализатора. Теоретически число центров В связано с числом центров L в цеолите, но на практике имеется много факторов (степень кристалличности, уровень обмена, тип катиона), искажающие эту закономерность. Соотношение числа центров В kL зависит от условий предварительной обработки цеолита. Обычно нагрев катализаторов до температуры 700 С приводит к исчезновению центров В при одновременном увеличении числа центров L. Эти превращения сопровождаются отщеплением воды и, есг конечная температура не превышает предельной величины, то центры В можно регенерировать путем добавления воды при низкой температуре. На практике это означает, что соотношение числа центров В и L, так же как и все каталитические свойства, связанные с этим соотношением, зависят от условий проведения процесса в реакторе. [c.110]


    В качестве катал изаторов используют цеолиты типа ZSM, характеризующиеся низким содержанием оксида алюминия, высокой кристалличностью, стабильностью в атмосфере водяного пара при высоких температурах, превышающей стабильность цеолитов типов X и А, а также специфическими структурными данными. [c.243]

    Твердые алканы кристалличны. На температуру плавления в значительной степени влияют геометрические факторы упаковки молекул в кристаллической решетке, eм симметричнее построена молекула, тем легче и прочнее ее упаковка в кристалл и тем выше температура плавления. [c.113]

    При повышении температуры равновесие фазового перехода смещается влево, поэтому степень кристалличности полимера при нагревании уменьшается. [c.374]

    Физические свойства. Полимеры нелетучи, имеют достаточно высокие температуры и размытость интервала фазового перехода. Для большинства полимеров характеристикой такого перехода является так называемая температура размягчения, при которой в процессе нагревания резко возрастает деформируемость полимера. Для кристаллических полимеров с высокой степенью кристалличности температура размягчения совпадает с температурой плавления. [c.376]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Степень кристалличности Температура плавления, °С Температура хрупкости, °С Уд. электрическое сопротивление, Ом-м [c.389]

    Поли-е-капроамид [-ЫН(СН2)5 СО-] представляет твердое рогоподобное вещество белого цвета с температурой размягчения 210°С, температурой хрупкости -25°С и плотностью 1,13 т/м . Молекулярная масса капрона зависит от условий получения полимера и лежит в пределах 10 —3,5-10 . Степень кристалличности составляет около 0,6. [c.417]

    С повышением температуры усиливается тепловое движение частиц, в частности — колебательное движение всех звеньев цепи, а вследстие этого уменьшается степень кристалличности, и, начиная с некоторой температуры, кристалличность полностью исчезает. [c.577]

    Прочность при разрыве ПЭВД зависит от температуры, молекулярной массы и скорости деформации. Повышение температуры от -50 до 20 °С снижает прочность при разрыве от 35 до 14 МПа [37, с. 274]. По ) скольку в указанном интервале температур кристалличность практически не меняется, это подтверждает малую зависимость прочности от кри- сталличности. [c.150]

    При введении нитрогруппь в молекулу ароматического соединения плотность полученного вещества повышается по сравнению с исходным веществом температура кипения также возрастает. Нитропройзводные аром атических углеводородов нерастворимы в воде и имеют нейтральный характер. Многие иэ них при обычной температуре кристалличны, некоторые имеют желтую окраску. [c.225]

    Исследовано влияние температуры, кристалличности полиэтилена и дозы предварительного облучения на степень прививки акрилонитрила к полиэтилену и полипропилену в вакууме . Изучена сополимеризация акрилонитрила с этиленом в присутствии триизобутилбора в растворителе бензин-калоша , под действием уизлучения в толуоле , а также в присутствии металлоорганических комплексов 4>. [c.721]

    Одноатомные аминоспирты являются маслообразными жидкостями, тогда как аминогликоли кристалличны. Эти продукты устойчивы по отношению к крепким щелочам при комнатной температуре, а с кислотами образуют соли. [c.336]

    За период с 1950 г. по 1960 г. в области полиыеризационных процессов с применением специально разработанных катализаторов Циглера и Натта была открыта новая глава, представляющая значительный теоретический и практический интерес. Речь идет о сте-реоспецифической полимеризации. Различные стереоизомерные полимеры, полученные на основе одного и того же мономера в зависимости от хода полимеризации могут значительно различаться по физическим свойствам (температуре плавления, кристалличности, механическим свойствам и т. д.). [c.293]

    Эти продукты, по-видимому полиэтилиден и полипропилиден, хрупкие стеклообразные вещества, сразу размягчающиеся при температуре ниже 100°. Плотность полиэтилидена составляет 0,909, это подтверждает наблюдение, что в этом веществе недостаточно хорошо выражена кристалличность. [c.169]

    Работы по химической природе парафинов различного происхождения восходят к временам Гей-Люссака. В настояш,ее время установлено, что различные парафины состоят из твердых при обычных температурах высокомолекулярных линейных или разветвленных алканов [6]. Они обычно встречаются в природе, загрязненные примесями, влияние которых на физические свойства и кристалличность парафинов остается невыясненным [7, 8]. Самая ранняя достоверная, хотя и не совсем точная работа по американским парафинам проведена Мэбери (МаЬегу [9, 10]). [c.512]

    В карбоцепных полимерах такими участками являются двойные связи между углеродными атомами основной цепи. Как известно, цис-транс-тоиг ш в цепях этих полимеров приводит к принципиальному различию в их свойствах. Так, транс-изомеры полимеров бутадиена и изопрена, более вытянутые в пространстве, кристалличны вплоть до сравнительно высоких температур, в то время как с-изомеры при обычных температурах в основном аморфны и являются важнейшими эластомерами. Для других карбоцепных полимеров, например, полипентенамеров, более ценными свойствами, как эластомеры, обладают транс-изомеры в связи с тем, что температура плавления кристаллов цас-изоме-ров смещена в область очень низких температур .  [c.19]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]

    Степень деформации может сильно меняться с изменением таких параметров окружающей среды, как температура (ниже температуры стеклования /ст жесткость аморфной фазы может быть значительной), и в присутствии пластификаторов, которые увеличивают деформацию. В полимерных мембранах существуют также так называемые паракри-сталлические области переменной степени кристалличности, которые обладают средним сопротивлением деформации по сравнению с кристаллической и аморфной областями. [c.72]

    Па лабораторной установке сравнивались различные катализаторы обессеривания остаточных фракций хайфинской и кувейтской нефтей. Изучались методы внесения активных компонентов и температуры прокаливания. Активны катализаторы, приготовленные из у-А1. 0з с малой кристалличностью и преимущественным радиусом пор >100А. В длительных пробегах (1000—3000 ч) производительность на опытных образцах катализаторов составила 6,0—9,2 м сырья на 1 кг против 5,6 м кг у промышленных образцов [c.91]

    Так, известны различные методы получения полиэтилена. Первоначально промышленный метод заключался в проведении процесса при температуре около 200°С и давлении 1200—2000 атм при возбуждении реакции небольшими добавками кислорода. Однако в настоящее время полиэтилен получают при менее высоком и даже при атмосферном давлении в присутствии катализаторов. Хорошие результаты получены в случае применения в качестве катализатора триэтилалюминия А1(С2Н5)з совместно с четыреххлористым титаном Т1С14. Описано применение катализатора, состоящего из 8Юг и АЬОз с нанесенной на них окисью хрома, и др. В зависимости от условий процесса и вида катализатора получается полиэтилен с различным средним молекулярным весом, с различной степенью разветвленности цепей, степенью кристалличности и соответственно различными свойствами.  [c.562]

    Оксиды натрия взаи) одействуют с оксидами кремния или алюминия, входящик / в состав катализатора, ускоряют спекание поверхности катализатора в гидротермальных условиях. Кроме того, ионы натрия нейтрализуют кислотные центры катализатора, снижая его крекирующую активность. Натрий промотирует дезактивирующее действие ванадия, поскольку входит в состав эвтектики ванадия с цеолитом, понижая температуру ее плавления до 540 С. С увеличением концентрации оксида натрия кристалличность цеолита РЗЭ снижается как в присутствии ванадия, так и без него. Данные табл. 5.2 показывают влияние содержания натрия и ванадия на кристалличность цеолита. [c.115]

    Метод обращенной газовой хроматофафин (ОГХ) используется для определения температур фазовых переходов, степени кристалличности полимеров и термодинамических параметров взаимодействия полимер-растворитель , а также для исследования кинетики кристаллизации из расплава [1,2]. Знание аналогичных характеристик для волокнообразующих пеков, коксов и промежуточных карбонизующихся масс, образующихся в процессах пеко- и коксообразования, представляет научный и практический интерес [3].  [c.267]

    В наибольшей степени различия в структуре коксов проявляются при температурах выше 1300°С-различия величин структурных показателей могут увеличиться в 2-3 раза. Такая особенность коксов определяет области их использования. Хорошая структурированность игольчатых коксов предопределяет их высокую анизотропность, высокую кристалличность и электропроводность, низкий ТКЛР, отвечающих требованиям работы в электросталеплавильных печах. Низкая структурированность изотропных коксов, наличие мелких кристаллов определяет высокую прочность кокса и соответствующих изделий из него. [c.23]

    Основываясь на различии в кристалличности и температурах плавления твердых нефтяных парафинов различного молекулярного веса и строения, пытались применить для очистки и разделения их метод зонной плавки. Испытывались два образца заводского нефтяного парафина микрокристаллический парафин (т. плавл. 79,5— 80,6° С) и кристаллический (т. нлавл. 55° С). Второй образец заводского парафина (как можно судить по микрофотографии) по кристалличности приближается к синтетическому эйкозану, Н-С20Н42, т. е. имеет хорошо выраженные крупные кристаллы. Тем не менее этот образец, так же как и микрокристаллический нефтяной парафин (т. плавл. 79,5—80,6 С), не поддавался очистке и разделению методом зонной плавки. Причину этого Эльдиб [177 ] видит в том, что даже узкие фракции твердого парафина представляют собой сложные смеси компонентов, сильно различающиеся между собой по температурам плавления. Зонная плавка базируется на следующем принципиальном положении, вытекающем из анализа идеальной бинарной системы при замораживании системы более низкоплавкие примеси будут концентрироваться в жидкой фазе. Реализация этого положения в случае такой многокомпонентной смеси, как парафин, практически исключается, так как при этом возможно образование ди-, три- и многокомпонентных систем, имеющих близкие температуры плавления. [c.28]


Смотреть страницы где упоминается термин Температура кристалличности: [c.570]    [c.271]    [c.165]    [c.219]    [c.129]    [c.44]    [c.266]    [c.8]    [c.160]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.156 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности

Определения ф Процессы образования и роста кристаллов в полимерах Влияние степени кристалличности полимеров на температуру их размягчения

Полиэтилен степень кристалличности в зависимости от температуры

Температура плавления и кристалличность



© 2024 chem21.info Реклама на сайте