Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимический спектр

    В фотохимических реакциях многие радикалы определялись путем наблюдения их спектров поглощения. На этот метод позднее обратили большое внимание в связи с развитием техники разрядов высокого напряжения, что дало возможность создать высокую концентрацию радикалов В газовой фазе. Работы в этой области описаны Портером [34], Герцбергом и Рамсеем [17]. К сожалению, вплоть до настоящего времени никому ие удалось определить с помощью абсорбционной спектроскопии наличие очень важного метил-радикала. [c.10]


    Воздействие лучистого потока энергии на технологические объекты определяется как свойствами излучателей, так и оптическими свойствами среды, отделяющей излучатель от объекта, свойствами окружающих элементов аппарата и самого обрабатываемого вещества. Длинноволновое излучение вызывает в основном нагрев обрабатываемых веществ, а коротковолновая часть спектра может вызвать фотохимические реакции. [c.95]

    Когда же применяемые длины волн лежат в области спектра одного определенного характера, зависимость квантового выхода от длины волны или ие имеет места, или выражена лишь в слабой степени.Одним из примеров может служить разложение иодистого водорода 2HJ = Ja. где из.менение длины полны фотохимически активного света от 2820 до 2070 А, т. ( . в пределах 7,50 Л, практически не влияет па величину квантового выхода. [c.158]

    Влияние электромагнитного излучения. Под влиянием излучения ультрафиолетового или видимого участка спектра протекают реакции, получившие название фотохимических реакций. При поглощении кванта света молекулы переходят в энергетически возбужденное состояние с повышенной реакционной способностью. Многие фотохимические реакции заканчиваются стадией цепной реакции. [c.530]

    Энергия, сообщаемая поглощающей свет молекуле хлора, чрезвычайно велика. Вычислено, что действие УФ-лучей на хлор оказывает такое же влияние, как нагрев до 1500°С. Хлор поглощает лучи в ближнем УФ-свете и в фиолетовой области видимого спектра с длиной волн 250—450 нм. Фотохимический процесс используют для хлорирования жидких углеводородов. Газообразные углеводороды целесообразнее хлорировать каталитическим или термическим путем. Фотохимическому хлорированию подвергаются и высшие алканы. К веществам, обрывающим цепную реакцию, относятся кислород и оксид азота. [c.201]

    Интервал длин волн, используемых в том или ином фотохимическом эксперименте, определяется с учетом спектра поглощения исследуемого соединения, области пропускания материала, из которого изготовлен реакционный сосуд, а также спектра испускания источника света. Наиболее часто в фотохимических экспериментах используют реакционные сосуды, выполненные из кварца или стекла пирекс . [c.138]

    Для изучения фотохимических процессов в растворах наиболее удобным является кинетически вариант установки, которая позволяет быстро и надежно измерять кинетические параметры короткоживущих промежуточных продуктов. Однако при изучении фотолиза газов предпочтительно использование спектрографической установки, которая становится совершенно необходимой при изучении промежуточных продуктов с линейчатым спектром поглощения. [c.158]


    Реакции диссоциации на радикалы. Большие возможности импульсного фотолиза при исследовании короткоживущих продуктов делают этот метод совершенно незаменимым при изучении реакций свободных радикалов и других промежуточных продуктов и состояний в различных фотохимических реакциях. Методом импульсного фотолиза были зарегистрированы спектры простых свободных радикалов и изучена кинетика их превращений. При импульсном фотолизе смеси кислорода и хлора наблюдается поглощение свободного радикала С10-, который затем превращается в исходные соединения. Действительно, реакция не происходит, если судить [c.171]

    Методика измерения. Применяемые в качестве фотолитических ламп импульсные лампы имеют широкий спектр излучения. На образец попадает не только свет, который поглощается веществом но также фотохимически неактивный свет. Мощный световой поток, попадающий на образец, рассеивается стенками кюветы и мельчайшими пылинками, присутствующими в растворе. Рассеянный кюветой свет попадает на щель монохроматора и на фотоумножитель. Если не принимать специальных мер, снижающих интенсивность рассеянного света, то фотоумножитель может перегрузиться и сигнал, поступающий на осциллограф, будет сильно искажен. При применении спектрографической установки импульсного фотолиза рассеянный свет создает большой фон на фотографической пластинке при коротких временах регистрации короткоживущих продуктов. Обычно используются следующие приемы для уменьшения рассеянного света, попадающего на фотоумножитель (ФЭУ). Во-первых, применение спектральных ламп с высокой световой интенсивностью позволяет уменьшить щель монохроматора и тем самым снизить интенсивность рассеянного света, попадающего на фотоумножитель. Во-вторых, рассеянный свет не является направленным, и поэтому его интенсивность уменьшается с квадратом расстояния от кюветного отделения до монохроматора. Таким образом, чем [c.183]

    Применение метода ЭПР в условиях матричной изоляции позволило не только изучить спектры ЭПР многих парамагнитных центров, но также существенно продвинуло вперед понимание механизмов радиацион нох имических и фотохимических процессов. Удалось также получить ценные сведения о подвижности реакционноспособных центров в твердой фазе — вращении, диффузии и о связи подвижности с химическими процессами — реакциями и рекомбинацией радикалов. [c.250]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    Не менее важной заслугой Тимирязева является открытие роли хлорофилла как сенсибилизатора фотохимических реакций, происходящих при фотосинтезе. Он экспериментально установил, что фотосинтез осуществляется преимущественно п красных и синих лучах видимого спектра. Тимирязев провел следующий опыт. Ряд стеклянных трубочек, наполненных смесью воздуха и диоксида углерода и содержащих по одному одинаковому зеленому листу, был выставлен на разложенный с помощью трехгранной призмы солнечный свет так, что в каждой части солнечного спектра находилась одна трубочка. Через каждые несколько часов определялось содержание диоксида углерода в трубочках. Оказалось, усвоение СО2 происходит только в тех лучах, которые поглощаются хлорофиллом, т. е. в красных, оранжевых и желтых частях спектра. Некоторые результаты опыта представлены на ркс. 49 в виде графика, на котором по оси ординат отложены количества поглощенной СО2 в каждой из трубочек. [c.176]

    Фотохимическими называют реакцин, которые осуществляются под воздействием электромагнитных колебаний видимого и ультрафиолетового участков спектра. [c.277]


    Следует отметить, что флуоресценция, фосфоресценция и фотохимические процессы также объясняются электронными переходами. Так, при фотохимических процессах в химическом взаимодействии участвуют молекулы в возбужденном состоянии, которые обусловливают их реакционную способность. Благодаря использованию электронных спектров поглощения появилась возможность определять ионизационные потенциалы молекул, которые можно вычислить из длин волн, необходимых для возникновения эффекта фотоионизации. Наиболее общее практическое приложение спектроскопии и в первую очередь электронной спектроскопии — опре- [c.163]

    Для спектральных и фотохимических свойств молекулы решающее значение имеет ее строение. Исследование красителей показало, что цвет вещества обусловлен присутствием особых групп хромофоров, к которым обычно относятся ароматические ядра, кратные связи, карбонильная группа. Атомные группы, усиливающие и смещающие полосу поглощения хромофора, называются ауксохромами. Если смещение поглощения под их воздействием происходит в красную (длинноволновую) область, то оно именуется батохромным, сдвиг в фиолетовую (коротковолновую) сторону — гипсо-хромным. Деление групп на хромофоры и ауксохромы не является строгим, к последнему классу относят обычно амино-, окси- и меркапто-группы, а также галоиды. Взаимное влияние различных хромофоров и ауксохромов в молекуле столь сильно, что не удается легко и однозначно выделить в спектрах колебания, вызванные теми или иными переходами. [c.281]

    Первая стадия приводит к переходу молекулы (за время 10- с) в электронно-возбужденное состояние А+Кх А. Вторую стадию можно объединить с первой, назвав их вместе первичным фотохимическим процессом. Во второй стадии возбужденные молекулы за время своего существования (10- с) претерпевают различные превращения а) диссоциацию с образованием свободных атомов и радикалов (или ионов при гетеролитическом разрыве), которые вступают в дальнейшее взаимодействие — вторичные реакции (третья стадия) б) дезактивацию при столкновениях с другими молекулами в) переход в основное электронное состояние с испусканием кванта светового излучения (флуоресценция или фосфоресценция) или внутримолекулярное превращение (конверсия) энергии электронного возбуждения в колебания. Изучение спектров поглощения помогает решить вопрос о характере первичного фотохимического превращения. [c.379]

    Дж/моль — энергия разрыва связи С]—С1), что соответствует видимой области света. Действительно, разложение СЬ на атомы С1 может происходить под действием видимого света. Уксусный альдегид и ацетон поглощают только в ультрафиолетовой области спектра и поэтому устойчивы к действию видимого света. Заметим, что бесцветны все белки и нуклеиновые кислоты ( если вещество белковой природы окрашено, как, например, гемоглобин, то это обусловлено поглощением света не белком, а связанным с ним низкомолекулярным соединением, в данном случае гемом). Поэтому эти важнейшие биологические полимеры устойчивы к видимому свету, и фотохимические реакции с их участием начинаются [c.368]

    Было известно, что комплексы гема с окисью углерода диссоциируют под действием света учитывая это, Варбург и Негелейн (1928 г.) сняли фотохимический спектр действия (см. примечание к гл. 13, разд. В) для обращения ингибирующего действия окиси углерода на дыхание дрожжей Torula utilis. Этот спектр был сходен со спектром поглощения других производных гема. Так возникло предположение о том, что Ог, так же как и СО, соединяется с железом гемогруппы, входящей в состав дыхательного фермента. [c.362]

Рис. 23-10. Спектр поглощения и фотохимический спектр действия зеленого листа. Спектр поглощения характеризует долю энергии поглощенного света в зависимости от длины волны. Фотохимический спектр действия показывает зависимость отнбсительйой эффективности фотосинтеза от длины волны. Стимулировать фотосинтез может, вообще говоря, видимый свет любой длины волны, однако наибольшую эффективность фотосинтеза обеспечивают длины волн 400-500 и 600-700 вм. Для сравнения показан спектр поглощения чистого хлорофилла а, который в области 500-600 нм поглощает сравнительно слабо. В некоторых фотосинтезирующих клетках имеются вспомогательные пигменты, интенсивно поглощающие в этой области и, таким образом, дополняющие собой хлорофиллы. Рис. 23-10. <a href="/info/2753">Спектр поглощения</a> и <a href="/info/373578">фотохимический спектр</a> <a href="/info/189227">действия зеленого</a> листа. <a href="/info/2753">Спектр поглощения</a> характеризует долю <a href="/info/6186">энергии поглощенного</a> света в зависимости от <a href="/info/2957">длины волны</a>. <a href="/info/373578">Фотохимический спектр</a> действия показывает зависимость отнбсительйой <a href="/info/587116">эффективности фотосинтеза</a> от <a href="/info/2957">длины волны</a>. Стимулировать фотосинтез может, вообще говоря, <a href="/info/190955">видимый свет</a> любой <a href="/info/2957">длины волны</a>, однако наибольшую <a href="/info/587116">эффективность фотосинтеза</a> обеспечивают <a href="/info/2957">длины волн</a> 400-500 и 600-700 вм. Для <a href="/info/793966">сравнения показан</a> <a href="/info/2753">спектр поглощения</a> чистого хлорофилла а, который в области 500-600 нм поглощает сравнительно слабо. В <a href="/info/1685745">некоторых фотосинтезирующих</a> клетках имеются <a href="/info/2933">вспомогательные пигменты</a>, интенсивно поглощающие в этой области и, <a href="/info/461013">таким образом</a>, дополняющие <a href="/info/1795776">собой</a> хлорофиллы.
    СН—СН2— . Интенсивность сигнала медленно уменьшается даже при 77° К, а при размораживании до 20° С спектр вообще исчезает. Такой же спектр, получающийся при 7-облучении полиэтилена, сохраняется нри размораживании. Другое отличие фотохимического спектра от радиациопнохимического состоит в том, что в ориентированных пленках вид радиационнохимического спектра зависит от ориентации оси растяжения плепки относительно направления магнитного ноля из-за анизотропии СТС, тогда как фотохимический спектр всегда остается изотропным. Эти факты можно объяснить, если иредиоложитб, что нри фотолизе радикалы образуются в дефектных местах (вблизи двойных связей, окисленных групп и т. д.), [c.433]

    При фотохимическом хлорировании парафиновых углеводородов или реакции газообразной смеси хлор — водород светопоглощающим компонентом является только хлор. Легко можно показать, что смесь хлора с углеводородом дает практически такой же спектр поглощения, как одни хлор. [c.141]

    Закономерности протекания химических процессов, обусло-вленных действием света (излучение с частотами видимого спектра и с близкими к ним), рассматриваются в разделе физической химии, называемом фотохимией. В этом разделе значительное внимание уделяется скорости протекания фотохимических реакций, поэтому основы фотохимии целесообразнее всего излагать в разделе, посвященном химической кинетике. [c.229]

    Фотохимические реактор ы. Фото.чнмической называется химическая реакция, которая инициируется под воздействием излучения оптического диапазона электромагнитного спектра, т. е. излучения видимой, ближней шфракрасиой и ближней ультрафиолетовой зон. [c.98]

    Перспективный метод изучения процессов обмена анергии был создан Норришем [440] и Портером [462]. Сущность этого Д18тода, называемого методом импульсного фотолиза, заключается в том, что исследуемый газ облучается в течение короткого времени (несколько микросекунд) интенсивным (тысячи джоулей источником света непрерывного спектра. В результате первичного или вторичных фотохимических процессов возникают радикалы или молекулы на различных колебательных уровнях. Спектроскопическая регистрация временного изменения концентраций этих частиц в определенных квантовых состояниях, обусловленная передачей энергии при столкновениях, дает возможность изучения колебательной релаксации. [c.79]

    С точки зрения механизма фотохимической реакции существенное значение имеет вопрос о том, каков результат первичного воздействия света на молекулу поглощающего вещества. В зависимости от частоты света и структурных особенностей поглощающих свет молекул в резу.ггьтате фотохимической активации может произойти возбуждение, ионизация или диссоциация молекулы. Часто природа первичного фотохимического акта может быть установлена на основании данных о структуре спектра поглощения. [c.158]

    В большом числе случаев природа продуктов фотохимической диссоциации молекул была установлена на основании оптических спектров ноглон(р- [c.159]

    Многие вещества, например, такие, как водород, углеводороды жирного ряда и другие, поглощают свет в труднодостушюй далекой УФ-области спектра, что затрудняет проведение фотохимических реакций с этими веществами. Однако, примешивая постороннее вещество — сенсибилизатор, поглощающее свет в более доступной области спектра, можно осуществить фотохимическую реакцию веществ, не поглощающих в дашюй спектральной области. [c.165]

    Иод п другие галогены широко применяются в качестве сенсибилизаторов в различных фотохимических [)еакциях, Это прежде всего объясняется легкостью активации галогенов, обусловленной тем, что их спектр но-глощения расположен в видимой или близкой УФ-области. Кооффицпсигт ног.пощения света парами иода, брома и хлора в зависимости от длины волны приведегг на рис. 39. Суще- [c.166]

    Так, возбужденная частица может передать свою энергию другой частице и тем самым вызвать ее распад. Такая передача возбуждения может вызвать под действием света определенной длины волны фотохимическое превращение вещества, непосредственно не поглощающего света в данной области спектра. Это явление носит название фотосенсибилизации, а вещество, служающее промежуточным переносчиком световой энергии, называется фотосенсибилизатором. [c.122]

    Если уравнение (1.1) сопоставить с приведенными значениями разностей энергий для соседних энергетических уровней, то излучение в УФ-области спектра будет давать кванты света, достаточные, чтобы вызвать типичные электронные переходы. Например, длина волны 250 нм соответствует энергии кванта примерно 0,5-10 Дж, а моль таких квантов имеет энергию примерно 300 кДж. Энергия квантов электронного возбуждения одного и того же порядка, что и величина энергии диссоциации связи. Поэтому электронное возбуждение иногда сопровождается фотохимическим разложением. Однако в больщинстве случаев разрыва химической связи не происходит, так как во.чбужденные молекулы возвращаются в основное состояние в результате различных фотофизических процессов, а в конденсированных средах, кроме того, взаимодействие между частицами приводит к быстрой передаче поглощенной энергии всему коллективу частиц. В некоторых молекулах электронные уровни расположены так близко друг от друга, что для электронного перехода достаточен видимый свет. Если уровни удалены друг от друга, то, чтобы вызвать эти переходы, необходимо УФ-излучение или даже рентгеновское. Инфракрасное излучение вызывает переходы между колебательными уровнями, радиочастотное излучение — между вращательными. [c.7]

    Для исследования кинетики быстрых и сверхбыстрых химических реакций большие возможности дают люминесцентные методы. Эти методы особенно важны для фотохимических реакций. Иногда удается изучать быстрые реакции возбужденных молекул с П0М0Щ11Ю спектров флуоресценции ири стационарном возбуждении (см. гл. III). Прямое измерение кинетики быстрых реакций возбужденных молекул оказывается возможным путем наблюдения кинетики люминесценции. Поскольку интенсивность испускаемого света ироиорциональна концентрации испускающих частиц, то кинетические кривые люминесценции иеиосредственно отражают изменение коице]1трации возбужденных молекул во времени. [c.89]

    Помимо ртутных ламп в фотохимических исследованиях широко используются газосветные лампы, наполненные тяжелыми инертными газами, например ксеноном, при давлении 1,5-10 мм рт. ст. и выше. После включения лампа сразу дает 80% светового потока. Полный световой поток достигается после того, как лампа приобретет установившийся тепловой режим. Давление газа при этом возрастает примерно в два раза. Спектр ксеноновых ламп ДКСШ существенно отличается от спектра ртутных ламп. Видимая и ультрафиолетовая части спектра представляют собой интенсивный непрерывный спектр, который простирается вплоть до 184 нм, где он обрезается поглощением в атмосфере. Распределение энергии в спектрах ламп с разрядом в инертных газах данного типа практически не зависит от давления и силы тока. [c.140]

    Выделение света. Использование света достаточно узкого интервала длин воли имеет большие преимущества при проведении фотохимических реакций. В этих условиях оказывается возможным непосредственио и точно определить величины, необходимые для вычисления квантового выхода, ннтепсив юсти падающего и доли поглощенного света. Узкий спектральный интервал позволяет так-л е устранять нежелательные фотохимические превращения про-дуктов реакции. Выделение света определенной длины волиы из спектра источника излучения мол<ет осуществляться при помощи монохроматоров и светофильтров, [c.141]

    В настоящее время при проведении фотохимических экспериментов используются как призменные, так и дифракционные монохроматоры. В сочетании с ртутными лампами среднего давления эти приборы позволяют получить монохроматический свет достаточно высокой нитенсивности, пригодный для проведения фотохимических реакций в тех участках спектра, для которых нет достаточно хороших химических и стеклянных светофильтров, например, линии 253,7 265,2 280,4 296,7—302.5 нм. [c.141]

    Продуктами окисления метана являются довольно значительные коли-честпа гидроперекиси метила (до 0,3% на пропущенный метан) и формальдегид. Те же продукты образуются и при фотохимическом (оспещение светом Шумановской области спектра) окислении метана. В этой области спектра метан прозрачен, а кислород диссоциирует на атомы. [c.481]

    Метод ЭПР. Третичные алкилпероксирадикалы рекомбинируют относительно медленно и с высокой энергией активации. Поэтому при температурах ниже 0°С они достаточно стабильные частицы. Так, например, 2к/ для (СНз)зСОО. при—100°С в HjOH равна 5-10" л/моль с, а при [R0 >] = 10 моль/л начальная скорость расходования равна 5 10 моль/л-с. Это обстоятельство используют для того, чтобы измерить константу скорости реакции RO с ингибитором. В ячейку ЭПР спектрометра вводят углеводород, гидроперекись и ингибитор, фотохимически создают определенную начальную концентрацию перекисных радикалов и по ЭПР-спектру снимают кинетику их расходования, которая описывается законом [c.281]

    Реакции, которые протекают под действием света, называются фотохимическими. Под светом понимается видимый свет, ин-фракрасное и ультрафиолетовое излучения. Эффективность действия света зависит от его энергии чем короче длина волны (т. е. чем больше смещено излучение в ультрафиолетовую об ласть спектра), тем выше энергия излучаемых фотонов и тем сильнее воздействие кванта света на облучаемую частицу — атом, ион или молекулу. [c.47]


Смотреть страницы где упоминается термин Фотохимический спектр: [c.141]    [c.67]    [c.95]    [c.160]    [c.161]    [c.59]    [c.139]    [c.253]    [c.59]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте