Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кельвина, определение температур

    Следовательно, целесообразно определить степень необратимости рассматриваемого стандартного процесса не с помощью количества переданной теплоты Q, а с помощью величины Q/6, где 0 — некоторая величина, количественно удовлетворяющая принятому определению температуры. Как только функция 0 будет определена, количественная характеристика степени деградации энергии окажется законченной. Мы удостоверимся в дальнейшем, что 0, которую Кельвин назвал термодинамической температурой, может быть полностью отождествлена с температурой абсолютной шкалы, которую мы раньше определили с помощью идеального газа. Поэтому положим 0 = 7". Значение приведенного тепла Q/7 в этом процессе мы можем назвать возрастанием энтропии системы пружина — резервуар. Если Sa — энтропия в начале процесса, а Sb — в конце, то в соответствии с принятым определением можем записать [c.95]


    Стандартная энтропия чистых веществ относится к 1 моль вещества при р=101 кПа и определенной температуре, чаще 298 К. Она обозначается 5 . Единица измерения энтропии — джоуль на моль-кельвин (Дж/(моль-К). [c.98]

    К тройной точке воды, а 273,15° К — к точке плавления льда [124]. Таким образом, было принято предложение Кельвина, сделанное в 1854 г. Он высказал тогда мысль о том, что если бы точка плавления льда была известна с достаточной точностью, то величина одного градуса могла бы быть окончательно определена по абсолютному значению температуры этой точки, а не как сотая часть интервала между точками плавления льда и кипения воды, как это обычно делается при определении стоградусной температурной шкалы. При таком определении температуры соотношение между градусами Кельвина и градусами Цельсия будет следующим  [c.21]

    Еще столетие назад физики пришли к выводу, что понятие температуры соответствует понятию энергии молекулярного движения. Согласно этой идее, суш,ествует такая низкая температура, при которой молекулы перестают двигаться. Эта температура была названа абсолютным нулем. В США температуру обычно измеряют но шкале Фаренгейта точка замерзания воды соответствует 32° Е, температура кипения 212° Е. При научных работах принято пользоваться стоградусной шкалой, или шкалой Цельсия (точка замерзания воды, насыщенной воздухом, при давлении 1 атм 0°, точка кипения воды при тех же условиях 100°). Новую температурную шкалу предложил Кельвин, знаменитый английский физик (1824—1907). Эта шкала называется шпалой абсолютной температуры, или шкалой Кельвина (° К). Температура абсолютного нуля по этой шкале соответствует, согласно современным наиболее точным определениям, —273,18° стоградусной шкалы (0° К=—273,18°С). Деление стоградусной шкалы, называемое градусом или градусом Цельсия, определяется исходя из того, что интервал между точкой замерзания воды, насыщенно воздухом, при 1 атм и точкой кипения воды при том же атмосферном давлении принимается равным 100°. По шкале Кельвина, имеющей абсолютный нуль (0° К), точка замерзания насыщенной воздухом воды 273,18° К, а точка кипения воды 373,18° К (рис. 26). [c.44]


    Вильям Томсон (лорд Кельвин) связал эффективность таких систем, как на рис. 26.2, с температурами обоих резервуаров и использовал эту эффективность е для определения температуры. Он принял, что е для любого обратимого цикла независимо от используемой системы является функцией обеих температур [c.343]

    Международная практическая температурная шкала. Теоретически для калибровки леей температурной шкалы Кельвина достаточно располагать определением температуры тройной точки чистой воды (273,16° К). Однако с практической точки зрения термодинамические способы, необходимые для точного измерения температуры, слишком трудоемки, поэтому нужны практические стандарты, которые позволяли бы сравнительно легко производить достаточно точное определение температуры. Такой стандарт был установлен Седьмой [c.79]

    Количество теплоты, которое необходимо передать определенному количеству некоторого вещества, чтобы повысить его температуру на один кельвин (градус), называется теплоемкостью этого вещества, С. Теплоемкости выражаются в джоулях, отнесенных к молю и кельвину. Поскольку теплоемкость вещества определяет скорость поглощения им теплоты при по- [c.20]

    Традиционной единицей измерения теплоты, работы и энергии является калория, которая вводится эмпирически как количество теплоты, необходимое для повышения температуры одного грамма воды на один градус Кельвина (в системе СИ просто на 1 кельвин). Хотя, согласно термодинамике, теплота, энергия и работа эквивалентные величины, единица их измерения-калория-не связана очевидным образом с массой и ускорением. Такой выбор единиц затрудняет понимание физической связи между ними. Джоуль как единица измерения теплоты гораздо удобнее в том отношении, что позволяет видеть связь между теплотой, работой и энергией уже по самому своему определению. Хотя большая часть термодинамической литературы основана на использовании калории, логическая простота определения джоуля должна в конце концов обеспечить его повсеместное использование, подобно тому как литр и метр вытеснили галлон и ярд в большинстве передовых стран мира. [c.443]

    Нефтяная система при определенных условиях переходит в экстремальное состояние, характеризуемое наибольшим значением поверхности раздела фаз. В этом случае размер надмолекулярной структуры минимальный мин (точка Г), и толщина сольватного слоя имеет максимальное значение Я акс Существенное искривление поверхности надмолекулярной структуры в соответствии с уравнением Томсона — Кельвина обуславливает значительное отклонение температур фазовых переходов (застывания и кипения) от равновесных величин. Так, введением депрессаторов удается понизить температуру застывания нефтяных систем на 50—70°С [141, 143]. [c.40]

    Из (1.7.2) следует, что С имеет размерность энергии, деленной на температуру, и измеряется в джоулях на кельвин. И опыт, и теория говорят, что в общем случае теплоемкость зависит от температуры С — f (Т). Поэтому, кроме понятия средняя теплоемкость в температурном интервале , целесообразно ввести представление о так называемой истинной теплоемкости системы при температуре Т. По определению истинной теплоемкостью С называется предел отношения (1.7.2), когда разность температур стремится к нулю  [c.24]

    Из самого определения энтропии (1.9.1) следует, что размерность этой величины есть энергия, деленная на температуру. В СИ единицей для измерения энтропии будет джоуль на кельвин (ДжК ). [c.41]

    Как видно нз уравнения (2), для определения молекулярной массы необходимо знать эбулиоскопическую постоянную. Величина ее зависит от чистоты растворителя, поэтому лучше использовать не расчетные, а экспериментальные значения. Экспериментальное нахождение этой величины удобно еще в том отношении, что позволяет избежать при определении АТ перевода показаний прибора, регистрирующего изменения в температурах кипения, в градусы Кельвина. Отклонение пера самописца (Ad) можно считать пропорциональным АТ. Поэтому Ad=S-AT, где S—постоянная, обусловленная параметрами используемой аппаратуры. Тогда уравнение (2) принимает вид [c.146]

    Около 200 лет назад ученые заметили, что при охлаждении определенного количества газа его объем закономерно уменьшается, и предположили, что если при дальнейшем охлаждении этот объем будет уменьшаться с той же закономерностью, то станет равным нулю приблизительно при —273 °С. Развитие этой концепции показало, что температура —273 °С (точнее, —273,15 °С) является минимальной температурой, абсолютным нулем. Несколько позже знаменитый британский физик Кельвин (1824—1907) предложил новую шкалу температур, ведущую отсчет от абсолютного нуля. Шкала Кельвина позволила в простой форме выразить законы термодинамики. [c.22]

    В системе СИ принята температурная шкала Кельвина, причем градусу дано новое определение. За абсолютный нуль принят О К, а тройная точка воды принята равной 273,16 К. (Тройная точка воды — это температура, при которой чистая жидкая вода, лед и водяные пары находятся в равновесии.) При таком определении градуса точка кипения воды при давлении в одну атмосферу соответствует 373,15 К, и точка замерзания воды, насыщенной воздухом при давлении в одну атмосферу, соответствует 273,15 К. Таким образом, эта принятая в системе СИ температура по шкале Кельвина, равная 273,15 К, выше температуры по стоградусной шкале Цельсия. При указании температуры по шкале Кельвина знак градуса не пишется. [c.23]


    Отметим, что при использовании уравнения (9.11) для решения задач, в которых рассматриваются свойства газов, в него необходимо подставлять давление, объем и температуру в тех единицах, которые выбраны для определения газовой постоянной К. Поэтому, если в условии задачи давление задано в торрах или миллиметрах ртутного столба, его необходимо перевести в атмосферы, точно так же объем следует переводить в литры, а температуру — в шкалу Кельвина. Однако в некоторых случаях применяются и Другие значения газовой постоянной, например, следует знать, что [c.155]

    Тепловая энергия является наиболее известной формой энергии. Из повседневного опыта нам хорошо знакомы горячие и холодные предметы, мы знаем, что при горении выделяется энергия, а испарение жидкостей сопровождается их охлаждением. Чтобы изменить состояние системы, к ней подводят тепловую энергию—так поступают при необходимости расплавить твердое вещество, или испарить жидкость, или повысить температуру системы. Тепловая энергия совсем не то же самое, что температура. Теплота представляет собой одну из форм энергии, тогда как температура — это условная мера теплового состояния, по определению равная нулю в абсолютной шкале (шкала Кельвина) для такого состояния идеального газа, при котором его объем обращается в нуль. Абсолютная шкала определяется несколькими воспроизводимыми точками, одной из которых является, например, тройная точка воды (на 273,16° выше абсолютного нуля). [c.303]

    Еще в 1854 г. Томсоном было отмечено, что если значение точки плавления льда известно с достаточной точностью, то с теоретической точки зрения предпочтительнее определять шкалу температур с помощью абсолютного значения точки плавления льда, чем путем отнесения 100° к разнице между значениями точки плавления льда и точки кипения воды. В 1954 г. десятая Генеральная конференция по мерам и весам [1424] пересмотрела определение шкалы температур по Кельвину, приписав значение 273,16° К тройной точке воды в этом случае точка плавления льда соответствует 273,15° К. Для практических целей пересчет между двумя шкалами температур выражается формулой  [c.23]

    Значения теплоемкостей, полученные для гелия на основе классической теории, согласуются с экспериментальными величинами, определенными для интервала температур в несколько градусов Кельвина вблизи абсолютного нуля, и, таким образом, подтверждают применимость классической теории теплоемкостей при таких температурах, когда можно пренебречь влиянием квантовых эффектов. [c.49]

    Обычно указывают теплоту плавления для температуры плавления, теплоту испарения — для температуры кипения. Для уточненных расчетов теплот сублимации обе эти величины перед сложением необходимо пересчитать на температуру, при которой производится определение теплоты сублимации (чаще всего в градусах Кельвина). [c.359]

    Тройная точка воды играет важную роль в определении температурной шкалы. Согласно решению десятой генеральной конференции по мерам и весам (1954 г.) и согласно ГОСТ 8550—57 международная термодинамическая шкала температур определяется при помощи тройной точки воды, причем ей приписывается температура 273,16° К. Это значит, что величина градуса этой шкалы равна интервала между абсолютным нулем и температурой тройной точки. Определяемая таким путем величина градуса практически равна 1/100 интервала между температурами кипения и кристаллизации воды при нормальном атмосферном давлении. При отсчете от абсолютного нуля температура называется абсолютной или выраженной в градусах Кельвина (°К) и обозначается буквой Т. При отсчете от температуры плавления льда при атмосферном давлении (она равна 273,46—0,01=273,15° К), согласно решению XI генеральной конференции (1960 г.), температура называется выраженной в градусах Цельсия (°С) и обозначается буквой t, причем [c.180]

    Ниже определенной температуры аморфный полимер может рассматриваться как твердое стекло. Если его нагреть выше этой температуры, то отдельные сегменты макромолекулы приобретают большую подвижность, полимер становится мягким и, наконец, переходит в высокоэластическое состояние. Температуру, при которой происходит это изменение, называют температурой стеклования Tg. Эта температура зависит от химической природы полимера, стереохимического строения его цепи, от степени разветвленности макромолекул. Для одного и того же образца Tg может быть различной в зависимости от метода ее определения [90 . Температуру стеклования можно определить путем исследования некоторых физических характеристик полимерного образца, таких, как показатель преломления, модуль упругости, диэлектрическая проницаемость, теплоемкость, коэффициент набухания, удельный объем, в зависимости от температуры. При достижении температуры стеклования эти величины или их температурный ход резко меняются. У аморфных полимеров температура размягчения часто совпадает с температурой стеклования у кристаллических полимеров точка плавления существенно выше, чем ТТемпературу стеклования кристаллических полимеров можно оценить по эмпирическому правилу Бойера — Бимана составляет примерно две трети температуры плавления (в градусах Кельвина) .  [c.87]

    Показания двух термометров с различными термометрическими веществами, вообще говоря, никогда не совпадают, кроме как при О и 100 "С, поэтому такое определение температуры, как объективной меры интенсивности геплового движения, является произвольным. Эта произвольность отчасти устраняется, если в качестве термодинамического вещества использовать достаточно разреженные (идеальные) газы. Их коэффициент теплового расщирения а не зависит ни oi темиерагуры, ни oi природы газа. Шкала газового термометра градуируется так же, как и шкала Цельсия, но за нуль температуры принимается —1/а градусов Цельсия (шкала кельвина). [c.21]

    Как будет впоследствии показано, второе начало термодинамики полностью устраняет произвольность в определении температуры, позволяя строго установить абсолютную шкалу температуры (шкалу Кельвина), не зависящую ни от выбранного вещества, ни от того или иного гермометрического параметра. [c.21]

    Дилатометрические исследования зависимости Гс от скорости изменения температуры показали, что при различных скоростях нагревания и охлаждения значения температуры переходов разных полимеров (пластмасс, каучуков) лежат в определенном интервале, который смещается с увеличением скорости в сторону высоких температур, т. е. структурное стеклование является релаксационным процессом. Обратная температура этого перехода н логарифм скорости связаны между собой линейной зависимостью вида Гс = С1— 2lgw (рис. 10.13), где Гс выражена в кельвинах, а между константами С1 и Са существует простое соотношение С2 = 0,031С1. С уменьшением скорости нагревания температура перехода снижается тем сильнее, чем выше Гс данного полимера. При этом АГс = 0,03Гс, где ДГс — смещение температуры перехода при изменении скорости в 10 раз Гс — температура размягчения (стеклования) при стандартной скорости нагревания 3 К/мин. Для пластмасс ДГс=10ч-12 К, а для каучуков 6—7 К. [c.264]

    Температуру можно рассматривать как условие, которое определяет теплообмен в теле. При обеспечении определенных условий конкретное явление природы всегда происходит при одной и той же температуре. Поэтому для описания каждого явления необходимо точно определять точки на температурной шкале. Двумя такими фиксированными точками являются точка таяния льда и точка кипения воды. Обычно используют шкалы Цельсия и Фаренгейта, в которых установлены соответственно 0° С и 32° F для точки таяния льда и 100° С и 212° F — для точки кипения воды. Значения температуры, отличаюш,иеся от этих двух фиксированных точек, устанавливают с помош,ью термометра измерением какого-либо зависящего от температуры свойства рабочего тела. В качестве термометрического рабочего тела используют газы, так как все они с достаточной точностью подчиняются закону идеального газа. Но при создании температурной шкалы, основанной на свойствах рабочего тела, неизбежно допускаются определенные погрешности. Использование теории идеального обратимого двигателя Карно позволило Кельвину избежать этих погрешностей и ввести шкалу абсолютной термодинамической температуры, которая не зависит от свойств рабочего тела. Нуль градусов по шкале Кельвина на 273,15 К ниже точки таяния льда. Начиная с 1954 г. было решено отказаться от точки таяния льда как от реперной точки, так как ее очень трудно воспроизводить с приемлемой точностью. Вместо нее в качестве реперной точки ввели тройную точку воды (температура фазового равновесия между чистым льдом, водой и водяным паром), которая можетбыть воспроизведена в лабораторных условиях с погрешностью не хуже 0,001 К и которая на 0,01 К выше точки таяния льда. Международным соглашением тройной точке было присвоено значение 273,16 К- Другие температуры могут быть определены с помощью газового термометра постоянного объема согласно следующему выражению  [c.16]

    Предпринимались попытки взвешивать количество насыщенного пара, адсорбированного на твердом теле при комнатной температуре. Бенеши, Боннар и Ли [48] разработали удобный метод определения объема пор катализатора, который, по-видимому, применим к электродам. Согласно их методу, после достижения равновесия образца с парами раствора четыреххлористого углерода, содержащего 13,1 об.% гексадекана, с помощью взвешивания определяли количество СС1 , адсорбированного образцом. Добавление нелетучего гексадекана приводило к тому, что давление пара составляло 95% давления чистого СС1 в результате удавалось обойтись без взвешивания конденсированного пара при давлении насыщения. Эффективный радиус пор, ниже которого все поры оказываются заполненными, можно рассчитать по уравнению Кельвина [уравнение (10)], как было указано в разд. II, Б, 5. Этот радиус можно представить в виде [c.361]

    Кёлинг[ ] изучала адсорбцию паров на выветренном (weathered) стекле оптическим методом. Она заметила, что интерференционная окраска стенок стеклянной колбы резко изменялась с температурой, и объяснила эти изменения окраски внезапным опорожнением или заполнением капилляров стекла. С изменением температуры меняется относительное давление паров. Если функция распределения пор прерывна, то в момент достижения некоторого относительного давления происходит внезапное опорожнение или заполнение капилляров определенного размера, что и приводит к столь же быстрому изменению интерференционной окраски. Зная относительное давление, при котором происходит изменение цвета, моншо по формуле Кельвина рассчитать радиус капилляров. [c.546]

    В зависимости от метода измерения значение Т может быть выражено в градусах Кельвина, или по термодинамической шкале, или по международной шкале, которые ниже примерно 400° С согласуются, как полагают, с точностью примерно до 0,04°. В повседневной калориметрической практике температуры в градусах Кельвина по термодинамической шкале определяются, как правило, методом газовой термометрии, а по шкале Цельсия — платиновым термометром сопротивления. Последний из этих двух методов более удобен, и поэтому температуру в °К чаще определяют измерением ее в °С с последующим прибавлением 273,15°. Если при этом не вводят никаких дополнительных поправок, то получают значения температуры в градусах Кельвина по международной шкале. Более подробные сведения, касающиеся этих важных определений, можно найти в статьях Стимсона [697, 698]. [c.21]

    Каждый из этих типов реакций соответствует определенной области температур. Тило установил, что отношение паименьпшх температур (в градусах Кельвина), при которых силикаты кальция претерпевают эти превращения, к тем температурам, при которых происходят соответствующие превращения у фосфатов натрия, является практически постоянной величиной. Радиус иона натрия лишь немного отличается от радиуса иона кальция. Вероятно, этим и определяется структурное и химическое родство между этими группами срединений. [c.541]

    Единицами измерения служат кельвин, физическая атмосфера и кубический сантиметр на моль. Значения Д находятся суммированием составляющих для различных атомов или групп атомов, приведенных в табл. 2.1. Для пользования этим методом необходимо знать нормальную температуру кипения и молекулярную массу вещества.. Погрешности расчета по уравнениям (2.2,1)—I2.2.3) приведены в табл. 2.2. Спенсер и Доберт [31] провели обширную численную проверку существующих методов определения критических свойств углеводородов и пришли к заключению, что наиболее точно критическая teMnepaTypa рассчитывается по методу Лидерсена однако, модифицировав константы в методике, которую предложил Нокэй [20], они смогли несколько понизить среднюю погрешность расчета. Соотношение Нокэя имеет вид [c.20]


Смотреть страницы где упоминается термин Кельвина, определение температур: [c.272]    [c.98]    [c.98]    [c.22]    [c.344]    [c.196]    [c.42]    [c.16]    [c.568]    [c.189]    [c.189]    [c.376]    [c.568]    [c.23]   
Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.50 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.50 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.50 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Кельвина

Температура определение



© 2025 chem21.info Реклама на сайте