Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура веществ и неорганических соединений

    В Справочнике, 1-м выпуском которого является данное издание, приводятся значения термических констант (теплоемкость, энтальпия,энтропия, энергия диссоциации,энтальпия и изобарный потенциал образования, изменения энтальпии и энтропии при полиморфных превращениях, плавлении, испарении и сублимации, температуры полиморфных превращений, плавления и кипения, давления паров в точках фазовых переходов, критические давление и температура) изученных неорганических соединений и органических соединений, содержащих не более двух атомов углерода. Целью издания Справочника является восполнение пробела в советской и мировой литературе, так как существующие аналогичные издания в значительной степени устарели или включают лишь ограниченный круг веществ. [c.7]


    В таблицах приводятся температуры (в °С), при которых давление насыщенного пара достигает величины, указанной в головке таблицы (в мм рг. ст. или в атм). Каждый раздел таблиц (простые вещества, неорганические соединения, органические соединения) состоит из двух частей в табл. I указаны температуры, при которых достигаются давления насыщенного пара ниже 1 атм, в табл. II — температуры, при которых достигаются давления насыщенного пара выше 1 атм. В связи с тем, что в точке плавления кривые давления паров имеют излом, а в критической точке обрываются, в табл. I приводятся температуры плавления (в °С), а в табл. II—критические температуры (в °С) и критические давления (в атм) соответствующих веществ. Все температурные величины даются с точностью, не превышающей О,Г С. [c.593]

    Соединения кальция (II), стронция (II), бария (II). Неорганические соединения кальция и его аналогов представляют собой кри-стал шческие вещества, в большинстве с высокими температурами плавления. [c.480]

    Развитие термодинамики неорганических соединений шло в первую очередь в направлении исследования процессов цветной металлургии, хлорирующего обжига, металлотермии, металлургии титана, циркония и ряда более редких элементов. Вместе с тем методы термодинамики начинают использоваться и при изучении различных проблем геологии. Повышение интереса к химии высоких температур привело к усиленному изучению термодинамических свойств веществ при высоких и очень высоких температурах. [c.20]

    Расчет Кт по значениям К/, г компонентов реакции. Для определения 1 /С по значениям gKf,i проще всего использовать соотношение (11,3). В настоящее время при разных температурах определены для большого числа органических соединений (углеводородов, кислород- или серусодержащих соединений и других) и для некоторых неорганических соединений, главным образом простейших. Большей частью gKf определены для соединений, образующихся из простых веществ, не изменяющих своего агрегатного состояния и не имеющих полиморфных превращений в рассматриваемом интервале температур (например, из графита, Нг, О2, N2, СЬ, р2 или из веществ, которые могут быть приняты находящимися в таком состоянии [например, из 82 (г), Вгз (г) и др.]. Наличие фазовых переходов у простых веществ существенно усложняет как расчет значений так и их применение. [c.68]

    Влияние температуры на теплоты образования неорганических соединений из простых веществ и на другие параметры этих реакций [c.155]


    Углеводороды могут образоваться не только при превращениях органических веществ, но и путем синтеза углерода и водорода или из содержащих эти элементы неорганических соединений. Известно промышленное получение жидких углеводородов из окиси углерода и водорода при температуре 250—300° С в присутствии катализаторов. Это дало основание для предположений, что нефть и углеродный газ, находящиеся в осадочных породах, тоже продукты такого синтеза, образовавшиеся где-то глубоко в земной коре, а затем мигрировавшие в осадочные породы. Представления о неорганическом образовании нефти выдвигались в последнее время некоторыми отечественными учеными. [c.77]

    Мольная рефракция, как и показатель преломления, на основании которого она определяется, зависит от длины световой волны. Показатель преломления и мольная рефракция получены для многих веществ при различных условиях. При этом оказалось, что, несмотря на сильную зависимость показателя преломления от условий, в которых находится вещество, его мольная рефракция для колебаний волн одинаковой длины практически на зависит от температуры и давления, а изменение агрегатного состояния лишь слабо сказывается на ней. Так, например, мольная рефракция воды при 0 20 и 100° С и водяного пара при 100 С соответственно равна 3,715 3,715 3,716 3,729. Следовательно, мольную рефракцию можно рассматривать как характерную константу данного вещества. Мольная рефракция обладает аддитивными свойствами. Рефракция неорганических соединений складывается из рефракций ионов рефракция органических молекул складывается из рефракции атомов, групп и связей. [c.53]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    В первом разделе справочника содержатся сведения о физико-химических свойствах химических соединений, используемых в процессах добычи и транспорта нефти в виде индивидуальных веществ или как компонент какого-либо состава. Все вещества условно подразделены на четыре группы неорганические вещества, органические вещества, макромолекулярные соединения и поверхностно-активные вещества. В каждой группе вещества расположены в алфавитном порядке, приведены их физические свойства молекулярная масса, внешний вид, плотность, температура плавления, температура кипения, растворимость и т. д. Для каждого соединения описано его назначение в используемых процессах добычи и транспорта нефти или его функциональное назначение в многокомпонентных системах. Ввиду разбросанности сведений о физико-химических свойствах индивидуальных веществ по многочисленным литературным источникам использованная в этом разделе литература сгруппирована и приведена перед таблицами, без привязки источников информации к каждому веществу. [c.5]

    Для многих простых веществ и соединений в [2, табл. 44] приведены значения молярных изобарных теплоемкостей при стандартных условиях в табл. 39 приведены значения молярных изобарных теплоемкостей некоторых веществ при низких температурах, а в табл. 38 — удельных теплоемкостей водных растворов некоторых неорганических веществ. [c.56]

    При изложении раздела Электропроводность растворов необходимо отметить, что законы Вант-Гоффа и Рауля справедливы только для идеальных растворов, в которых не происходит химического взаимодействия между компонентами раствора, а также нет диссоциации или ассоциации молекул растворенного вещества. Опыт показывает, что не все растворы подчиняются этим законам. Установлено, что растворы солей, кислот и оснований, которые способны проводить электрический ток (так называемые электролиты), имеют более высокое, чем это следует по закону Вант-Гоффа, осмотическое давление, кипят при более высокой и замерзают при более низкой температурах, чем это можно ожидать из закона Рауля. В демонстрационном опыте 20 довольно полно рассматриваются явления электропроводности растворов различных органических и неорганических соединений. [c.55]


    Окислительно-восстановительные реакции с участием органических соединений . Органические вещества обычно представляют собой газы, жидкости или низкоплавкие твердые вещества (от комнатной гемпературы до 400° С). Напротив, большая часть неорганических соединений — твердые вещества, плавящиеся при высоких температурах. [c.136]

    Очень слабая реакция ДИП на воду и отсутствие чувствительности к неорганическим соединениям, инертным газам н водороду делают его незаменимым при анализах примесей органических веществ в воздухе промышленных предприятий и атмосфере, сточных и природных водах, а также в биологических водных системах. Однако примесь паров воды в га.зах, питающих детектор, снижает чувствительность ДИП -к органическим веществам. Согласно имеющимся данным [161 изменение содер ания воды в пределах (1,6 0.6) 10" % вызывает изменение чувствительности ДИП в пределах 1 %. Считается, что такой эффект связан с уменьшением температуры пламени вследствие увеличения теп- [c.60]

    Следует иметь в виду, что в отличие от других разновидностей масс-спектрометрии, где скорость сканирования спектров не имеет принципиального значения, в хромато-масс-спектрометрии она лимитируется временем выхода компонента из колонки (для капиллярных колонок от 2 до 10 с). Этим обусловлен один из двух дополнительных источников искажений масс-спектров при хромато-масс-снектрометрическом анализе 1) за счет изменения количества вещества, поступающего в источник ионов во время выхода хроматографического пика, и 2) за счет наложения на спектр исследуемого соединения сигналов фона неподвижной фазы, особенно ири высоких рабочих температурах. Для борьбы с этими источниками погрешностей спектров уменьшают время сканирования, используют статистическую обработку нескольких спектров, записанных в разных точках хроматографического пика, и работают, по возможности, с максимально термостабильными неподвижными фазами, из которых наиболее перспективны силиконовые эластомеры, либо, при анализе низкокипящих веществ, неорганические или полимерные сорбенты. Статистическая обработка нескольких спектров одного и того же соединения представляет собой несложный, но крайне эффективный прием, с помощью которого легко выявляются сигналы фона и примесей других веществ. Критерием их обнаружения служит плохая воспроизводимость относительных интенсивностей соответствующих им пиков масс-спектра. [c.205]

    Подавляющее большинство неорганических веществ в условиях комнатной температуры и атмосферного давления — твердые вещества с немолекулярной структурой. Поэтому на первый взгляд может показаться, что теория химического строения Бутлерова неприменима для типичных неорганических соединений. На самом же деле такой вывод является преждевременным. Дело в том, что основная идея Бутлерова о взаимосвязи между химическим строением и свойствами остается в силе и для веществ, не имеющих молекулярной структуры. Только для последних вместо химического строения вводится понятие кристаллохимического строения, [c.20]

    Молярная рефракция слабо зависит от температуры, давления и агрегатного состояния вещества. Эта величина измерена для большого числа органических и неорганических соединений, и было найдено, что определенные атомы и группы атомов всегда вносят одинаковый вклад в молярную рефракцию любого вещества. Для определения диэлектрической проницаемости при очень высоких частотах более удобно измерять показатель преломления и рассчитывать е. Электронная поляризуемость представляет собой сумму вкладов атомов и связей, поэтому можно считать, что молярная рефракция Ят, определяемая уравнением (14.52), обладает свойством аддитивности. [c.453]

    К цианистым соединениям относятся вещества, содержащие одновалентную группу циана N и его производные В свободном виде может быть выделен газообразный циан ( N), представляющий собой в большинстве случаев дициан ( N)2, находящийся в равновесии при высоких температурах с N. Дициан является одним из наиболее реакционноспособных газов. Он легко реагирует с металлами и окислами металлов (образуя цианиды и цианамиды), с галогенами и различными органическими веществами. Из неорганических соединений циана наибольшее техническое значение имеют синильная кислота H N и цианиды калия, натрия и другие, цианамид СМ-МНг и кальцийцианамид, а также ферро- и феррицианиды калия и железа. [c.760]

    Первоначально присутствие воды в неорганических соединениях определяли по наличию пара, выделяющегося при нагревании исследуемого образца. Поэтому логически естественным критерием ее количества оказалась убыль веса вещества в процессе его прокаливания до температуры, чуть ниже температуры его разложения. Принятая в неорганической химии запись формул валового состава соединений в виде суммы окислов привела к тому, что все О Н -группировки, входящие в состав этих соединений, записывались в этих формулах тоже как некоторое количество окиси водорода, т. е. молекул HjO (n-HjO). [c.8]

    При использовании пламенно-ионизационного детектора в газовый поток, выходящий из колонки, добавляют водород в качестве газа-носителя при этом используют азот или гелий, причем водород и газ-носитель смешивают в отношении 1 1. Полученную смесь направляют в горелку и сжигают в воздухе или кислороде. Ионы, образующиеся при сгорании органических веществ, уменьшают электрическое сопротивление пламени пропорционально количеству сгоревшего вещества. К горелке и электроду, который расположен над пламенем или сбоку от него, прикладывают разность потенциалов (100—300 В). Величина возникающего при этом тока зависит от сопротивления пламени, и она после усиления непрерывно регистрируется самописцем. Этот детектор имеет прекрасную чувствительность, его характеристика линейна в широком диапазоне концентраций (10 ), он обладает малой инерционностью, замечательно стабилен, чувствителен ко всем органическим соединениям, нечувствителен к неорганическим соединениям, на его работу не влияют небольшие изменения температуры и скорости газового потока. Наряду со всеми этими качествами он прост в обращении и благодаря этому стал одним из наиболее популярных, если не самым популярным, из ГХ-детекторов. Для точного количественного анализа с применением этого детектора для каждого соединения необходимо определить соответствующие коэффициенты отклика. [c.430]

    Коррозионная активность зависит от состава топлива. Углеводороды, входящие в состав горючего обычно не корродируют основные конструкционные материалы. В то же время, неуглеводородные вещества, неорганические соединения и некоторые микроорганизмы способны вызывать коррозию металлов. Гетероорганические вещества в отсутствии воды вызывают химическую коррозию (в условиях высоких температур - газовую). Неорганические вещества (H2S, SO2, H I, NaOH и т.п.), органические кислоты, другие диссоциированные соединения, вода вызывает электрохимическую коррозию. К коррозионным активным веществам, содержащимся в горючем, относятся органические и неорганические кислоты и щелочи, сера и сернистые соединения. [c.84]

    Содержание ядовитых компонентов. Ядовитые вещества должны быть полностью обезврежены при температурах сжигания. Органические ядовитые вещества могут быть устранены сжиганием. Прп более высоких концентрациях ядовитых металлических соединений, например солей свинца, серебра, соединений кобальта или оксидов мышьяка, необходимо следить за особенно тщательной очисткой дымовых газов от летучих соединений леталла. Часто предпочтительнее отделять ядовитые неорганические соединения до сжигания. [c.48]

    В таблице А приисдены удельные теплоемкости с простых веществ и неорганических соединений при температурах 10—298.15 К. Таблица Б содержит коэффициенты уравнения а + ЬТ — сТ . позволяющего вычислить Ср простых веществ и неорганических соб диненнй при более выгиких гемпературах. [c.740]

    Численные значения стандартной энтроппн большого количества веществ позволяют обнаружить некоторые закономерности, дающие возможность предсказать энтропию неизученных веществ. Это. (в свою очередь) позволяет рассчитывать равновесия химических реакций, не прибегая к непосредственному измерению равновесия и трудоемким калориметрическим исследованиям при низких температурах. Рассмотрим некоторые методы расчета стандартной энтропии органических и неорганических соединений. [c.120]

    Для повышения качества минеральных вяжущих веществ, получения на их основе бетона со специальными свойствами и увеличения долговечности конструкций из сборного и монолитного бетона в качестве модификаторов свойств бетонов используют различные органические и неорганические соединения. Путем введения в бетонную смесь модифицирующих добавок представляется возможным наиравленно воздействовать на кинетику твердения вяжущих веществ, изменять реологические свойства бетонных смесей, обеспечивать твердение бетонов в условиях отрицательных температур, предотвращать коррозию стальной арматуры и пр. [c.314]

    Но если существует вполне определенная граница между двумя способами активации, то это еще не означает, что именно она представляет собой также границу между каталитической химией и не-каталитической. Дело в том, что названные два способа активации представляют собой лишь крайности. В чистом виде активация только посредством подачи энергии извне возможиа для большинства неорганических соединений лишь вблизи плазменных состояний, а для органических веществ — выше 800—1000 °С. В чистом виде каталитическая активация практически е встречается при низких температурах реакции мало изучены, а те процессы катализа, которые осуществляет природа в живых организмах, представляют совмещение каталитической и энергетической активации, но с явным преобладашием первой. Процессы, происходящие в промышленных реакторах в интервале температур от О до 400—600 °С, в большинстве представляют реакции, вызванные и каталитическим влиянием, и энергетическими факторами одновременно. Их различие в этом отношении состоит только в степени преобладания одного способа активации над другим. [c.135]

    Широко распространен в газо-жидкостной хроматографии пламенно-ионизационный детектор. При работе этого детектора происходит ионизация анализируемых веществ в процессе вх сгорания в пламени водорода. Образовавшиеся ионы рекомбинируют на электродах. Возникающий при этом ионный ток пропорционален концентрации ионов и напряжению, приложенному к электродам. Механизм образования ионов в пламени водорода вклрочает стадию термодеструкции (С последующим окислением, в результате которого и происходит образование ионов. Чувствительность пламенно-ионизационных детекторов примерно пропорциональна числу атомов углерода в молекуле. Особенно четко эта пропорциональность наблюдается в ряду углеводородов. Чувствительность детектора снижается при анализе кислородсодержащих соединений. Детектор удобен для анализа проб, содержащих пары воды, но мало пригоден для анализа неорганических соединений. Пламенно-ионизационные детекторы имеют высокую чувствительность, которая сильно снижается при наличии паров органических веществ в потоке водорода и газа-носителя. Ионизационные токи чистого пламени водорода порядка —10 А, поэтому даже одна капля малолетучего оргаиическог-о соединения, лопавшая в линию водорода, может вызвать большой фоновый ток в течение длительного времени, что проявится в дрейфе нулевой линии. Чувствительность детектора можно понизить и неправильно выбранной температурой анализа, приводящей к испарению жидкой стационарной фазы. [c.299]

    Подавляющее большинство неорганических веществ в условиях, комнатной температуры и атмосферного давления — твердые вещества с немолекулярной структурой. Для них твердое состояние, наиболее устойчиво и энергетически выгодно. Поэтому для превращения их в жидкость или пар необходимо затратить энергию (теплоты плавления и испарения). У таких веществ молекулы (например, молекулы Na в парах), по существу, представляют собой возбужденное состоя)ше вещества, с большим запасом внутренней энергии. В то же время химия должна в первую очередь заниматься изучением устойчивого нормального состояния вещества. В твердых неорганических веществах, как правило, отсутствуют молекулы. Поэтому на первый взгляд может показаться, что теория химического строения Бутлерова неприменима для типичных неорганических соединений. На самом же деле такой вывод является преждевременным. Дело в том, что основная идея Бутлерова о взаимозависимости между химическим строением и свойствами остается в силе и для веществ, не имеющих молекулярной структуры. Только для последних вместо химического строения вводится понятие крпсталлохимического строения. [c.26]

    В работе [13] в качестве модифицирующих добавок, препятствующих интенсивной окислительной и термической деструкции, предложены неорганические соединения ЫаНОг, С(10, У2 05, ТЮз, СггОз, МпОг, Ре Оз- Эти вещества не только выполняют роль стабилизаторов, но и оказывают ингибирующее действие на материал основы. Кроме того, они повыщают температуру начала и максимума окисления расплава полимера в среднем на 10-20 %, что важно при нанесении покрытий, где строгий контроль и соблюдение температуры затруднительны. [c.137]

    Бесцветный газ без jiairaxa (Mj). При комнатной температуре практически нереакционноспособен. Образует огромное множество органических и неорганических соединений. Используется в произЕодстве удобрений, кислот (HNOj), взрывчатых веществ, пластмасс и т.д. [c.18]

    Сжигание Пробу (обычно 1 мг) вводят в блок сжигания. Локальную температуру сжигания ХвОО С получают за счет сильного экзотермического эффекта, когда проба в 8п-капсуле горит в кислороде при температуре печи 1000°С. Такое сжигание в динамической вспышке гарантирует полное разложение также галогенированных органических проб и других веществ, имеющих высокую термостойкость, таких, как металлоорганические и даже неорганические соединения. В том же блоке в качестве веществ, поддерживающих сгорание, используют СиО или У/Оз. Восстановление N0 до N2 и 80з до 80з проводят в восстановительной трубке с помощью меди при 650°С. [c.492]

    Большинство элементов (почти 90%) при обычных температурах твердые это справедливо также и для большинства неорганических соединений. Известно, правда, что значительная часть важных реагентов — это жидкости, газы или растворы, но в целом они составляют малую долю неорганических соединений. Кроме того, хотя обычно химические реакции протекают в растворе или в газообразном состоянии, в большинстве случаев либо исходные реагирующие вещества, либо продукты, либо и те и другие являются твердыми телами. Химические реакции охватывают широкий круг взаимодействий от реакций между изолированными атомами или отдельными группами атомов (молекулами или комплексными ионами) и реакций, в которых твердое тело разрушается или возникает, до таких процессов, как коррозия металлов, когда твердый продукт образуется прямо на поверхности твердого реагента. Во всех случаях, когда кристаллическое вещество образуется или разрушается, энергетический баланс реакции включает энергию решетки кристалла. Обычный цикл Борна — Габера для реакции между твердым натрием и газообразным хлором с образованием твердого Na l дает простой пример взаимосвязи между теплотой диссоциации, энергией ионизации и сродством к электрону, энергией решетки и теплотой реакции. [c.12]

    Применяемые при химическом анализе неорганических соединений реакции протекают большей частью в водной среде. Реже применяются реакции, протекающие в среде органических жидкостей или в расплавленной среде. В последнем случае исследуемое вещество подвергают воздействию высокой температуры (500—1200°) и наблюдают происходящие при этом явления. Этот вид испытания получил название пирохомического анализа. [c.16]


Смотреть страницы где упоминается термин Температура веществ и неорганических соединений: [c.472]    [c.300]    [c.84]    [c.13]    [c.29]    [c.138]    [c.197]    [c.102]   
Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.774 , c.837 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.774 , c.837 ]




ПОИСК





Смотрите так же термины и статьи:

Температуры соединений

неорганических веществ



© 2025 chem21.info Реклама на сайте