Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембрана активный образование

    Дж. Скок указывает, что влияние бора на передвижение углеводов связано с его действием на клеточную активность и рост клетки, а не на активирование диффузии сахаров через мембраны вследствие образования углеводно-боратных комплексов. [c.35]

    Согласно имеющимся наблюдениям дифференцированные митохондрии могут активно делиться двумя различными способами, причем во всех клетках определенной ткани деление митохондрий может осуществляться одним из этих способов. Чаще всего деление происходит путем образования перегородок, подобных кристам наружная мембрана в образовании этих перегородок не участвует. Попарно возникшие перегородки постепенно смыкаются, деля митохондрию на отсеки. Далее митохондрии распадаются, в результате чего происходит увеличение их числа подобный тип деления можно наблюдать в клетках меристем атической ткани. При другом типе деления наблюдается сильное сужение центральной части митохондрии вместе с наружным слоем мембраны до полного разделения ее на части. [c.53]


    Согласно теоретическим соображениям, для транспортного процесса необходимо, чтобы транспортирующие белки находились в мембране в форме агрегатов из близких по размеру двух или более полипептидных цепей (их размер должен соответствовать толщине мембраны). Предполагается, что вдоль центральной оси этого агрегата проходит наполненный водой канал. Если этот агрегат представляет собой димер из двух идентичных полипептидных цепей, он должен иметь ось симметрии, параллельную этому каналу, т. е. перпендикулярную плоскости мембраны. Активный центр, специфичный к транспортируемому лиганду, должен располагаться в полипептидной зоне внутри канала. При активном транспорте в одном из двух структурных состояний полипептидного агрегата активный центр обращен к водной фазе на одной стороне мембраны. Конформационное изменение полипептидной цепи, происходящее за счет поставляемой энергии, вероятно, позволяет связанному лиганду повернуться к другой стороне мембраны. Этот механизм находится в соответствии с концепцией фиксированных пор или каналов в плазматической мембране, образованных за счет специфической организации мембранных белков, а также согласуется с данными об асимметрии в расположении мембранных компонентов и о наличии белковых молекул, прошивающих всю толщу мембраны (см. выше). [c.376]

    Эндоцитоз — очень распространенная функция клеток, заключающаяся в переносе веществ из среды в клетку вместе с частью плазматической мембраны, путем образования мембраной пузырьков. Таким путем в клетку вводятся как растворенные вещества (вместе с капелькой растворителя — пиноцитоз), так и нерастворимые вещества (частицы) — фагоцитоз. Большинство клеток (если не все) способны к эндоцитозу. Особенно активны в этом отношении лейкоциты, макрофаги, клетки эндотелия капилляров. [c.219]

    При pH, отличном от изоэлектрического значения, коллоидные частицы стабилизированы. Стабилизация коллоидных частиц приводит к поведению, контролируемому их поверхностным зарядом. Стабильные частицы остаются малыми и независимыми при переносе к мембране. Эти частицы могут легко образовывать зародыши на активных центрах мембраны. Частицы, например, гидроокиси железа прикрепляются к поверхности мембраны или посредством сил Ван-дер-Ваальса, или механических сил потока воды, направляющих их к поверхности мембраны. После образования достаточного количества зародышей начинается рост через полимеризацию. [c.198]


    Сброс давления взрыва через предохранительные устройства. К устройствам, осуществляющим принудительный сброс давления при взрыве, относятся сбросные предохранительные клапаны, откидные заслонки, люки, мембраны и другие, отверстия в которых раскрываются при срабатывании детонатора по сигналу индикатора взрыва. Решение вопроса о возможности сброса давления взрыва через предохранительные устройства должно приниматься с учетом физико-химических свойств сбрасываемой среды токсичности, вероятности образования вторичного взрыва при соприкосновении с атмосферой, а также объема сосуда. Устройства для принудительного сброса давления целесообразно применять в тех случаях, когда обычные разрывные мембраны оказываются недостаточно чувствительными. Например, такими устройствами защищают циклоны и мешочные фильтры в установках для измельчения ацетатной целлюлозы и пиритов, а также при дроблении и сушке различных твердых материалов. Как правило, метод сброса давления через предохранительные устройства применяют в различных комбинациях с другими методами активной взрывозащиты. Сброс давления взрыва обычно осуществляется так, чтобы при начальном атмосферном давлении в защищаемом аппарате максимальное избыточное давление не превышало 7 кПа. [c.177]

    Основные достоинства плазменного способа синтеза мембран заключаются в следующем образование сухих мембран (таким образом, хранение и транспортирование их не требуют специальных предосторожностей), возможность регулирования толщины полимеризационного (т. е. активного) слоя мембраны, высокая адгезия полимерной пленки к подложке, высокая селективность при очень тонком полимеризаци-онном слое (от 1 мкм и менее), низкое давление осаждения полимера из плазмы, возможность осаждения на различных по форме и материалу подложках, минимальное сжатие мембраны в процессе работы (так как плотность осажденной на подложке пленки велика), сравнительно малое время образования мембраны (от 10 до 15 мин), возможность получения мембран на основе широкого ряда полимеров. [c.81]

    Тонкую микроскопическую углеводородную пленку можно получить при сближении двух капелек воды в органической среде, содержащей подходящее поверхностно-активное вещество (ПАВ), например моноглицерид олеиновой кислоты, лецитин и др. Самопроизвольное утончение этой пленки завершается скачкообразным образованием участков (в виде круглых пятен) с толщиной около 50 А, представляющих собой структуру, состоящую из двух монослоев ПАВ, обращенных друг к другу углеводородными радикалами с некоторым количеством органического растворителя. Затем пятна разрастаются на всю площадь пленки. В отраженном свете такая пленка выглядит черной, поэтому ее называют черной углеводородной пленкой. В биологической литературе чаще используется термин бимолекулярная (черная) липидная мембрана (БЛМ). Вместе с водными эмульсионными, т. е. пленками одной жидкости, полученными в другой жидкости, и пенными пленками они относятся к классу жидких симметричных, или двухсторонних, пленок, т. е. пленок, ограниченных с обеих сторон одной и той же фазой. Из симметричных пленок наиболее подробно исследованы пенные пленки. [c.9]

    Жидкостные мембраны. В электродах с жидкостной мембраной пористая перегородка, пропитанная неводной фазой, разделяет две водные фазы - исследуемый раствор и внутренний раствор электрода. При этом неводная фаза содержит гидрофобные ионы (активные центры ионообменника), присутствие которых определяет ионоселективную функцию электрода, и противоположно заряженные определяемые ионы (противоионы). Поведение такой мембраны определяется коэффициентом распределения соли ионообменника с определяемым ионом между водным раствором и несмешивающимся с водой растворителем, образованием ионных пар в фазе мембраны и степенью проницаемости мембраны по отношению к посторонним ионам. [c.177]

    Коэффициент активности кальция в сыворотке крови значительно ниже, чем в стандартном растворе равной ионной силы и концентрации, вследствие связывания большой части ионов этого элемента белком и образования недиссоциированных комплексов в растворе. В основном Са + связывают три аниона — бикарбонат, фосфат, цитрат. В физиологических растворах уменьшение активности Са + обусловлено в основном бикарбонатом. Распределение кальция во внеклеточной и внутриклеточной средах очень неоднородно. Во внеклеточной жидкости помимо ионизированного кальция имеется кальций, связанный белком и находящийся в виде хелатов. На внешней поверхности клетки кальций связан с функциональными группами мембраны и мукопротеинами — в общей сложности в этих компонентах сосредоточено около 90% общего кальция клетки. [c.496]


    Основные достоинства плазменного синтеза мембран заключаются в следующем образование сухих мембран, что упрощает их хранение и транспортирование возможность регулирования толщины полимеризационного (т.е. активного) слоя мембраны возможность осаждения на различных по форме и материалу подложках и применения широкого ряда полимеров сравнительно небольшая продолжительность получения мембраны. [c.321]

    Особенностью этих процессов является то, что связывание происходит без затрат энергии, но специфически если в мембране нет подходящих участков связывания для захватываемой частицы, то она и не взаимодействует с ней. Однако образование пузырька и его отрыв от мембраны требует затрат энергии, что указывает на сходство специфических видов клеточного транспорта с активным транспортом. Характерно также дальнейшее слияние пузырьков с лизосомами, где содержимое пузырьков разрушается. [c.109]

    На основании самых общих представлений о структуре растворов низкомолекулярных веществ в полимерах можно выделить по крайней мере три типа главных структурных элементов, предопределяющих его основные физические характеристики ассоциаты молекул пенетранта с функциональными группами сегментов макромолекул, кластеры молекул пенетранта и статистически распределенные в матрице полимера молекулы сорбата, подчиняющиеся либо закономерностям Генри, либо Флори — Хаггинса. Анализ изотерм сорбции с помощью теорий БЭТ, Флори — Хаггинса, Генри, двойной сорбции , Зимма — Лунберга (см. гл. 8) позволяет установить границы появления и развития этих структурных элементов. Например, кластеры из молекул пенетранта возникают вблизи границ совместимости, ассоциаты молекул — при низких активностях диффузанта и т. п. Если принять, что каждый из указанных типов структурных элементов характеризуется своим локальным коэффициентом диффузии ),, то образование в матрице вторичных структур может и должно приводить к появлению дополнительных составляющих в общем трансмембранном потоке. Так, естественно ожидать, а отдельные эксперименты это подтверждают [47, 86], что кл в кластерах молекул пенетранта выше Д, для статистически распределенных молекул. При коалесценции кластеров в объеме мембраны и образования бесконечного кластера, соединяющего две стороны мембраны, возникает канал , обладающий более высокой проницаемостью ( ) г, кл> 1 )- Образование такого канала происходит при вполне определенной концентрации кластеров (Скл 16%), как это следует из теории перколяции [138]. Поскольку образование кластеров, их разра- [c.72]

    Активный перенос крупных и труднорастворимых молекул лекарственных веществ (ферменты, гормоны и др.) внутрь клетки может происходить с помощью движения мембраны и образования вокруг частиц ультрамикроскопических пузырьков-вакуолей. Такой механизм транспорта назьшается пинопитозом. [c.116]

    Если допустить, что эндо- и экзоцитоз на молекулярном уровне обеспечиваются близкими механизмами, то активное транспортирование вещества можно представить следующим образом. Определенные отрицательно заряженные мембранные компоненты (липиды, по.иисахариды) связывают вещества, индуцирующие эндоцитоз. При этом мембрана набухает, уменьшается величина ее электрического сопротивления, понижается поверхностное натяжение. Вследствие этого усиливается связь между плазматической мембраной и примембранным слоем цитоплазмы, а возможно, и с микрофиламентами. Это и обеспечивает втягивание (а не разрыв) плазматической мембраны с образованием эндоцитозных каналов, пузырьков. Предполагается, что последняя стадия эндоцитоза — отрыв пузырьков от плазматической мембраны происходит с помощью каких-то ферментов. Косвенным доказательством этого предположения может быть факт замедления отщепления фагосомы под влиянием лизосомальных ферментов. [c.50]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Дефекты в мембране (микротрещины, царапины, отверстия) значительно ухудшают ее селективные свойства. Выявление дефектов проводят по специально разработанной методике, которая заключается в следующем. На активную поверхность мембраны помещают лист фильтровальной бумаги, пропитанной 2%-ными водными растворами РеС1з и СпЗО . На противоположную поверхность мембраны накладывают второй лист фильтровальной бумаги, увлажненный 2%-ньши водными растворами К4[Ре(СМб)] и КСГ З. Пакет прокатывают резиновым валиком. Дефектные участки мембраны обнаруживались по образованию точек и пятен темно-коричневого или темно-синего цвета. Для работы используют мембраны, на которых диаметр пятен не превышает 1 мм. [c.150]

    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Поглощение катионов двухвалентных металлов сопровождается выделением эквивалентного количества протонов из мембраны, так что фактически мембрана (ее связывающие единицы) обменивают протоны на катионы металлов. Перенос ионов приводит к проникновению воды, и митохондрия набухает набухания не происходит, если ионы связываются неорганическим фосфатом и образуют осадок. Одновалентные ионы калия и натрия способны и пассивна проникать во внутреннее пространство, если имеются анионы и субстрат этот процесс также ведет к набуханию митохондрии. В процессе переноса через мембрану, например, аниона фосфорной кислоты, он прежде чем войти в белково-липидный слой мембраны, превращается в нейтральную частицу (лучшая растворимость в липидной среде). По этой причине протоны вместе с анионами также переносятся из внешней во внутреннюю зону. Работа митохондрий по созданиго макроэргических связей не ограничивается образованием только АТФ первичные продукты деятельности аппарата сопряжения, поставляющие активные богатые энергией вещества и для транслоказы, и для образования НАДФ-Нг, и для синтеза АТФ, мало исследованы, хотя работы по их изучению ведутся интенсивно. [c.390]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Поражающее действие фенола на кожные покровы человека уменьшается нри введенип в его молекулу липофнльных групп (метильных, высших алкильных или хлора). Нейтральные молекулы обладают большим поражающим действием, чем соответствующие ноны. Биологическая активность фенолов обусловлена их способностью разрушать структуру бактериальной клетки. Считают, что разрушительное действие фегюла на цитоплазматические мембраны и стенки клетки проявляется в образовании довольно крупных пор для обеспечения днффуз1нт цитохрома наружу [2]. Крезолы по своему поражающему действию сходны с фенолом, ио вызывают менее тяжкие поражения (см. табл. 5.1). Хлорфе-нолы в производстве полимеров не применяются. [c.82]

    ТОКСИНЫ, белки микробного, животного или растит, происхождения, обладающие большой токсичностью (иногда термин Т. распространяют и па ядовитые в-на небелковой природы, в частности иа токсины одноклеточны. ). В отличие от др. токсичных в-в при попадании в организм вызывают образование антител. Мол. масса Т. превышает 4-10 . Оии раств. в воде, не раств. в орг. р-рителях, неустойчивы при нагрев, и действии света. Различаются по типу действия на организм иейротоксины блокируют передачу иервного импульса цитотоксины разрушают биол. мембраны клеток Т.-ингибиторы подавляют активность нек-рых ферментов и нарушают т. о. обмен в-в Т.-ферменты катализируют гидролиз белков, нуклеиновых к-т, липидОв и др. Т. использ, для получ. анатоксинов, лечебных сывороток и др. лек, ср-в. См. также Бактериальные токсины. Яды животных. Яды растений. [c.582]

    Один из методов получения субмитохондриальных частиц (СМЧ) основан на обработке предварительно выделенных интактных митохондрий ультразвуком. Полученные таким способом СМЧ представляют собой замкнутые везикулы, образованные внутренней мембраной митохондрий. Формирование везикул под действием ультразвука происходит таким образом, что обращенная в матрикс интактных митохондрий поверхность внутренней мембраны становится наружной, обращенной в окружающую среду поверхностью мембраны СМЧ. Такое изменение ориентации мембраны делает СМЧ весьма удобным, а иногда и единственно пригодным объектом для изучения механизма реакций, протекание которых в интактных митохондриях опосредовано (и может контролироваться) трансмембранным переносом веществ. Препараты СМЧ широко используются, в частности, при изучении АТФ-синтетазного комплекса, активный центр которого в этом объекте экспонирован в окружающую среду и свободно доступен для субстратов и продуктов катализируемой им реакции. [c.408]

    Жидкими мембранами называют полупроницаемые пленки из молекул поверх-ностно-активных веществ (ПАВ), образованные на поверхности пористой основы. Необходимое условие образования жидкой мембраны — наличие водородных связей между молекулами воды и ПАВ. Такие ПАВ, как ноливинилметиловый эфир и поликсиэтилированные алкилфенолы, эффективно повышают солезадерживающую способность мембран. [c.564]

    Ферменты адсорбировались на поверхности кремнезема, и было обнаружено сохранение их активности. Но тот факт, что митохондрии (частицы, представляющие собой образования, выделяемые из живых клеток, и состоящие из сложных ферментных систем) можно подобным же образом иммобилизовать на кремнеземе, дает возможность раскрыть целые новые области исследований в биохимии [652а]. Другие содержащие мембраны частицы, или органеллы, могут аналогичным образом фиксироваться на кремнеземе, например в виде хлоропластов и микро-сом печени. Поверхность кремнезема должна быть прежде всего превращена в органофильную посредством ее обработки с нанесением алкилсилильных групп. Затем подобные биологические образования могут прилипать к поверхности, давая монослойное покрытие при температуре около 27°С, но они способны десорбироваться при 5°С. Природа такого эффекта непонятна, но можно сделать предположение, что поскольку водородные связи становятся более прочными при 5°С, то вода тем или иным образом вытесняет эти частицы с поверхности, которые должны удерживаться на ней гидрофобными связями. Подобные гидрофобные связи имеют место, и они используются для закрепления ферментов на кремнеземной поверхности [6526]. [c.831]

    Кремневой кислоты. Бауманн обнаружил, что концентрация кремнезема в красных кровяных тельцах животных была точно такой же, что и в плазме крови. В обоих случаях кремнезем присутствовал в виде мономера, поскольку обладал способностью проходить через ультрафильтр. Во всей крови крупного рогатого скота нормальная концентрация кремнезема составляет 0,00019 0,00005 %. В крови человека его содержится 0,00004— 0,00005 % Однако когда с питьевой водой вводится 50 мг растворимого кремнезема, то весь кремнезем выделяется с мочой в течение 10 ч. Максимальная коицеитрация кремнезема в моче при этом изменяется от 0,02 и до 0,06 % в зависимости от объема выделенной мочи, и кремнезем еще остается полностью мономерным. Оказалось, что кремневая кислота полимеризуется с одной и той же скоростью и в моче, и в воде. Скорость удаления кремнезема, выраженная в микрограммах в минуту, является постоянной величиной независимо от объема выделяемой мочи. Она пропорциональна количеству оставшегося в организме кремнезема. Концентрация кремнезема в крови при этом достигает 0,0002—0,0003 %. Если поглощается 300 мг растворимого кремнезема, то его концентрация в крови достигает 0,0006 %. Отношение концентрации выделяемого с мочой кремнезема к его концентрации в плазме крови, составляющее около 100 1, определяется тем, что почки выделяют кремнезем вместе со всеми другими растворенными веществами, имеющими молекулярную массу менее 70 ООО при ультрафильтрации через мембраны почечных клубочков с образованием первичной мочи . Затем иа следующем этапе в почечных канальцах биологически активными мембранами поглощается около 99 % всей воды по неизученному активному процессу. В результате в конечной концентрированной, вторичной, моче остаются все вещества, которые повторно ие всасываются в кровь. Таким образом, концентрация кремнезема, выделяемая с мочой, оказывается гораздо большей, чем его концентрация в плазме крови [187]. [c.1042]

    В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток , образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу. Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-- 1-фосфата (см. главу 10), в то время как фосфорилирование гликогенсинтазы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови. [c.272]

    В последнее время появились данные, доказывающие, что креатинфосфат в мышечной ткани (в частности, в сердечной мышце) способен выполнять не только роль как бы депо легкомобилизуемых макроэргических фосфатных групп, но также роль транспортной формы макроэргических фосфатных связей, образующихся в процессе тканевого дыхания и связанного с ним окислительного фосфорилирования. Предложена схема переноса энергии из митохондрий в цитоплазму клетки миокарда (рис. 20.7). АТФ, синтезированный в матриксе митохондрий, переносится через внутреннюю мембрану с участием специфической АТФ—АДФ-транслоказы на активный центр митохондриального изофермента креатинкиназы, который расположен на внешней стороне внутренней мембраны в меж-мембранном пространстве (в присутствии ионов Mg ) при наличии в среде креатина образуется равновесный тройной фермент-субстратный комплекс креатин—креатинкиназа—АТФ—Mg , который затем распадается с образованием креатинфосфата и АДФ —Mg . Креатинфосфат диффундирует в цитоплазму, где используется в миофибриллярной креатинкиназной реакции для рефосфорилирования АДФ, образовавшегося при сокращении. Высказываются предположения, что не только в сердечной мышце, но и в скелетной мускулатуре имеется подобный путь транспорта энергии из митохондрий в миофибриллы. [c.655]

    В фотосинтезирующих клетках активные пигменты расположены внутри ламеллярных мембран в виде функционально-организованных единиц. У фотосинтезирующих эукариот (высших растений и большинства водорослей) несущие пигмент мембраны заключены в специфических органеллах — хлоропластах. У высших растений морфологические различия между хлоропластами невелики, в то время как у водорослей форма и размеры хлоропластов значительно варьируют. hlorella, например, имеет единственный чашевидный хлоропласт, тогда как хлоропласты некоторых видов Spirogyra представляют собой длинные, спирально закрученные образования, лежащие вдоль всей клетки. [c.329]


Смотреть страницы где упоминается термин Мембрана активный образование: [c.604]    [c.207]    [c.164]    [c.39]    [c.35]    [c.392]    [c.392]    [c.392]    [c.104]    [c.11]    [c.140]    [c.456]    [c.472]    [c.247]    [c.386]    [c.124]    [c.593]    [c.176]    [c.404]    [c.389]    [c.635]   
Биохимия человека Т.2 (1993) -- [ c.163 , c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана, активный транспорт образование



© 2025 chem21.info Реклама на сайте