Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рецепторы молекулярные

    Леви Дж., ред. (1979) Взаимодействие гормонов с рецепторами. Молекулярные аспекты. Мир, М. [c.325]

    Построены трехмерные молекулярные модели ряда рецепторов, выполнен анализ связывания лигандов с ними и объяснены некоторые закономерности влияния структуры лигандов на активность. [c.42]

    Вряд ли нужно в очередной раз повторять, что свойства систем 224 и 225 как селективных лигандов — это не неожиданное открытие, а предвиденный результат тщательно спланированного, целенаправленного молекулярного конструирования простой модели искусственного рецепторов с вариабельной и управляемой картиной субстратной специфичности. [c.479]


    Эти примеры показывают, что молекулярный дизайн, основанный даже на достаточно прямолинейном анализе размеров и формы субстрата и рецептора, может служить эффективной стратегией ддя достижения высокой селективности в узнавании, связывании и переносе различных соединений. [c.481]

    Каков механизм действия медиатора на постсинаптическую мембрану В случае ацетилхолина он состоит в деполяризации мембраны и увеличении проницаемости по отношению к ионам натрия и калия. Собственно, это, по-видимому, те же изменения мембраны, которые обусловлены возникновением потенциала действия (гл. 5, разд. Б, 3) при проведении нервного импульса. Ацетилхолин связывается со специальным рецептором, в результате чего натриевые каналы в мембране каким-то образом открываются. Из электрических органов электрического угря недавно был выделен белок большого молекулярного веса, обладающий, по полученным данным, свойствами рецептора ацетилхолина [45]. Имея мол. вес 330 ООО, этот белок представляет собой, видимо, тример из субъединиц с мол. весом =110 000, в свою очередь состоящих из 2—4 пептидов с мол. весом 34 ООО—54 ООО. Каким образом функционирует этот рецептор, пока неизвестно (гл. 5, разд. В, 5). [c.332]

    Для понимания всего комплекса структурно-функциональных взаимодействий на молекулярном уровне большое значение имеет изучение инсулиновых рецепторов [681]. В связи с этим следует напомнить об уже обсуждавшейся (разд. 2.3.1) возможности прямого входа инсулина в клетку, этим может быть лучше объяснено долговременное действие гормона. [c.270]

    Процесс соответствующих взаимодействий, имитирующих те, которые доминируют в биохимических процессах и относящихся к нековалентным, получил название "молекулярное узнавание". Молекулярное узнавание можно определить как процесс, включающий в себя как связывание, так и выбор молекулы - "гостя" данной молекулой -"хозяином". Просто связывание молекул не является молекулярным узнаванием. Согласно Лену [4], "узнавание - это связывание с целью". Данное поведение характерно для многих биохимических процессов, таких как ферментативные реакции, связывание "рецептор-субстрат", сборка белковых молекул, иммунное взаимодействие антиген-антитело, транспорт через мембрану и т.д. Одним из критериев молекулярного узнавания является то, что константа ассоциации между "хозяином" и "гостем" является значительно более высокой по сравнению с константами образования комплексов между другими молекулами, присутствующими в системе. В связи с этим особое значение приобретает исследование энергетики межмолекулярных взаимодействий биомолекул. Энергетические параметры позволяют судить о силе взаимодействия, наличии или отсутствии ассоциации между молекулами, а также выявить и описать влияние растворителя на процесс молекулярного узнавания. [c.185]


    Определение структурной организации секретина, проникновение в область его взаимоотношений с рецепторами, принадлежащими разным системам организма, выяснение кинетики и динамики механизмов этих отношений, понимание на атомно-молекулярном уровне назначения секретина в их реализации, умение целенаправленно влиять на его регуляторные и другие физиологические действия и, наконец, создание соответствующих фармацевтических препаратов - все это не может быть достигнуто традиционным путем, т.е. на чисто эмпирической основе и при использовании исключительно экспериментальных методов, как бы разнообразны и совершенны они не были. Даже первый шаг в сторону сознательного количественного изучения структурно-функциональной организации секретина, а именно исследование конформационных возможностей Молекулы и определение набора ее низкоэнергетических пространствен- [c.373]

    Вкусовые рецепторы, содержащие специальные мембранные структуры, находятся у человека на языке, у рыб - на голове, на плавниках и усиках, у насекомых - на лапках или во рту. У человека имеется четыре основных вкусовых рецептора соленый, кислый, сладкий, горький. Существуют несколько гипотез, объясняющих молекулярную сущность восприятия вкуса - например, ферментативная и адсорбционная, но детали биохимического механизма не ясны. [c.112]

    Другая важная сторона метаболизма - неразрывность процессов катаболизма (распада) и анаболизма (биосинтеза) и их регуляция на всех уровнях -от молекулярного до генетического, от модификации субстрата или фермента до сложных регуляторных механизмов, которые функционируют с помощью гормонов, рецепторов, медиаторов, посредников. [c.118]

    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]

    Сложная молекулярная структура белков делает их очень интересным объектом для изучения процессов связывания с сорбатом. Метод аффинной хроматографии был развит на основе представлений о способности пар белок—лиганд образовывать весьма прочные комплексы. Подобные пары можно обнаружить во многих природных системах, это, например, такие пары, как фермент— субстрат, фермент—кофактор, гормон—рецептор и т. д., но, как [c.131]

    Главная трудность при построении молекулярной теории "мембранного транспорта и рецепции состоит в анализе динамического взаимодействия белков и липидов. Мембранные рецепторы— по-видимому, белки (родопсин в фоторецепторах),— связавшись с лигандом, меняют свою конформацию, что приводит к изменению глубины погружения и подвижности белков в липидном море . Причина кооперативности может лежать во взаимодействии плавающих белков при их столкновениях. Динамическая мозаичная модель может послужить основой молекулярной физики мембран. [c.340]


    Было выдвинуто предположение, что рецепция запаха основана на резонансе атомных колебаний молекул пахучего вещества и молекулярных структур рецептора. Эту теорию, именуемую вибрационной или квантовой, нельзя считать аргументированной. Характер запаха и его интенсивность плохо коррелируют с колебательными спектрами вещества. Вещества, имеющие весьма разнящиеся спектры, зачастую имеют сходные запахи и наоборот. Вибрационная теория противоречит элементарным физи-23 355 [c.355]

    Молекулярной, но не структурной является вкусовая рецепция. Кислый вкус определяется наличием ионов водорода, соленый— такими анионами, как С1 . Горький и сладкий вкус возникают при воздействии на рецепторы веществ самого разнообраз- [c.356]

    Рассчитана на основании данных о первичной структуре рецепторов. Молекулярная масса / -белков установлена методом электрофореза в полиакриламидном геле в присутствии додецилсульфата нагоия. [c.58]

    Следует отметить, что параллельно в молекулярной фармакологии существует одна из ее ключевых проблем — перекрестная специфичность различных классов рецепторов. Лекарственные препараты, обладающие структурными особенностями, необходимыми для действия на определенный рецептор, часто вызывают нежелательные побочные эффекты вследствие взаимодействия с другими сходными участками рецептора. Знание хиральной специфичности отдельного рецептора (где это возможно) помогло бы конструировать лекарственные препараты с повышенной специфичностью к данному рецептору. Можно надеяться, что систематическое изучение хиральной специфичности протеаз поможет обеспечить на более простом уровне более рациональную основу для разработки эффекторов, специфичных к определенным рецепторам, потому что ферментсубстратные взаимодействия в принципе имеют ту же природу. Преимущество протеаз состоит в том, что они менее слож 1ы и более доступны, чем другие, часто трудноуловимые рецепторы, [c.238]

    В этом комплексе наблюдается повышенная скорость переноса Н к пиридиниевой соли субстрата. Это первый пример ускоренного Н-переноса (гранс-восстановления) от 1,4-дигидропириднна к ниридиннй-иону в синтетическом молекулярном макроцикли-ческом рецептор-субстратпом комплексе. Значит, такой синтетический катализатор обнаруживает некоторые характерные свойства, присущие ферментам. Он обеспечивает как акцепторный центр для связывания субстрата, так и активный центр для превращения связанного субстрата. Следовательно, он интересен и как ферментативная модель, и как представитель нового типа эффективных и селективных химических агентов [278]. [c.405]

    Уже на первых шагах изучения краун-эфиров исследователи осознали, что создание искусственных систем, способных моделировать биологические явления молекулярного узнавания и связывания, может привести к далеко идущим последствиям. Как заметил Лен, комментируя уникальную способность криптанда 221 к тетраэдрическому узнаванию иона аммония, это представляет одну из самых ярких иллюстраций молекулярной инженерии, включающей достижение цели химии абиотических рецепторов дизайна синтетических рецепторных молекул путем правильного магшпулирования геометрическими (структура рецептора) и энергетическими (связывающие сайты, межмолекулярные взаимодействия) особенностями с тем, чтобы добиться высокой комплсментарности рецептора и субстрата [33d] (курсив авторов). [c.475]

    Молекулярный механизм действия Г. в гипофизе включает связывание с мембранными рецепторами клеток, что приводит к ускорению обмена кислых фосфолипидов (напр,, фосфатидилинозитолов, фосфатидовых к-т) и увеличению в клетках концентрации ионов Са . Эти процессы способствуют освобождению гонадотропинов. Синтез последних при длительном воздействии Г. на гипофиз происходит при участии фермента аденилатциклазы. [c.594]

    Во многих определениях существует значительная разница в размерах рецептора и лигавда. Антитела имеют молекулярные массы порядка 160 ООО и могут быть легко отделены от антигенов с молекулярной массой менее 80 ООО. Наиболее широко ддя этой цели применяется эксклюзионная гель-фильтрующая хроматография. Небольшой свободнь1й меченый антиген удерживается на колонке, в то время как объемистый комплекс антиген-антитело элюируется. Метод обеспечивает хорошее разделение, но он дорог н требует затрат времени, так что он не подходит для рутинного, многократного использования. [c.578]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    Обретение биологией универсального атомно-молекулярного фундамента живого, если судить по конечным результатам, пока не оказало заметного влияния на состояние многих важнейших для человека областей медицины. По-прежнему не найдены радикальные средства лечения многочисленных форм рака и заболеваний сердечно-сосудистой системы. Нет качественных сдвигов в фармакологии. Действия подавляющего большинства современных лекарств слабоизбирательны, отягощены многочисленными нежелательными побочными эффектами и, как правило, направлены не столько на ликвидацию причин заболеваний, сколько на устранение их следствий, более легко наблюдаемых внешних патологических проявлений болезненных симптомов. Любой фармакологический справочник может свидетельствовать о том, что среди великого множества предлагаемых лекарств практически отсутствуют препараты, наделенные абсолютной специфичностью, т.е. оказывающие благотворное воздействие с точностью, присущей, например, многим ферментам, гормонам и рецепторам. Вот уже около 15 лет медики и биологи многих стран пытаются, пока без видимого успеха, найти защиту от вируса иммунодефицита человека или хотя бы приостановить распространение этой чумы XX в. Если и можно говорить о наметившейся тенденции к улучшению, то она связана прежде всего с профилактикой заболевания, а не с его излечением. В чем же причина существенного разрыва между современным уровнем развития биологии и относительно скромным прогрессом научной медицины Почему наши знания о протекающих в организме человека процессах жизнедеятельности оказываются столь неадекватными нашим возможностям в исправлении этих же процессов при отклонении от нормы Почему между двумя близкородственными областями знаний (биологией и медициной) так неэффективно [c.544]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    С-терминальный домен В, имеющий молекулярную массу около 39000 дальтон, обладает лектиноподобным действием он способен специфически связываться с поверхностным неидентифицированным рецептором животной клетки. Связывание белка с поверхностью клетки приводит к тому, что он, по непонятному пока механизму, внедряется в цитоплазматическую мембрану, и там происходит про-теолитическое расщепление междоменной пептидной связи и одновременное восстановление дисульфидной связи в результате белок распадается на фрагмент А и фрагмент В. N-терминальный фрагмент А, имеющий молекулярную массу 21150 дальтон, проваливается в цитоплазму. Именно этот фрагмент и является ингибитором белкового синтеза в клетке. Он оказался высокоспецифическим ферментом, осуществляющим АДФ-рибозилирование одного аминокислотного остатка в EF-2. После такого АДФ-рибозилирования нормальные функции EF-2 нарушаются. Ввиду каталитического характера действия фрагмента А достаточно одной молекулы токсина, чтобы модифицировать все молекулы EF-2 и убить клетку. [c.215]

    С другой стороны, на мембране эндоплазматического ретикулума эукариотических клеток имется специальный рецептор, воспринимающий сигналузнающую частицу в комплексе с рибосомой. Рецептор оказался белком с молекулярной массой 72000 дальтон, частично погруженным в мембрану, в то время как основной его домен обращен в цитоплазму и служит непосредственным причалом для сигналузнающей частицы. Он получил название причального белка . Взаимодействие ассоциированной с рибосомой сигналузнающей частицы с причальным белком мембраны снимает запрет с элонгации синтез пептида возобновляется. Теперь, однако, растущий пептид торчит уже не в водную фазу, а непосредственно в мембрану дальнейшая элонгация приводит к его погружению и вхождению в мембрану прямо из рибосомы, минуя водное окружение цитоплазмы. Происходит так называемая ко-трансляционная транслокация полипептида через мембрану. Более детальные механизмы вхождения полипептида в мембрану и, в случае секреторных белков, его прохождения через нее не известны. [c.283]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Для выяснения механизма действия рилизинг-факторов, включая их взаимодействие с соответствующими рецепторами, большую роль сыграли структурные аналоги тиролиберина и гонадолиберина. Некоторые из этих аналогов обладают даже более высокой гормональной активностью и пролонгированным действием, чем природные гормоны гипоталамуса. Однако предстоит еще большая работа по выяснению химического строения уже открытых рилизинг-факторов и расшифровке молекулярных механизмов их действия. [c.255]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Биологическое действие 1,4-бенздиазепинов, как и других лекарственных средств, определяется физико-химическим взаимодействием вещества со специфическими молекулярными комплексами в организме, названными рецепторами. Продолжительность и интенсив- [c.230]

    Установлено, что многие лекарственные вещества влияют на конформации мембран и мембранных липидов. Шанжё и соавторы рассматривали мембрану как упорядоченную кооперативную систему, построенную из взаимодействующих субъединиц. В этих работах триггерные свойства мембраны трактуются на основе теории, аналогичной теории косвенной кооперативности ферментов, развитой Моно, Уайменом и Шанжё (см. 6.7). Каждая субъединица имеет рецепторный центр для данного специфического лиганда, сродство к которому меняется при изменении ее конформации. В упорядоченной решетке мембраны субъединицы (протомеры) взаимодействуют со своими соседями, чем и определяются кооперативные свойства. В зависимости от активности лиганда и энергии взаимодействия протомеров ответ мембраны на присоединение лиганда может быть постепенным или S-образным, становясь в пределе переходом все или ничего — фазовым переходом. Формальная модель описывает действие колицинов, дает качественное объяснение ряду фактов, в частности, тому, что различные родственные лекарственные вещества вызывают различные максимальные ответы мембраны. Первичное действие многих лекарств локализовано в мембранах и имеет кооперативный характер. Многие лекарства действуют в очень малых концентрациях (вплоть до 10 М) и обладают высокой специфичностью. Воздействие лекарства иа мембранный рецептор определяется молекулярным узнаванием, но о природе этих рецепторов мы еще мало знаем (см. 11.7). [c.340]


Смотреть страницы где упоминается термин Рецепторы молекулярные : [c.206]    [c.282]    [c.115]    [c.37]    [c.475]    [c.475]    [c.17]    [c.26]    [c.29]    [c.185]    [c.248]    [c.124]    [c.436]    [c.280]    [c.217]    [c.398]    [c.215]    [c.271]    [c.266]   
Нейробиология Т.2 (1987) -- [ c.204 ]




ПОИСК







© 2025 chem21.info Реклама на сайте