Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рецептор lq размер

    Эти примеры показывают, что молекулярный дизайн, основанный даже на достаточно прямолинейном анализе размеров и формы субстрата и рецептора, может служить эффективной стратегией ддя достижения высокой селективности в узнавании, связывании и переносе различных соединений. [c.481]

    Л. с. могут оказывать местное действие (на месте нанесения препарата) или резорбтивное (после всасывания, поступления в общий кровоток и ткани). В обоих случаях они действуют либо в месте контакта с тканями, либо на рецепторные структуры (рефлекторное действие). В-ва, возбуждающие рецепторы, наз. агонистами, в-ва, уменьшающие или устраняющие действие агонистов,-антагонистами. Взаимод. агонистов и антагонистов с рецепторами осуществляется в результате хим. или межмол. связей (ковалентной, ионной, водородной и др.) в зависимости от прочности зтих связей различают обратимое и необратимое действие Л. с. Препараты, действующие только на один тип рецептора, считаются избирательными. На избирательность Л.С. влияют сродство (аффинитет) к рецептору, прочность образуемой с ним связи, а также форма и размер молекулы Л. с., его пространств, соответствие рецептору (комплементарность), расстояние между функционально активными группировками и др. св-ва. [c.585]


    Ген рецептора липопротеида низкой плотности, обеспечивающего транспорт холестерола, имеет размеры более 45 т. п. н. и содержит 18 экзонов, из которых часть также обнаружена в генах, кодирующих совсем другие функции (рис. 110,6). Рецептор является [c.193]

    Наружные мембраны клеток отличаются от внутренних по липидному составу (последние почти не содержат стеринов, имеют соотношение ФХ/ФЭ > 1) и обладают специфическим набором ферментов и рецепторов. Как правило, белки плазматических мембран со стороны внеклеточной среды обильно гликозилированы. Внутриклеточные мембраны содержат мало гликопротеинов и гликолипидов и характеризуются меньшей микровязкостью. Благодаря этому они могут образовывать органеллы малого размера. Мембранные белки выполняют различные специфические функции рецепторные, транспортные, ферментативные, энергопреобразующие и т.д. (см. далее). [c.303]

    Цитоплазматическая мембрана ограничивает размеры клеток. У животных во внешней ее части (так называемой клеточной оболочке) локализованы рецепторы — гликопротеины, принимающие и передающие сигналы вовнутрь клетки. Кроме того, в клеточной оболочке находятся сайты узнавания родственных клеток благодаря им клетки находят и соединяются друг с другом. Оболочка ассоциирована с двухслойной полупроницаемой мембраной, которая селективно отбирает те вещества, которые необходимо пропускать в цитоплазму и элиминировать во внеклеточное пространство. У растений, кроме мембраны, имеется клеточная стенка, пронизанная большим числом отверстий, необходимых для контакта клеток между собой и для обмена веществ. [c.14]

    В-клетки образуются и развиваются в костном мозге. Этот процесс не зависит от антигена, однако дифференцировка лимфоцитов во вторичных лимфоидных органах тесно связана с наличием антигена, под влиянием которого В-клетки синтезируют антитела, блокирующие данный антиген. Из стволовых клеток костного мозга образуются предшественники В-клеток, так называемые пре-В-клетки. Их мембраны не имеют еще рецепторов для антигенов, но в цитоплазме уже имеются тяжелые цепи будущих иммуноглобулинов М-клас-са. Затем пре-В-клетки уменьшаются в размерах и в них начинается синтез легких цепей Ig. [c.481]

    БеЛки и пептиды занимают особое место среди биологически важных веществ. Они не имеют себе равных по многообразию и спектру выполняемых ими биологических функций и участвуют, по существу, во всех процессах жизнедеятельности. Среди них мы встречаем ферменты, гормоны, антибиотики, токсины, белки-рецепторы и белки-регуляторы белки образуют строительный материал тканей и органов, лежат в основе защитных систем живого организма (антитела, интерфероны и т. п.), являются ключевыми элементами всех биологических транспортных и энергетических систем. Несмотря на то что многие белки уже хорошо изучены, перед исследователем предстают новые неизведанные просторы мира белков, и в этом отношении надо говорить лишь о нашем вступлении в этот удивительный и загадочный мир. Если вы стремитесь найти новый белок, прослеживая его роль по определенной биологической функции, то сейчас все чаще и чаще вам приходится встречаться с белками новых типов, меняющими наши традиционные представления о свойствах белка и принципах проявления его активности. Это и мембранные белки, существующие и действующие в неполярных средах, и белки рецепторных систем, способные к скачкообразному изменению своей пространственной структуры и, наконец, огромные по размеру белки-ансамбли, с молекулярным весом, достигающим многих сотен тысяч. Все это ставит перед исследователем сложнейшие проблемы, заставляет его постоянно обновлять свой методический арсенал, а колоссальные темпы развития современной науки и стремительный прогресс в изучении живой материи обязывают его находить и идентифицировать эти белки точно и в кратчайшие сроки, отводя не так уж много времени для полного распознания всех уровней структурной организации белка. Это естественно, поскольку настоящее изучение белка, подступ к пониманию его функционирования, начинается лишь тогда, когда структура белка уже расшифрована. [c.3]


    Рассматривая теорию Монкрифа, Эймур [289] указывал, что, хорошо объясняя явления обоняния, эта теория имела ограниченное применение, поскольку не давала ответ на два вопроса каковы первичные запахи и каковы стереохимические свойства соответствующих им углублений рецепторов (размеры, форма, электронное строение). [c.151]

    Ранее уже упоминалось о стереоселективности ферментов, проявляющейся в различных обстоятельствах, например в связи с биологическим разделением рацемических смесей (гл. 12), специфичностью мальтазы и эмульсина (разд. 17.6), структурными и стереохимическими требованиями иротеолитических ферментов (разд. 18.2). Принято считать, что ферментативный катализ осуществляется через адсорбцию субстрата на поверхности большой белковой молекулы. Стереоспецифичность фермента можно объяснить, если допустить, что фермент обладает рецепторными центрами, способными связывать или принимать только особые типы групп. Рассмотрим в качестве примера асимметрически замещенный атом углерода. Фермент, обладающий рецепторами для трех или четырех групп, может различить два энантиомера, поскольку подходящий энантиомер адсорбируется, присоединяясь всеми тремя своими группами к рецепторным центрам, тогда как второй энантиомер в лучшем случае сможет соединиться только с двумя центрами. Присоединение субстрата к центрам фермента происходит либо за счет образования ковалентных или водородных связей, либо при взаимодействии ионных или полярных групп, либо путем заполнения впадин на поверхности фермента, которые вмещают группы или особой формы, или чуть меньше определенного размера. [c.341]

    Для того чтобы создать рецептор, настроенный на более крупные молекулы субстратов, а не только на простые ароматические соединения, был синтезирован аналог 227, в котором фенютеновые остатки в соединениях 226 заменены нафтилсновыми 134с]. В результате этой модификации лиганд 227 получил способность образовывать комплексы с такими крупными молекулами, как стероиды, одновременно с резким снижением его сродства к субстратам меньшего размера, Нам кажется важным подчеркнуть это обстоятельство при переходе от 226 к 227 увеличение размеров внутренней полости лиганда, его связывающего сайта, — это не просто возрастание объема контейнера , в который теперь можно заложить вместо одной маленькой молекулы одну большую или несколько маленьких, а именно изменение характера селективности рецептора (в большом контейнере прочно удерживаются крупные молекулы, а мелкие из него вываливаются ), И дело здесь не просто в размерах — видимо, не менее важно и определенное структурное соответствие субстрата рецептору. Так, при варьировании структуры стероидного субстрата константа связывания с рецептором 227 может изменяться в пределах двух-трех порядков величины. Таким образом, этот лиганд может служить эффективным инструментом для избирательного связывания определенных стероидов и выделения их из смесей. [c.481]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]

    О группе токсичных для бактерий белков (колицинов) уже шла речь в разд. Г, 7. Они, по-видимому, также связываются со специальными рецепторами на внешней мембране бактерий типа Е. соИ. Нейландс и его сотрудники обнаружили, что у Е. соН рецептор колицина М служит также рецептором и для сидерохромного пептида — феррохрома (дополнение 14-В), и для бактериофага Т5. С этим же участком мембраны связывается антибиотик альбомицин. Существует предположение, что на ранних этапах эволюции у бактерий появились молекулы, обладающие способностью к образованию хелатных комплексов с железом, причем размер этих комплексов постепенно увеличился до такой степени, что они утратили способность диффундировать через наружную мембрану в клетку. В результате возникли специфические системы переноса, которые позднее были использованы фагами к. штаммами, продуцирующими колицин . [c.306]

    Н. взаимодействуют с рецепторами, к-рые расположены на пов-сти клеток-мишеней при этом начинает протекать ряд фнз.-хим. процессов в клеточной мембране, в цитоплазме клетки или в постсинаптич. мембране нейронов. И. могут содержать в молекуле до 50 аминокислотных остатков, а размер активного центра, необходимого для взаимод. с рецептором, не превышает обычно 4-5 аминокислотных остатков. Остальные участки И. вьшолняют дополнит, ф-ции, напр, обеспечивают устойчивость к действию протеолитич. ферментов (период полураспада Н. колеблется от неск. секунд до минут). [c.204]

    Применение. Перспективные области использования Ц.-создание искусств, ферментов и рецепторов, электропроводящих орг. материалов, ион-селективных электродов, катализаторов фазового переноса, систем дпя разделения молекул путем захвата во внугр. полость частиц лишь определенных размеров и др. Нек-рые полимерные Д. обладают св-вами комплексов с переносом заряда. [c.377]


    Радиус полости шара - 0,284 нм (у бакибола Сбо - 0,351 нм). Короткие углеводородные цепи, соединяющие циклы, достаточно подвижны, чтобы пропустить в эту полость небольшой ион металла. В отличие от фуллеренов сферифан хирален и мог бы вполне служить рецептором только правых или только левых оптических изомеров какой-то молекулы, но размер полости оказался слишком мал для этого. Однако данная работа указывает путь, по которому можно будет создавать и более крупные фуллереноподобные структуры - ловушки для различных ионов и молекул. [c.166]

    Во многих определениях существует значительная разница в размерах рецептора и лигавда. Антитела имеют молекулярные массы порядка 160 ООО и могут быть легко отделены от антигенов с молекулярной массой менее 80 ООО. Наиболее широко ддя этой цели применяется эксклюзионная гель-фильтрующая хроматография. Небольшой свободнь1й меченый антиген удерживается на колонке, в то время как объемистый комплекс антиген-антитело элюируется. Метод обеспечивает хорошее разделение, но он дорог н требует затрат времени, так что он не подходит для рутинного, многократного использования. [c.578]

    В работе [38] подробно изучено влияние природы и строения заместителей в боковой цепи дипептидов на интенсивность их сладкого вкуса. Высказано предположение [39], что группа X, отвечающая за сладкий вкус эфиров дипептидов, связана с центром разветвленной боковой цепи, например в аспартаме —это бензольное ядро. Показано [40,41], что чем полнее соответствие между размерами и пространственным строением молекул сладкого вещества и вкусовых рецепторов, тем интенсивнее ощущение сладкого вкуса. Поэтому форма условной сладкой единицы может использоваться для определения конформации аспартама, хорошо адсорбируемого на поверхности рецептора (рис. 1.3, аУ Полученная таким образом информация указывает, что поверхность рецептора соответствует определенным структурным элементам молекул сладких веществ разли<Гных tипoв. Это позволяет прогнозировать структуру аналогов аспартама и других соединений, обладающих сладким вкусом. [c.19]

    Аспартам подвергается гидролизу в сильнокислотных и слабощелочных средах, что ограничивает области его применения. Для устранения этого недостатка было предложено химически прикреплять молекулы, вызывающие ощущение сладкого вкуса, к устойчивым макромолекулам, например к декстрану [48, 49]. Такие системы можно получить при вакуумной сушке многокомпонентных водных растворов. Основной трудностью является поиск макромолекул оптимальной величины, поскольку контакт химически активного фрагмента с рецептором зависит от размера агрегата в целом и возможно резкое снижение или полная потеря сладкого вкуса. [c.92]

    В работе [36] показано, что с увеличением размера С-кои-цевой эфирной группы сладкий вкус уменьшается. Отсюда следует, что размеры молекул имеют большое значение для характера их взаимодействия с рецепторами [90]. Мазур н сотр. [81] установили, что к числу дипептидов, обладающих сладким вкусом, относятся эфиры ь-а-аспартил-ь-треонина и ь-а-аспартил-5-алкил-ь-гомоцистеиисульфоиа. Ярко выраженным сладким вкусом обладают аналоги аспартама, содержащие алкоксильные, гидроксильные группы или атомы галогена в лара-положеиии феиильиого заместителя [42, 60, 91], Показано [43, 60, 76, 92—94], что частичное или полное гидрирование бензольного ядра в ряде случаев увеличивает интенсивность сладкого вкуса, [c.97]

    Согласно данным работ [113—117], размеры сложноэфирных групп в производных амнномалоновой кислоты изменяются в широких пределах (табл. 3.6). Наиболее сладкнм вкусом обладают соединения, содержащие одну метильную группу. Вторая эфирная группа обусловливает взаимодействие с гидрофобными центрами рецепторов и от ее строения во многом зависит вкус вещества. В ряду соединений типа [c.103]

    По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]

    По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматофафии распределительнся хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе (газожидкостная матофафия) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах ионообменная хроматография — на разной способности веществ к ионному обмену адсорбционная хроматография — на различии в адсорбируемости веществ твердым сорбентом эксклюзионная хроматография — на различии в размерах и формах молекул разделяемых веществ, аффинная хроматография — на специфических взаимодействиях, характерных дпя некоторых биологических и биохимических процессов. Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор, и т. п. Если одно из соединений пары удерживается ковалентной связью на [c.267]

    Особое значение индуцированное соответствие имеет для целого ряда ферментов, переносящих ацильные или фосфорильные группы из одного нуклеофильного центра в другой. Ацилхимо-трипсины служат примером случая низкой специфичности в отнощении нуклеофила. Ацетил- [114] и фуроилхимотрипсин [62] легко реагируют, наравне с водой, со всеми типами спиртов, перенося ацильную группу на КОН с образованием сложного эфира. Неспецнфич еский ацильный перенос такого рода, очевидно, неприемлем в тех случаях, когда целью действия фермента является перенос ацильной группы на специфический рецептор, но, поскольку размер молекулы любого спирта превышает размер молекулы воды, полностью удалить последнюю из активного центра невозможно. В этой ситуации фермент должен выбрать между КОН и НОН путем гарантирования того, что НОН в реакцию не вступит, и индуцированное соответствие обеспечивает механизм специфичности этого типа. Ярким примером такой специфичности является перенос фосфорильной группы на глюкозу, катализируемый фосфоглюкомутазой и гексокиназой. [c.517]

    Хроматографические методы, в которых разделение компонентов смеси основано на различии в размерах, форме или суммарном заряде молекул, часто недостаточно эффективны для разделения смесей белков. В таких случаях может оказаться полезной аффинная хроматография [48]. Успех метода зависит от того, удастся ли найти вещество, которое будет специфически взаимодействовать с подлежащим очистке белком. Для фермента таким веществом может быть конкурентный ингибитор катализируемой этим ферментом реакции, а для участвующего в гормональной регуляции белка-рецептора — соответствующий гормон. Это вещество связывают с подходящим нерастворимым гидрофильным носителем, и полученный материал используют при хроматографии как стационарную фазу. Вещества такого типа часто сами оказываются большими природными макромолекулами, и приемы, используемые для соединения их с носителями, сходны с методами приготовления иммобилизованных ферментов [см. разд. 27.4.2 (5)]. Реакции, с помощью которых белки, содержащие аминогруппы или фенольные группировки, могут быть связаны с носителем на основе сшитого полиакриламида, содержащего некоторое число гидразидных или 4-аминоанилидных остатков (схемы 30, 31 Б — остаток белка). Хорошие результаты получены в тех случаях, [c.322]

    Что же определяет возможность взаимодействия производного антибиотика с бактериальным лигандом и последующее ингибирование мембранных трансглнко-зилирующих ферментов В последние годы высказывается предположение, что при взаимодействии крупных молекул с рецептором, отвечающим структурным и термодинамическим требованиям, определяющее значение имеет кооперативное связывание лиганда с рецептором. Кооперативность - общий биохимический феномен, когда несколько процессов, независимых в других случаях, оказываются термодинамически взаимозависимыми. В ряду гликопептидов отмечены биологические эффекты, которые нельзя свести к конформационным изменениям. При невозможности конформационных изменений динамические связь с лигандом и другие процессы оказываются структурно взаимозависимыми и кооперативными. Кооперативные взаимодействия с лигандами ослабевают с уменьшением размера молекулы и этим можно объяснить частичное снижение антибактериальной активности частично разрушенных антибиотиков по сравнению с производными неразрушенных гликопептидов. [c.83]

    Дифракционными методами были определены размеры молекулы ацетилхолинового рецептора и установлена его трансмембран-иая организация (рис. 340). На электронных микрофотографиях рецептор имеет вид розетки диаметром около 8,5 нм, в центральной части которой различают входное отверстие 2 нм для трансмембранного канала. Предполагается, что этот канал образован фрагментами полипептидных цепей всех пяти субъединиц. Наиболее [c.630]

    Уместно остановиться на вопросе о том, что происходит с лекарственным веществом в организме подопытного животного или человека. Во-первых, оно может абсорбироваться в организме. В этом случае вещество, пройдя через ряд биологических мембран и систем, достигает рецептора (вероятно, внутри клетки) и воздействует на него. В ходе этого процесса лекарственное вещество может теряться либо путем связывания с белком, либо путем быстрого выведения из организма. Альтернативной возможностью является превращение этого вещества в другое соединение (метаболизм), которое, собственно, и обладает фармакологической активностью. Длительность действия препарата зависит также от таких его свойств, как устойчивость к превращению в неактивные продукты (детоксикация) или растворимость в жировой ткани, которая может выполнять функцию лекарственного депо. Очевидно, что большое значение имеют полярность, форма и размеры молекул лекарственного вещества. Роль полярных эффектов можно проиллюстрировать на примере противосудорожного средства примидон (1), который не обладает седативными свойствами родственного ему по структуре фенобарбитона (2), хотя эти соединения разли- [c.402]

    Размеры н состав комплексов антиген-антитело важны не только потому, что они влияют на реакции преципитации в пробирках они играют также решающую роль в определении судьбы т их комплексов в организме. Комплексы, образующиеся при эквивалентности или при избытке антител, имеют много выступающих Рс-обласгей (рис. 17-32) и поэтому прочно связываются с Рс-рецепторами макрофагов и поглощаются этими клетками. Небольшие комплексы, образующиеся при избытке антигена, имеют лишь по одной Гс-области (рис. 17-32). Поэтому они слабо связываются с Гс-рецепторами на макрофагах и разрушаются менее эффективно. Вместо этого они часто осаждаются в межих кровеносных сосудах кожи, почек, суставов и мозга, где активируют систему комплемента, вызывая воспаление и деструкшпо тканн. [c.29]

    Непрямые данные были получены прн изучении антиидиотипнческнх антител. Как уже говорилось, можно получить антитела, которые узнают антигенные детерминанты антиген-связывающих участков других антител такие детерминанты называются идиотипами. Антиидиотипические антитела, способные реагаровать с антиген-связывающим участком растворимого антитела к некоторому антигену X, будут связываться не только с анти-Х-антитела-ми в растворе, но также и с В-клетками, имеющими на своей поверхности те же самые антитела (как рецепторы для антигена X). Неудивительно, что присоединение антиидиотипических антител к этим рецепторам на поверхности В-клеток может ингибировать способность В-клеток узнавать антиген X н отвечать на него. Было показано, что в некоторых случаях антиидиотипические антитела связываются с Т-клвткамн н тоже ингибируют их способность отвечать на антиген X (рнс. 17-55). Генетические исследования позволяют предполагать, что идиотипы, общие для рецепторов В- н Т-клеток, могут кодироваться генными сегментами, определяющими вариабельные области Н-цепей иммуноглобулинов. Антиидиотипические антитела были использованы для выделения малых количеств рецепторов нз плазматических мембран Т-клеток. Хотя эти рецепторы состоят нз полипептидов, сходных по размерам с обычными Н-цепями, они не реагируют с антителами к константным областям каких-либо известных Н- или L-цепей иммуноглобулинов. Эти данные наводят на мысль, что рецепторы Т-клеток могут представлять собой какой-то новый класс Н-цепей, кодируемый специальным набором генов константной области н, возможно, некоторыми генными сегментами, кодирующими Ун-области обычных антител Этой гипотезе противоречит то, что в экспериментах с нспользованнем техники рекомбинантной ДНК не удалось [c.51]

    Молекула. БАС должна контактировать с рецептором на поверхности клетюл. Учитывая разумные значения размера клетки (2-10 ми-11юн) и к оэффициента диффузии БАС ( > = 10 см /с), а также [c.117]

    Для создания основы молекулярного уровня биологических дисциплин в учебнике даны, по-возможности, наглядные представления об органических молекулах, их размерах, форме, стереохимиче-ских особенностях, электронном строении связей. С этой целью приведено большое количество рисунков молекулярных моделей (в том числе моделей Стюарта, Бриглеба и Куртолда) Для объяснения различного фармакологического действия стереоизомеров дана схема взаимодействия их функциональных групп с рецепторами клетки по Беккету. Помимо схем электронного строения связей включена таблица, сопоставляющая электронное строение различных связей. Равноценность двух атомов кислорода в ионизированном карбоксиле кислот (карбоксилат-ионе) иллюстрируется диаграммой распределения электронных плотностей. [c.3]


Смотреть страницы где упоминается термин Рецептор lq размер: [c.128]    [c.154]    [c.206]    [c.472]    [c.480]    [c.43]    [c.166]    [c.348]    [c.23]    [c.100]    [c.102]    [c.472]    [c.480]    [c.121]    [c.630]    [c.634]    [c.622]    [c.251]   
Биохимия мембран Рецепторы клеточных мембран (1987) -- [ c.58 ]




ПОИСК







© 2024 chem21.info Реклама на сайте