Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Искусственные рецепторы

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]


    Передача информации о больном органе дистанционно может производиться только с помощью электромагнитных полей, так как передача акустического излучения требует непосредственного контакта с телом пациента. Возможность использовать тот или иной диапазон электромагнитного излучения определяется интенсивностью соответствующего излучения и чувствительностью к нему рецепторов руки экстрасенса. Существующие данные позволяют исключить низкочастотное электрическое и магнитное поле, а также волны СВЧ-диапазона, так как к известным слабым полям человек нечувствителен. Излучение оптического диапазона также не может служить таким агентом, так как интенсивность собственного свечения кожи в миллион раз меньше интенсивности солнечного, либо искусственного излучения в комнате. Таким образом, наиболее вероятный переносчик информации в режиме диагностики - это электромагнитное излучение тела в инфракрасном либо близком к нему диапазонах частот. [c.279]

    У большинства лекарственных препаратов существует тесная взаимосвязь между пространственно-структурной организацией молекул и фармакологическим действием. Многие лекарственные препараты, полученные искусственным синтезом, существуют в виде смеси двух, а часто и большего числа пространственных изомеров, различающихся по биохимической активности. Последствия таких различий не всегда безопасны для организма. Распознавание стереоизомеров вводимого в организм лекарственного соединения может осуществляться на различных стадиях при связывании с активными центрами ферментов и рецепторов, при транспорте через клеточные мембраны, в процессах поглощения в клетках и распределения между тканями. Все вышеперечисленные процессы — предмет изучения фармакокинетики и фармакодинамики. Выявление фармакокинетических и фармакодинамических особенностей отдельных стереоизомеров открывает перспективные направления совершенствования уже известных лекарственных препаратов. Необходимо отметить, что в настоящее время лишь 15 % синтетических препаратов, находящихся на европейских рынках, производится в форме отдельных изомеров, остальные 85 % представляют собой смеси изомеров. [c.508]

    С использованием таких методов было успешно проведено воссоздание систем натрий-калиевого насоса (Na+, К+-АТРазы), Са2+-АТРазы (гл. 7), родопсина и бактериородопсина, а также белков нервных и мышечных тканей, таких, как никотиновый ацетилхолиновый рецептор и потенциалзависимый натриевый канал аксональных мембран. Многие из опубликованных данных об удачных воссозданиях искусственных систем следует, однако, рассматривать с осторожностью, так как свойства таких систем слишком сильно отличались от свойств их биологических прототипов. [c.88]


    Можно ли считать, что дигидропиридиновый рецептор представляет собой Са-канал или хотя бы его часть Для ответа на этот вопрос была проведена очистка рецептора и его встраивание в искусственные бислойные мембраны. Установлено, что рецептор дигидропиридинов представляет собой глико- [c.42]

    Вряд ли нужно в очередной раз повторять, что свойства систем 224 и 225 как селективных лигандов — это не неожиданное открытие, а предвиденный результат тщательно спланированного, целенаправленного молекулярного конструирования простой модели искусственного рецепторов с вариабельной и управляемой картиной субстратной специфичности. [c.479]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    К категории гибридных белков относятся также искусственные рецептор-опосредованные токсины, включая иммунотоксины. Многие бактериальные полипептидные токсины состоят из двух компонентов — активной субъединицы А и субъединицы В, узнающей клеточный рецептор и позволяющей [c.445]

    Главным образом для людей, страдающих ожирением и диабетом, которым вредно избыточное употребление сахара, были получены искусственные сладкие вещества, не обладающие питательной ценностью. Эти искусственные сладости стимулируют те же вкусовые рецепторы на языке, что и природные сахара, но не усваиваются организмом (см. гл. 26). Наиболее широкое распространение из таких веществ получил сахарин (рис. 11-13), который в 400 раз слаще сахарозы. [c.311]

    Согласно теории Эрлиха, антитела — это просто предсуществующие рецепторы клеток организма для различных химических групп. Когда число таких химических групп, соприкасающихся с клеткой, возрастает (антигенный стимул), образуется избыток рецепторов. Некоторые из них попадают в кровь и образуют циркулирующие антитела. От этой теории отказались, когда была установлена возможность образования антител против искусственных группировок, с которыми организм никогда не сталкивался в процессе развития и для которых вряд ли можно было ожидать наличия предсуществовавших рецепторов. [c.41]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]


    ОДНОГО все три группы ориентированы таким образом, что они могут соединяться с комплементарными группами рецептора (рис. 20.1). В этом случае будет наблюдаться максимальная фармакологическая активность, соответствующая В-(-)-адреналину. У Ь-(+)-адреналина спиртовая ОН-группа ориентирована неправильно по отношению к рецептору, и данная молекула может взаимодействовать с рецептором только в двух точках. Поэтому природный 0-(-)-адреналин обладает в десятки раз большей фармакологической активностью, чем искусственно синтезированный 1-(+)-изомер. [c.510]

    Уже на первых шагах изучения краун-эфиров исследователи осознали, что создание искусственных систем, способных моделировать биологические явления молекулярного узнавания и связывания, может привести к далеко идущим последствиям. Как заметил Лен, комментируя уникальную способность криптанда 221 к тетраэдрическому узнаванию иона аммония, это представляет одну из самых ярких иллюстраций молекулярной инженерии, включающей достижение цели химии абиотических рецепторов дизайна синтетических рецепторных молекул путем правильного магшпулирования геометрическими (структура рецептора) и энергетическими (связывающие сайты, межмолекулярные взаимодействия) особенностями с тем, чтобы добиться высокой комплсментарности рецептора и субстрата [33d] (курсив авторов). [c.475]

    Микроокружение искусственных систем можно жестко контролировать и целенаправленно варьировать (например, изменять концентрацию ионов). Их можно подвергать действию лигандов, специфичных к определенным белковым рецепторам, содержащимся в липосоме. [c.133]

    КУРАРЕ. Кураре (точнее, алкалоиды курарины в его составе) специфически блокирует никотиновые рецепторы ацетилхолина, т. е. выступает в роли антагониста ацетилхолина и никотина. Эффекты кураре наиболее выражены в нервно-мышечных соединениях мышцы теряют способность сокращаться, и все тело быстро парализуется. Пострадавший умирает от того, что не в состоянии дышать. Впрочем, спасти его может искусственное дыхание, применяемое до тех пор, пока не кончится действие кураре. Парализующие свойства этого препарата используют некоторые южноамериканские индейцы — они смазывают им наконечники стрел, и в результате даже легко раненому животному не удается скрыться от охотника. Курареподобные агенты применяются как миорелаксанты ( расслабите-ли мышц) при проведении операций, поскольку это облегчает работу хирурга. Дыхание в данном случае поддерживается искусственно. [c.296]

    Шелленбергер пришел к выводу, что геометрия системы АН,В молекул сахаров и активного центра на рецепторе определяет прочность конечного комплекса, поэтому конфигурация и конформация молекул сладких веществ имеют большое значение. Преимущество молекул, содержащих ароматические циклы, таких, как сахарин и ннтроаннлин, состоит в том, что расстояние А—В в ннх зафиксировано. Известно, что искусственные сладкие вещества во много раз слаще, чем сахара. Чувство сладости, вызванное сахарами, длится всего [c.13]

    В исследовании взаимодействий полифункциональных гормонов и рецепторов с привлечением синтетических аналогов не исключены ситуации (они не предсказуемы, поскольку выбор аналогов, как правило, случаен), когда наиболее предпочтительная конформация синтетического пептида стерически комплементарна активному центру рецептора, но необходимый комплекс тем не менее не образуется, так как модифицированная последовательность не содержит остатков, необходимых для образования эффективных контактов с функциональными группами рецептора. Возможен, конечно, и прямо противоположный случай, приводящий к тому же результату. Принципиально слабым местом в используемом в настоящее время подходе к установлению зависимости между структурой и функцией пептидов и, в частности, гормонов является то, что он базируется на случайном поиске синтетических аналогов методом проб и ошибок Поэтому, отдавая должное усилиям в экспериментальном и теоретическом изучении искусственно модифицированных последовательностей энкефалинов, следует сказать, что при существующем интуитивном выборе модельных соединений можно рассчитывать лишь на частный успех. Качественный прогресс здесь можно ожидать только при строго научном, а не случайном подборе аналогов, иными словами, при отходе от метода проб и ошибок к методу, обладающему предсказательными возможностями и доказательной силой. Первая попытка в этом направлении [28, 29] основывается на решении обратной структурной задачи, т.е. на сознательном, целенаправленном конструировании химического строения немногочисленных искусственных аналогов, пространственное строение которых в своей совокупности отвечает набору низкоэнергетических, физиологических активных состояний природного гормона (см. гл. 17). Детально структурнофункциональная организация природных пептидов будет обсуждена в следующем томе издания "Проблема белка". О первых успехах рентгеноструктурного анализа в изучении трехмерных структур рецепторов рассказывается во втором томе издания [98. Гл. 3, 4]. [c.353]

    Мембранные белки, за немногим исключением, связываются с окружающими их липидами нековалентно. Методами ЭПР с помощью спинмеченных липидов доказано, что такие белки собирают вокруг себя специфические липиды в форме воротника , или ореола. Кроме того, модельные исследования на искусственных липосомах, сформированных из фосфатидилсерина и фосфатидилхолина, показали, что основный белок человеческого миелина (гл. 4) связывается с кислыми и нейтральными липидными молекулами, вызывая тем самым разделение фаз [18]. Аналогичный эффект в модельных экспериментах с искусственными липосомами проявлял и липопротеин миелиновой мембраны [19]. Напротив, никотиновый ацетилхолиновый рецептор из электрического органа Torpedo преимущественно [c.79]

    Фотосинтетические механизмы хлоропластов переводят солнечную энергию в химическую энергию АТР и NADPH в высшей степени эффективно. Поэтому ведется много исследований с целью научиться воспроизводить эти процессы в более простых искусственных молекулярных системах и таким образом заставить работать на себя непрерьшно льющийся на Землю неиссякаемый поток солнечной энергии. В современных солнечных батареях в качестве рецепторов световой энергии используются дорогостоящие твердые материалы, например кристаллический силикон, и эти батареи работают далеко не столь эффективно, как хлоропласты растений. Если бы нам удалось на молекулярном и субатомном уровне понять до конца те принципы, на основе которых хлорофилл и бактериородопсин работают как высокоэффективные ловушки световой энергии, и одновременно выяснить, как происходит распределение по обе стороны мембраны электрических зарядов и [c.713]

    После внедрения антигена в организм происходит акт его распознавания, т. е. соединение антигена с антиген-распознающим лимфоцитом Ti, имеющим комплементарные для антигенной детерминанты рецепторы IgT. Общепринято, что в комплексных антигенах рецепторы распознают детерминанту носителя. Такое представление вполне логично, когда в организм вводится искусственный комплексный антиген (конъюгат) химического гап-тена с чужеродным для организма носителем, и обусловлено внутримолекулярной конкуренцией сильных детерминант белка с более слабыми химическими (см. главу 3). Если же комплексный антиген образовался in vivo и носитель представлен аутобелком, то распознавание его, по-видимому, связано с так называемой общей или пограничной детерминантой, образованной изменением трехмерной конфигурации участка белковой молекулы носителя в месте соединения ее с химической группой (см. главу 2). На схеме представлен общий случай — соединение с детерминантой носителя. [c.12]

    Было выявлено, что при создании толерантности к доминантной детерминанте, т. е. в условиях искусственной безответности на нее, явления конкурентного подавления иммунного ответа на вторую, ранее подавляемую, детерминанту отменяются. Отмену подавления вызывает и пассивное введение антител против доминантной детерминанты [125]. В свете этих фактов внутримолекулярную конкуренцию объясняют конкуренцией В-лимфоцитов различной специфичности. Предполагают, что если число В-клеток одной специфичности больше или их специфичные рецепторы более авидны (например, в результате иммунологической памяти к одной из детерминант антигена или даже к родственной группировке), то такие В-лимфоциты будут иметь преимуш,ество в соединении со своей детерминантой антигена (рис. 6). В результате иммунный ответ на эту детерминанту окажется более активным, а на вторую — несколько ослабленным, так как антиген будет захвачен В-клетками первого типа. Эту гипотезу подтверждает и факт увеличения явлений конкурентного подавления при уменьшении дозы антигена. Вполне понятно, что в таких условиях конкуренция становится очень жесткой и потеря даже небольшого числа молекул антигена, необходимого для активации функционально менее активных В-клеток, может существенно сказаться на результате. [c.52]

    Первонач ально на основании зависимости между структурой и активностью неправильно полагали, что валиномицин взаимодействует с уже существующими высокоселективными транспортными рецепторами в митохондриях [8]. Однако опытным путем было обнаружено, что валиномициновая группа ионофоро увеличивает катионную проницаемость искусственных липидных бимолекулярных слоев на основании этого пришли к заключению, что транспортная активность и ион-селективность внутренне присущи самим молекулам валиномицина [14, 15]. В результате детального исследования установили, что валиномицин обладает комплексообразующими свойствами по отношению к ионам щелочных металлов и транспортной активностью в обычном состоянии, из чего в конечном счете заключили, что способность ионофоров служить мобильными носителями ионов обусловлена их собственными свойствами [1, 16—19]. [c.247]

    Первым среди соединений, способных выступать в роли заменителя сахаров, был открыт сахарин (1879 г.). Сахарин представляет собой имид о-сульфобензойной кислоты (бесцветные кристаллы), который в 400 — 500 раз слаще сахарозы, но имеет неприятный металлический привкус. Сахарин не включается в метаболические процессы и выводится из организма с мочой в неизменном виде. В середине XX в. он использовался в виде натриевой соли, хорошо растворимой в воде. Если в молекуле сахарина провести метилирование NH-группы, то сладкий вкус утрачивается, из чего следует, что атом водорода, входящий в состав этой группы, участвует в донорно-акцепторном взаимодействии с рецептором. Другим представителем искусственных заменителей сахаров является цикламат, который в 30 раз слаще сахарозы. Однако в процессе метаболизма он дает циклогексиламин — производное циклогексана, обладающее канцерогенными свойствами, в связи с чем во многих странах его применение запрещено. [c.464]

    Тучные клетки секретируют гистамин (см. табл. 12-1) в ответ на связывание специфических лигандов с рецепторами на их поверхности. Именно гистамин, секретируемый тучными клетками ответствен за многие неприятные симптомы, такие, как зуд или чихание, сопровождающие аллергические реакции. Если гучные клетки проинкубировать в среде, содержащей растворимый стимулятор, то экзоцитоз наблюдается по всей клеточной поверхности (рис. 6-70). Если же стимулирующий лиганд искусственно связан с твердой гранулой, так что он может взаимодействовать только с небольшим участком поверхности тучной клетки, экзоцитоз ограничивается местом контакта с гранулой (рис. 6-71). Ясно, что тучная клетка не отвечает на стимуляцию как нечто целое активация рецепторов, внутриклеточные сигналы как результат этой активации и последующий экзоцитоз, очевидно, происходят лищь в том участке клетки, который подвергается стимуляции. Это свидетельствует о важном свойстве плазматической мембраны отдельные ее участки могут функционировать независимо от остальной мембраны Как мы видим, это свойство одинаково важно как для экзоцитоза, так и для эндоцитоза. [c.410]

    Поведение таких калиевых каналов, называемых S-каналами, можно детально проследить с помощью метода пэтч-клампа (см. разд. 6.4.17). Qpn связывании серотонина мембранными рецепторами эти каналы закрываются (рис. 19-43). Калиевые каналы закрываются таким же образом и в том случае, если содержащий их участок мембраны перенести в кювету с искусственной средой, где каналы подвергаются прямом> фосфорилированию каталитической субъединицей А-киназы. Это заставляет предполагать, что фосфорилирование S-каналов (или тесно связанных с ними белков) способно надолго задержать каналы в закрытом состоянии. Так как в норме именно ток калиевых ионов помогает восстановить потенциал покоя, блокада S-каналов продлевает потенциалы действия, приходящие в окончание аксона. Продленные потенциалы действия удерживают нотенциал-завиеимые кальциевые каналы в открытом состоянии более длительное время, вследствие чего приток ионов кальция возрастает, а это в свою очередь ведет к опорожнению большего числа синаптических пузырьков в результате в мотонейроне создается более значгггельный постсинаптический потенциал и происходит более энергичное втягивание жабры. [c.333]

    А какие факторы обусловливают прекращение приема пищи Чтобы их идентифицировать, проводили многочисленные опыты, в которых перерезали нервы, иннервирующие различные отделы пищеварительного тракта, непосредственно помещали в разные отделы пищу или же удаляли ее через искусственные фистулы. Полученные данные позволяют предположить, что пищевое поведение тормозят три фактора 1) интенсивность перистальтики передней кишки, воспринимаемая рецепторами растяжения кишечной стенки 2) наполнение зоба, в стенке которого тоже имеются рецепторы растяжения 3) интенсивность локомоторной активности, связанной с разрядами мотонейронов грудного ганглия. Под влиянием всех этих факторов повышается порог восприятия хеморецепторных сигналов центральными структурами, что ведет к угнетению рефлексов вытягивания хоботка и сосания. Некоторые из действующих факторов и взаимоотношения между ними представлены на рис. 27.5. [c.226]

    Последний этап на рецепторном уровне состоит в перекодировании переданного электротонически ответа рецептора в импульсный разряд в афферентном нервном волокне, который несет в себе информацию для остальных отделов нервной системы. Этот процесс показан на рис. 11.3 на примере клетки рецептора растяжения позвоночного животного. В данном случае стимулом служит растяжение, приложенное к мышце. Существенно различаются динамический (фазический) период стимуляции, когда растяжение нарастает, и статический (тонический) период, когда оно остается постоянным. При искусственном блокировании импульсов (например, введением тетродотоксина) для наблюдения за процессами рецепции видно, что рецепторный потенциал возрастает до пика в конце динамического растяжения, а затем медленно падает до более низкого уровня во время статического растяжения. При регистрации импульсов их частота тоже резко возрастает при динамическом растяжении и снижается при статическом. Рис. 11.3 иллюстрирует тесную корреляцию между рецепторным потенциалом и частотой импульсации. [c.274]

    Эффект Ганна — преобразование полупроводником (во всем объеме образца, а не в узкой части р-п-перехода, как в обычных полупроводниковых структурах) мощности постоянного члектрического тока в электрические колебания сверхвысоких частот (порядка 10"—Ю " Гц) [32]. Предложено использовать представления об эффекте для объяснения способности биологических структур, например мембраны нервного волокна, преобразовывать постоянный ток в серию нервных импульсов [74]. Искусственным возбудимым мембранам также свойственна эта способность [61]. И в искусственных, и в биологических мембранах, как и в полупроводниковом образце, частота электрических колебаний тем выше, чем больше сила тока, пропускаемого через образец. Эффект Ганна также представляет интерес в плане изучения информационных процессов в организме, в частности процессов кодирования в рецепторах органов чувств. Так, адекватный раздражитель вызывает в рецепторе рецепторный потенциал, который генерирует в нервных волокнах серии импульсов [74]. [c.159]

    Насколько нам известно, в литературе нет данных об ориентации креветок, речных раков и крабов в магнитном поле. В известных экспериментах с речными раками (Ozeki, Osada, 1977) песчинки в сенсорных капсулах наружного скелета, служащие ракам статолитами, искусственно заменяли на частички железа. В норме нервные окончания рецепторов реагируют на давление песчинок, опускающихся под действием силы тяжести. В эксперименте кусочки железа, притянутые магнитом кверху, вынуждают животных переворачиваться вверх ногами. Очевидно, приведенный опыт вряд ли может служить примером магнитной ориентации. [c.126]


Библиография для Искусственные рецепторы: [c.195]   
Смотреть страницы где упоминается термин Искусственные рецепторы: [c.478]    [c.478]    [c.384]    [c.21]    [c.10]    [c.278]    [c.374]    [c.32]    [c.132]    [c.480]    [c.284]    [c.380]    [c.101]    [c.143]    [c.255]   
Органический синтез (2001) -- [ c.478 , c.479 ]




ПОИСК







© 2025 chem21.info Реклама на сайте