Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критерии необратимости и обратимости

    Обратимые процессы неосуществимы, они только мыслимы, воображаемы все процессы, совершающиеся в природе, необратимы. Поскольку самопроизвольный (необратимый) процесс всегда является процессом с возрастающей энтропией, условие А5>0 можно рассматривать как критерий необратимости. Следовательно, энтропия, представляющая собой меру деградации системы, подчиняется одностороннему закону сохранения, а именно, она может возникнуть, но не может быть уничтожена. [c.112]


    Критерии необратимости и обратимости для процессов, в которых не совершается работа или совершается только работа расширения [c.60]

    Но даже в случае изотермических процессов мы предпочитаем пользоваться функцией Р (или функцией С) как критерием необратимости и обратимости процессов, как критерием направленности процессов и равновесия термодинамического мирка . [c.262]

    Степень обратимости цикла с охлаждением жидкости Не может быть определена отношением eu к холодильному коэффициенту цикла Карно. Цикл из двух изотерм и двух адиабат при источнике отвода тепла с переменными температурами необратим, поэтому не может служить критерием сравнения. Обратимым в рассматриваемых условиях является цикл 1—2—3—4—5—6 с холодильным коэффициентом s, который и должен служить критерием для установления величины необратимых потерь. [c.160]

    Существуют различные определения понятий обратимая и необратимая электрохимическая реакция. Так, процессы, для которых справедливо уравнение Нернста, обратимы, или электрохимические реакции можно назвать обратимыми в том случае, если они протекают с высокой плотностью тока обмена. Наиболее применимое определение гласит электрохимическая реакция, протекающая без измеримого перенапряжения, обратима [8]. Первое и последнее определения требуют пояснений. Первая формулировка верна в том случае, когда при прохождении тока через электроды электродный потенциал можно рассчитать по уравнению Нернста, но при этом еле-дует вводить значения концентраций (точнее, активностей) у поверхности электродов, не соответствующие концентрациям в объеме растворов вследствие протекания электрохимических реакций на электродах. Это значит, что концентрационная поляризация не может служить критерием необратимости и вместе с тем вызывает необходимость дополнения к последнему определению, что измеряемое перенапряжение не следует понимать как концентрационное перенапряжение. Определяющим фактором необратимости является перенапряжение перехода. [c.101]

    Следовательно, критерием необратимости процессов в изолированной системе является прирост энтропии. Если энтропия такой системы постоянна, то в системе происходят лишь обратимые процессы, если же энтропия растет, в системе совершаются необратимые изменения. [c.29]

    В реальных технических условиях чаще всего процессы совершаются не при постоянном объеме, а при постоянном давлении. Поэтому кроме понятия свободная энергия при постоянном объеме вводится функция, служащая критерием равновесия в условиях постоянства давления и температуры. Такой термодинамической функцией является изобарно-изотермический потенциал С, который принято называть изменением свободной энергии Гиббса, или свободной энтальпией. В термодинамике показано, что величина С при обратимых процессах не изменяется, а при необратимых может только убывать. Следовательно, условием равновесия в системах при постоянных давлении и температуре является минимум изобарно-изотермического потенциала. [c.18]


    Таким образом, изменение энтропии в системе является критерием обратимости протекающего процесса. В основном все процессы в природе протекают необратимо, т. е. с возникновением энтропии. Обратимые процессы являются предельным случаем реальных процессов, если представить их как протекающие бесконечно медленно. Несмотря на это, как мы увидим в дальнейшем, имеется возможность исследования необратимых процессов методами равновесной термодинамики, если мысленно представить необратимый процесс как последовательность обратимых процессов. [c.235]

    Следовательно, энтропия является критерием направления процесса. Критерием неосуществимости процессов служит неравенство Л5<0. В неизолированной же системе могут протекать обратимые и необратимые процессы с уменьшением энтропии. [c.230]

    Следовательно, при постоянных температуре и объеме свободная энергия не изменяется при обратимых процессах, а при необратимых может только убывать. Это означает, что данная функция действительно является критерием, который позволяет судить о на- [c.76]

    Те положения, которые мы постулировали при введении понятия энтропии, рассмотрим как следствия, вытекаюш ие из фундаментального неравенства Клаузиуса. Как уже известно, энтропия — критерий обратимости и необратимости процессов. Исходя из ее основного свойства как функции состояния, определяют изменение энтропии для обратимого и необратимого процессов одним и тем же способом. [c.109]

    Перейдем к рассмотрению нестатических процессов. Пусть изучаемая система перешла необратимым путем из состояния 1 в состояние 2. Приняв во внимание, что интеграл Клаузиуса (1У.43) применим только к циклу, но не к разомкнутому процессу 1- 2, сведем исследуемый процесс к рассмотрению цикла. С этой целью восстановим обратимым путем начальное состояние данной системы. Восстанавливать начальное состояние необратимым путем, конечно, нельзя, так как в этом случае к изменениям, оставленным в окружающей среде необратимым процессом 1- -2, добавятся новые изменения от восстановления. Таким образом, проведя процесс 1->2 необратимым путем, а процесс 2 1 обратимым путем, мы можем использовать критерий (1У.43) при учете, что бОа в нестатическом процессе 1->-2 заменяется на —8 Qi в квазистатическом процессе 2->-1 в следующем виде  [c.110]

    В обоих соотношениях знак равенства относится к равновесным (обратимым) процессам, а знак неравенства к неравновесным или необратимым процессам. Таким образам, соотношение (У.225) определяет критерий возможного самопроизвольного изменения системы — увеличение энтропии — и критерий равновесия изолированной системы, т. е. максимум энтропии. [c.170]

    Для закрытых и открытых систем (б Ф 0) критерий 5 > О для необратимых и йЗ = О для обратимых процессов не имеют силы, величина А5 может быть как положительной, так и отрицательной. [c.94]

    Практическим критерием обратимости или необратимости ред-окс системы является точность, с которой уравнением (2) описывается зависимость равновесных потенциалов электродов от активностей компонентов, участвующих в электродных реакциях. [c.34]

    Т. е. перенапряжение перехода тем меньше и процесс тем более обратим, чем больше плотность тока обмена. Как известно, плотность тока обмена, в соответствии со вторым из приведенных ранее определений, может служить критерием обратимости реакции. Но известно также, что неправомерно определять электрохимическую реакцию вообще как обратимую или необратимую. Тот же процесс может при соответствующих условиях (большая плотность тока) стать необратимым. Для больших плотностей тока можно пренебречь одной из составляющих плотности тока  [c.103]

    Изменение энтропии как критерий равновесия и самопроизвольности процессов. Согласно второму началу термодинамики, если система изолирована, то при протекании в ней обратимых процессов энтропия не изменяется, при необратимых процессах — растет. Если необратимый процесс приводит изолированную систему в состояние равновесия, то ее энтропия достигает максимума. Следовательно, энтропия является критерием направленности процесса (А5>0) и тем самым критерием равновесия (А5=0). [c.48]

    Движущей силой самопроизвольно протекающих процессов в изолированной системе при стандартных условиях является изменение энтропии A.S°. Укажите, положительным, отрицательным или равным нулю является это изменение для термодинамически обратимых и термодинамически необратимых процессов. Почему изменение энтропии часто называют критерием протекания процессов в изолированных системах  [c.24]

    Все квазистатические процессы обратимы. Различие терминологии при этом связано с тем, что в качестве критерия выбирают либо значения действующих сил на контрольной поверхности, либо состояние окружающей среды. При описании необратимых процессов принципиально проще зарегистрировать появление в окружающей среде некоторого количества теплоты, возникающей при необратимом проведении процесса, чем следить за изменением всех параметров неравновесной системы. В термодинамике обратимых процессов понятия квазистатический и обратимый играют роль синонимов. [c.9]


    Для изолированной системы изменение энтропии, сопровождающее процесс, позволяет предсказать, будет ли реакция необратимой или обратимой. Как было показано, изменение энтропии положительно, если процесс самопроизвольный, и равно нулю, если процесс обратимый. Эти критерии не могут быть использованы для закрытых систем, для которых вводятся две новые термодинамические функции свободная энергия Гиббса (G) и свободная энергия Гельмгольца (F). [c.89]

    Отсюда следует, что при обратимых процессах, при постоянных температуре и объеме энергия Гельмгольца не изменяется, а при необратимых может только убывать. Это означает, что функция А является критерием, который позволяет судить о направлении процессов в незамкнутых си- [c.48]

    Критерием релаксационных состояний полимеров является характер (обратимые или необратимые) п масштаб деформаций [c.175]

    Иногда различают поликонденсацию и полимеризацию по признаку обратимости. В настоящее время, когда установлено, что каждый из этих процессов может протекать обратимо или необратимо в зависимости от условий реакции и природы мономеров, применение такого критерия вряд ли целесообразно. [c.41]

    Естественно, что обратимость патологических процессов возможна только при определенной концентрации и дл ительности воздействия токсического вещества. При более высоких концентрациях и большей длительности воздействия наступают необратимые процессы. Поэтому обратимость является одним из важных критериев, позволяющих определить ПДК и срок воздействия токсического вещества на организм. Определение обратимости патологических изменений при действии сточных вод позволит точнее определить степень очистки их. Этот критерий также может быть иопользован при оценке токсичности для гидробионтов альгицидов, вводимых в водоемы для подавления массового развития фитопланктона, нитчатых водоро слей и высших водных растений. [c.141]

    Опыты в зависимости от выбранного критерия, проводятся по вышеприведенным схемам. После определенного срока действия токсического вещества подопытные рыбы переводятся в аквариумы с чистой водой. Приближение показателей к контрольной серии будет свидетельствовать об обратимости патологических изменений, отсутствие изменений в показателях будет свидетельствовать о необратимом действии токсического вещества. [c.189]

    Тейлор предложил в качестве критерия дифференциации первичной и вторичной адсорбции обратимость процесса и величину их энергий. Вторичные или обратимые адсорбционные процессы — это процессы, имеющие нормальные малые теплоты адсорбции и малые энергии активации, первичные же или необратимые адсорбционные процессы имеют часто высокие теплоты адсорбции и умеренные или большие энергии активации. Эта классификация подчеркивает, что адсорбция с повышенными энергиями активации имеет значение в каталитических превращениях. Поэтому с каталитическими процессами обычно ассоциируют первичную или необратимую химическую адсорбцию, т. е. активированную адсорбцию. Однако, несмотря на все попытки строго ограничить типы процессов, существует широкий диапазон адсорбционных явлений, отличающихся более или менее от вторичного или обратимого (вандерваальсовского) молекулярного типа и характеризующихся повышенными силами связывания вещества поверхностью адсорбента, большими теплотами адсорбции и повышенной реакционной способностью адсорбированного газа. Низкотемпературная адсорбция — быстрый процесс, происходящий без значительного теплового эффекта адсорбции (не выше 0,1 е). При повышении температуры скорость адсорбции увеличивается. Энергия активации высокотемпературной адсорбции может быть вычислена из скоростей, получаемых при нескольких температурах. Тейлор назвал эту адсорбцию активированной. Теплота адсорбции в процессе активированной адсорбции выше (превышает 0,9 в), чем при низкотемпературной адсорбции. [c.107]

    Для некоторых процессов вид ОТП может быть назван сразу. Если рост температуры, ускоряя процесс, увеличивает также, независимо от состава реагирующей смеси, его избирательность (или по крайней мере не влияет на нее), оптимальная температура повсюду должна быть фиксирована на верхне.м пределе Г. Примерами таких процессов могут служить единственная необратимая реакция и обратимая эндотермическая реакция. В большинстве процессов, однако, ситуация не столь проста и задача выбора ОТП отнюдь не является тривиальной. Логически очевидно, что, выбирая оптимальную температуру в каждом сечении реактора, следует в общем случае учитывать влияние температуры в данном сечении пе только на локальную скорость образования целевого продукта (или, говоря более строго, локальную скорость прироста критерия оптимальности), но и на ход процесса во всех последующих сечениях реактора. Лишь [c.242]

    Наклон полярографической волны для обратимой реакции является функцией переменных, входящих в уравнение Ильковича (1.3). Для необратимых реакций он зависит также от скорости переноса электронов. Было показано, что скорости переноса электронов в определенных пределах могут быть вычислены по наклону полярографической волны. Определенная величина наклона является необходимым, но недостаточным критерием электрохимической необратимости. Было показано, что график lg[г /(iд — /)] — потенциал для обратимых реакций представляет прямую линию с наклоном 2,303 ЯТ/пР, что составляет 59,1/п мВ при 25 °С [2]. Подобным же образом для обратимых реакций [3] разность между потенциалами в точках, для которых ток реакции составляет соответственно Д и диффузионного тока, равна RT nF)lg9, т. е. 56,31п мВ при 25 °С. При обсуждении полярографических данных эти величины часто служат критерием обратимости процесса. [c.16]

    Необратимые волны не удовлетворяют приведенным выше критериям обратимости, поскольку ток, соответствующий восходящей части волны, зависит как от скорости диффузии, так и от скорости электродной реакции. [c.443]

    Термодинамическая теория окислительного потенциала рассматривает окислительный электрод как индифферентный по отношению к раствору проводник электрического тока [6—12]. Поэтому в качестве электрода может быть применен любой, не взаимодействующий в данных условиях с раствором металл платина, золото, вольфрам, ртуть и т. д. Следствием термодинамической теории является деление систем на обратимые , в которых потенциал может быть измерен, и необратимые , в которых лотенциал измерить невозможно. Критерием обратимости или необратимости системы считается возможность или невозможность измерения в ней окислительного потенциала [7]. Величина окислительного потенциала в обратимой системе должна зависеть не от материала и состояния поверхности электрода, а только от концентрации и природы окисленных и восстановленных компонентов реакции [11]. Термодинамическая теория справедлива при условии достижения равновесия между окислительно-восстановительной системой и электродом. Термодинамическая теория не может, однако, характеризовать систему до наступления равновесия. Известно вместе с тем, что в слабых, т. е. имеющих слабую тенденцию вызывать потенциал на электроде, системах время установления потенциала может исчисляться не только часами, но и сутками [7—9, 17, 18]. К слабым системам относятся, как правило, системы молекулярно-водородные и в особенности кислородные. Впервые вопрос о кинетическом характере окислительного потенциала рассмотрен в работах Н И. Некрасова [19], где показано, что в случае достижения предельного потенциала в неравновесных системах или окислительного потенциала в равновесных, но медленно реагирующих системах, величина его определяется кинетическими факторами. Можно, однако, показать, что кинетические факторы имеют существенное значение не только при измерении окислительного потенциала в слабых системах — регулируя соответствующим образом кинетику установления потенциала, в принципе можно измерить окислительный потенциал в любых химически обратимых системах. [c.169]

    Поэтому Графики Е — 1 [17(1й— ) ] и Е — lg[tV( d—0 ]> доказанные на рис. 3.8 и 3.9, прямолинейны и имеют наклон соответственно 2,303и 2,303 ЯТ/Р, и именно эти графики нужно использовать для установления обратимости электродных процессов, а не график Е — lg[(id—О А ]- Кроме того, величины 1/4— 3/4 здесь должны быть равны 2,303 (ЯT/2f)lg8l для волны 1 и 2,303 (ЯT/2f)lg243 для волны 2. Это иллюстрирует положение, что величины 1/4—Ез/ , превышающие 2,303 (ЯТ/пЕ)1%9, вовсе не обязательно указывают на необратимость, как это иногда полагали. Наконец, при 10-кратном увеличении концентрации X 1/2 для волны 1 станет на (2,303 ЯТ/Р) В более отрицательной. С другой стороны, волна 2 сдвинется на (2,303 ЯТ/2Р) В в противоположное направление. Так что с ростом концентрации Х дистанция между этими волнами увеличивается, причем зависимость Еу от концентрации отнюдь не является критерием необратимости, если электродный процесс имеет такую стехиометрию, как в этих двух примерах. [c.310]

    S (тв). 1.4. Энтропия системы увеличивается. 1.5. 4,17 Дж/мольX Хград. 1.6. —107,5 Дж/моль. 2.1. G= F+PV. 2.2. Изменения энтропии не происходит в адиабатическом процессе. 2.3. Это происходит при таких условиях обратимого протекания процессов, когда убыль соответствующей термодинамической функции равна максимальной полезной работе процесса. 2.4. ЛОобр = ДОнеобр = 200 Дж. 2.5. —189 Дж/град. Вывода о направлении реакции сделать нельзя, так как энтропия является критерием направленности процессов только в изолированных системах. 2.6. —1,72-10 Дж. 3.1. В этих условиях максимальная полезная работа совершается за счет убыли энергии Гиббса Л маис = —ДО. 3.2. Обратимый процесс dS = >=0 необратимый процесс dS > 0. 3,3. Так как зависимость [c.91]

    Энергия Гиббса в изобарно-изотермических условиях не изменяется при обратимом процессе и убывает при необратимом. Отсюда следует, что по изменению величин /1 и С можно судить о направлении самопроизвольных процессов при постоянстве Т н V, Т п р (в противоположность изменению энтропии при 7 = сопз1 и У = соп51 в изолированной системе). Термодинамические потенциалы — более выгодные критерии направленности процессов. Если критерием возможности протекания самопроизвольных процессов в закрытых системах являются условия, выражаемые (2.30) и (2.31), то пределом протекания процессов служат соотношения [c.45]

    Существуют различные определения понятий обратимая и необратимая электрохимическая реакция. Так, процессы, для которых справедливо уравнение Нернста, обратимы, или электрохимические реакции можно назвать обратимыми в том случае, если они протекают с высокой плотностью тока обмена. Наиболее применимое определение гласит электрохимическая реакция, протекаюищя без измеримого перенапряжения, обратима [8]. Первое и последнее определения требуют пояснений. Первая формулировка верна в том случае, когда при прохождении тока через электроды электродный потенциал можно рассчитать по уравнению Нернста, но при зтом следует вводить значения концентраций (точнее, активностей) у поверхности электродов, не соответствующие концентрациям в объеме растворов вследствие протекания электрохимических реакций на электродах. Это значит, что концентрационная поляризация не может служить критерием необрати- [c.101]

    При этом в общем случае max в выражениях (1.34) и (1.35) не одинаков, а разница указанных величин связана с наличием взаимодействия между подсистемами. Таким образом, с точки зрения глобального критерия эффективности системы важно оптимизировать внещнее взаимодействие, а не только добиваться экстремальных значений локальных критериев оптимальности. Наряду с оптимизацией БТС на основе материальных и энергетических балансов в системе с использованием технико-экономических показателей важное значение приобретает оптимизация на основе термоэкономического принципа, использующего понятие эксергии. В этом случае учитывается эффективность использования энергий в системе. Эксергия системы является мерой ресурсов превра-тимой энергии и измеряется количеством механической или другой, полностью превратимой, энергии, которое может быть получено от системы в результате ее обратимого перехода из данного состояния в состояние равновесия с окружающей средой. Разность общей величины эксергии, вводимой в систему в с и выводимой ИЗ HGG вых определяет суммарную величину потерь от необратимости в системе [c.31]

    При адсорбции различают две формы — обратимую (слабую) и необратимую (прочную). Обратимой называют форму, десорбируемую при температуре адсорбции, а необратимой — ту, которая удаляется с поверхности при повышении температуры. Эти понятия весьма неточны. Энергии связи адсорбированных форм с поверхностью следоовало бы характеризовать по теплотам адсорбции или по энергиям активации десорбции. Однако таких данных очень мало, и количественных критериев об энергиях связи не хватает. Многие противоречия в литературе возникли именно из-за неточности понятия обратимости адсорбции. Так, одни исследователи [135] считают, что в мягком окислении углеводородов участвуют обратимо сорбированные поверхностные соедине- [c.36]

    Понятие обратимости имеет относительный характер и зависит от значения константы скорости ks и от скорости развертки потенциала. Быстрые (обратимые) процессы при любых скоростях развертки напряжения в Интервале от 0,1 —100 В/с характеризуются значениями i>0,3]/O71=0,1 см/с. Полностью необратимыми будут процессы с < 2-10 KO7l = 6,6-1Q-6 см/с при и = 0,1 В/с и с <2-1Q-S [/ 100=2.10- см/с при и== = 100 В/с. Интервал констант скоростей между крайними значениями в равных условиях характерен для ква-зиобратимых процессов. Благодаря критериям скорости в методах, использующих линейную развертку потенциала, константа скорости ks стала главным кинетическим параметром электрохимической стадии. [c.28]

    Восстановление десяти полиядерных углеводородов в растворах диметилформамида изучали Атен, Бюткер и Хойтинк [16]. Авторы использовали как классическую, так и переменнотоковую полярографию, Для всех исследованных соединений получены начальные одноэлектронные волны, которые по критериям низкоамплитудной переменнотоковой полярографии являются обратимыми. Для би-дифенилэтилена и бидифенилбутадиена наблюдали вторую обратимую одноэлектронную стадию. Другие изученные соединения — тетрацен, перилен, флуорентен, антрацен, коронен, пирен, бенз[о]-пирен, нафталин — дают дополнительные волны, которые в определенной степени необратимы. В присутствии воды вторая волна уменьшается по высоте, как и следовало ожидать, если уравнение (2.6) имеет место. Из соотношения между предельным током и частотой в переменнотоковой полярографии было показано, что скорость переноса электрона во всех случаях очень высока. Необратимый характер вторых волн может быть обусловлен быстрым протонированием дианиона, а не замедленным переносом электрона. Полярографические данные для изученных соединений приведены в табл. 2.7. [c.38]

    Гроджка и Элвинг [29] подробно исследовали полярографические свойства стирола, стильбена, 1,1-дифенилэтилена, трифенил-этилена и тетрафенилэтилена (потенциалы приведены в табл. 2.4). Авторы проанализировали применимость таких основанных на классической полярографии критериев обратимости, как функция р, отношение среднего мгновенного тока, зависимость тока от высоты столбика ртути, зависимость логарифмических функций тока от потенциала. Было рассмотрено восемь разных схем реакции, которые включали в различной последовательности обратимые и необратимые стадии переноса электронов и химические реакции. Опыт показал, что ни в одном из указанных случаев перечисленные выше критерии не применимы. По-видимому, механизм реакции зависит от потенциала и при потенциале начала полярографической волны реализуется одна схема, а на плато — другая. Весьма возможно, что отсутствие удовлетворительных корреляций обусловлено как сложностью механизмов реакции, так и неадекватностью теоретических моделей. И, наоборот, вероятно, что хороише корреляции могут быть результатом компенсации различных ошибок. [c.56]


Смотреть страницы где упоминается термин Критерии необратимости и обратимости: [c.62]    [c.53]    [c.109]    [c.317]    [c.212]    [c.80]    [c.69]    [c.94]    [c.217]   
Физическая химия (1978) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Критерий обратимости и необратимости процессов

Энтропия как критерий обратимости и необратимости процессов



© 2024 chem21.info Реклама на сайте