Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол физ. свойства

    S t у р he п - 1 — продукт реакции фенола со стиролом. Свойства прозрачная янтарная жидкость уд. вес 1,08, [c.210]

    Так как 2-винилнафталин более активен в реакции сонолимеризации со стиролом, свойства сополимера зависят от степени превращения. Сополимер, полученный из мономерной смеси определенного состава, при малой степени превращения обогащен нафталиновым мономером. При увеличении степени превращения сополимеры обогащаются стиролом и, следовательно, свойства такого сополимера приближаются к свойствам полистирола. Эти данные приведены в табл. Х.7. [c.329]


    Свойства и применение. Полиэфирмалеинаты благодаря наличию двойных связей способны к гомополиконденсации и сополимеризации с различными мономерами и реакционноспособными олигомерами. Обычно полиэфирмалеинаты выпускаются промышлен ностью в виде растворов в мономерах, чаще всего в стироле. Свойства некоторых полиэфирмалеинатов, применяемых для изготовления строительных материалов и изделий, приведены в табл. 25. [c.266]

    СТИРОЛ Свойства стирола [c.263]

    Сам ПО себе полиакрилонитрил не представляет большого интереса. Необходимость улучшения свойств полистирола, прежде всего повышения атмосферостойкости, стойкости к растворителям и ударной вязкости, привело к созданию ударопрочного полистирола — сополимеров на основе акрилонитрила, бутадиена и стирола (АБС) [160], стирола и акрилонитрила (САН), значение которых постоянно растет. [c.135]

    Так как для сильного изменения свойств полимера требуются лишь следы таких веществ, то эти вещества не рассматриваются как растворители, а скорее как модификаторы или регуляторы полимеризации, и как таковые их часто применяют для регулирования молекулярных весов синтетических каучуков, получаемых сополи-меризацией бутадиена с небольшим количеством стирола, акрилонитрила или других мономеров. Особенно подходят для этой цели третичные меркаптаны, так как они в этих системах имеют константы переноса, близкие к единице отношение мономер регулятор (и соответственно / ) остается в процессе полимеризации практически постоянным. [c.126]

    На их основе готовят полиэфиры, отличающиеся интересными свойствами. Обычно при синтезе ненасыщенных полиэфиров в качестве исходных компонентов используют фумаровую кислоту или малеиновый ангидрид, фталевую кислоту и пропиленгликоль, к которому иногда добавляют в небольших количествах диэтилен-гликоль. Отверждают такой полиэфир путем сополимеризации ненасыщенных звеньев цепи со стиролом. Если вместо пропиленгликоля [c.53]

    При сополимеризации бутадиена со стиролом получают полимеры различного строения — блочные и статистические, которые имеют различные физические свойства и предназначаются для различных областей применения. [c.57]

    С ВЫСОКИМ содержанием 1,4-звеньев, блоксополимеров и статистических сополимеров бутадиена и стирола, обладающих свойствами термоэластопластов. Бутадиен под влиянием литийалкилов в углеводородной среде превращается в полимер, содержащий до 10% 1,2-звеньев и 90% смеси цис-и транс-структур. В присутствии полярных веществ в полимерах бутадиена и изопрена увеличивается доля 1,2- и 3,4-структур. [c.127]


    Сополимеризация. Для придания полимерам необходимых технических свойств широко используется сополимеризация в эмуль-Сй смеси разных мономеров, например, бутадиен — стирол, бутадиен—акрилонитрил и др. Состав бинарного сополимера опреде- ляется относительным содержанием мономеров в исходной смеси и способностью их к реакции сополимеризации, выражаемой константами сополимеризации г и га). [c.143]

    Широкое распространение бутадиен-стирольных каучуков объясняется высоким уровнем технических свойств резин на их основе, доступностью мономеров (бутадиен, стирол, а-метилстирол), пригодностью их для производства щин и других резиновых изделий высокого качества. [c.243]

    К регуляторам М и ММР предъявляются требования высокая эффективность (скорость реакции регулятора с полимерной цепью должна превышать скорость реакции с мономером), небольшой расход, отсутствие отрицательного влияния на скорость полимеризации и свойства полимера. Указанным требованиям отвечают отдельные представители дисульфидов и меркаптанов, Из числа дисульфидов наибольшее распространение в производстве бутадиен-стирольных каучуков при температуре полимеризации 50°С получил диизопропилксантогендисульфид (дипроксид), имеющий высокую константу скорости реакции переноса цепи [4, 5]. Из меркаптанов наиболее известны додецил- или лаурилмеркаптан, трет-додецилмеркаптан, применяемый в производстве бутадиен-стироль-ных каучуков при температуре полимеризации 5°С [6]. [c.246]

    На физико-механические свойства термоэластопластов влияют количество связанного стирола (а-метилстирола), распределение его в полимере, молекулярная масса блоков и их молекулярномассовое распределение, микроструктура полидиенового блока. На примере ДСТ-30 показано, что оптимальными свойствами обладают полимеры с узким ММР центрального и конечных блоков [22]. Наличие примеси двухблочного полимера резко уменьшает сопротивление разрыву термоэластопластов. [c.287]

    Благодаря высокой температуре стеклования блоков поли-а-метилстирола термоэластопласты на основе а-метилстирола выгодно отличаются от термоэластопластов на основе стирола более широким температурным интервалом, в котором сохраняются прочность и эластические свойства материала, при этом с увеличением содержания а-метилстирола температуростойкость полимера повышается. По-видимому, это объясняется уменьшением влияния эластичной фазы на текучесть термоэластопласта в связи с понижением ее доли в полимере, а также повышением молекулярной массы поли-а-метилстирольных блоков. [c.289]

    К другой группе латексов этого типа относятся латексы, полученные при высоком отношении стирол-бутадиен (65 3585 15). По свойствам такие латексы приближаются к пластмассам. Полимеризацию проводят при высокой температуре до глубокой конверсии мономеров. Выпускаются также латексы с сополимером промежуточного состава (типа СКС-50). [c.603]

    Стирол был впервые получен в 1831 г. из душистой бальзамной смолы, содержащей около 50% коричной кислоты. Пиролиз коричной кислоты с 1890 г. почти до конца 1920-х гг. был основным методом получения стирола. Полимер стирола был одним из первых синтетических высокомолекулярных соединений. Хорошие свойства полимеров и сополимеров стирола привели к интенсивному разви- тию химии стирола и созданию в 1930—1940-х гг. промышленных способов его производства [1]. [c.733]

    Для ингибирования процесса полимеризации стирола при ректификации в отечественной промышленности в настоящее время успешно применяются ингибиторы на основе диоксима /г-хинона [16, 17]. Их применение позволило повысить качество стирола, уменьшить выход смолы и увеличить производительность оборудования. Неудачные попытки внедрения серы, широко применяемой за рубежом, видимо связаны с тем, что сера плохо ингибирует полимеризацию дивинилбензола, образующегося из-за наличия в этилбензоле диэтилбензола. Кроме того, возможно попадание в стирол-ректификат летучих сернистых соединений, образующихся при взаимодействии серы со стиролом. Наличие серы в стироле недопустимо в концентрации выше 0,001%, так как это приводит к ухудшению свойств полистирола. Применение ингибиторов на основе диоксима п-хинона позволяет использовать для ректификации стирола неразрезные многотарельчатые колонны и перерабатывать кубовые остатки для получения лаков, плитки для пола и т. п., что невозможно в случае ингибирования серой. [c.736]

    Бутадиен. Бутадиен является основным мономером для получения синтетических каучуков. Путем полимеризации бутадиена получают бутадиеновый каучук, который в зависимости от условий полимеризации выпускают различных марок. В последнее время большое внимание уделяется получению сополимерных видов синтетических каучуков. При полимеризации бутадиена со стиролом получается бутадиен-стирольный каучук. После добавки наполнителей и вулканизации получается каучук, по свойствам близкий к натуральному. Бутадиен используется также в качестве сырья для производства бутадиен-нитрильного каучука. Сополимер бутадиена и акрилонитрила устойчив к действию высоких температур и масла. Ценными свойствами обладает также бутилкаучук, получаемый путем совместной полимеризации бутадиена с изопреном. [c.79]


    Огромные возможности процесса сонолимеризации видны на примере модификации свойств полистирола. Полистирол — хрупкий пластик с низкой ударной вязкостью и малой устойчивостью к действию растворителей. По этим причинам он имеет сравнительно ограниченную практическую ценность. При сонолимеризации и терполимеризации стирола свойства полимера улучшаются, что значительно увеличивает его практическую полезность. В результате годовое производство полимерных продуктов, содержащих стирол, все время увеличивается. Сополимеры и терполимеры стирола находят примеиепие не только в качестве пластиков, но и в качестве эластомеров. Так, например, сополи-мерпзация стпрола с акрилонитрилом приводит к увеличению ударной прочности сополимера и повышению стойкости его к растворителям, тогда как при сонолимеризации с бутадиеном образуются сополимеры, обладающие эластическими свойствами. Терполимеризация стирола с акрилонитрилом и бутадиеном улучшает все эти свойства одновременно. [c.334]

    Степень превращения мономеров (конверсия или глубина полимеризации) оказывает большое влияние на свойства получаемых полимеров. Так, в процессе реакции совместной полимеризации дивинила и стирола свойства продукта непрерывно изменяются. Вначале сополимер получается высокорегулированный. По мере расходования регулятора молекулярный вес сополимера растет. После исчезновения мономерной фазы мономер, содержащийся в полимерно-мономерных частицах, постепенно расходуется, вследствие чего создается более тесный контакт между молекулами полимера и увеличивается вероятность реакции сшивания молекулярных цепей. Поэтому можно ожидать, что такие свойства, как вязкость по Муни, с глубиной полимеризации (конверсии) будут увеличиваться. На это, естественно, оказывает большое вли-ние количество регулятора, применяемого в рецепте полимеризации. [c.364]

    Алкилированные ароматические углеводороды. Термическое разложение алкилированных ароматических углеводородов сопровождается значительным числом реакций, на которые оказывают воздействие температура, давление, катализаторы, присутствие водорода или других ароматических углеводородов, действующих как акцепторы водорода, а также олефинов или других продуктов разложения. Так известно, что при пиролизе толуола получаются бензол, дибензил, стильбен, дито-лил, фенилтолил, фенилтолилметан, дитолилметан, дифенил, стирол, нафталин, антрацен и фенантрен. Наличие более длинных боковых цепей или нескольких заместителей увеличивает число возможных реакций однако, несмотря на сложность получаемых продуктов, совершенно ясно обнаруживается одно свойство ароматических кольцевых систем, сохраняющих свою идентичность на протяжении большого количества пиролитических реакций, а, именно, их стабильность тем не менее имеется одна реакция, которая приводит к разрушению ароматических структур — пиролиз в присутствии водорода, особенно в контакте с катализатором, который может служить гидрирующим агентом. В этом случае ароматические кольца сперва гидрируются, а затем расщепляются. Нагревание алкилароматических углеводородов с водородом, особенно в присутствии катализаторов, часто приводит к образованию незамещенных ароматических углеводородов, которые могут подвергаться затем гидрогенолизу. [c.103]

    Были исследованы каталитические свойства доломитов, содержавших наряду с окисью железа, СаО и MgO. Катализаторы обнаружили 70%-ную избирательность к стиролу. Был исследован ряд катализаторов, содержавших пятиокись ванадия, нанесенную на MgO, AljOj, SiOj и т. д. [77, 78] катализаторы состава Al. Og — СгаОд [19, 20, 46, 56] и многие другие вещества. 90%-ную избирательность обнаружил никелевый катализатор Дау не нашедший, однако, промышленного применения [55]. [c.209]

    Лучшее доказательство н пользу некоторых из таких специфических пидов взаимодействия получается в результате изучения относительных реакционных способностей замеш енных стиролов и а-метилстиролов с радикалами, имеющими электроноакцситорные группы. Графики, построенные для зависимости этих величин от значений <т Гамметта [65] для замещенных стиролов, например приведенные на рис. 18, показывают возрастающее отклонение от линейной зависимости с увеличением тенденции системы к чередованию наряду с весьма высокими реакционными способностями стиролов, имеющих группы, являющиеся донорами электронов (отрицательные значения). Эти свойства, по-видимому, характеризуют системы, 1 которых участие дополнительных резонансных структур понижает энергию переходного состояния [65, 101а]. [c.152]

    Реакция карбоний-ионной сополимеризации. Как и в реакциях свободно радикальной сополимеризации, лучшим способом получить данные об относительных реакционных способностях мономеров при карбоний-ионной полимеризации является исследование состава сополимеров. Хотя сообщение, что изменение характера активного центра (переход от свободного радикала в ион карбония) может резко изменить состав сополимера, появилось в 1944 г. [99], уравнение сополимеризации не применялось к системам, содержащим ион карбония, до 1948 г., когда было показано [6], что реакция сополимеризации стирола и /г-хлорсти-рола в растворе СС1 , катализируемая ЗпС] , дает постоянные отношения реакционных способностей мономеров (г = 2,2—2,7, = 0,35), это резко отличается от результатов, получаемых при свободно-радикальной реакции (г = 0,74, Гз = 1,025). Впоследствии были опубликованы данные еще для ряда систем, которые подтвердили применимость уравнения во всех случаях, когда сополимер содержит достаточное количество обоих компонентов. На основании этих исследований выяснились два общих свойства реакций карбоний-ионной сополимеризации во-первых, карбо-ний-ионная сополимеризация не имеет тенденции к чередованию или же эта тенденция проявляется в незначительпой степени и, во-вторых, реакционные способности могут быть сведены в последовательные ряды с несколько более широкими пределами распространения, чем это наблюдается при реакции свободно-радикальной сополимеризации. Такие ряды показаны в табл. 11. [c.159]

    Интересным свойством реакций карбоний-ионной сополимеризации является то, что отношения реакционных способностей мономеров в некоторых системах несколько меняются в зависимости от примененных инициатора и растворителя. В системе, состоящей из стирола и 3,4-ди-хлорстирола, отношение реакционных способностей мономеров изменя гось от / J = 3,1 0,1, = 0,48 0,08 при инициировании реакции ЗнС1 до = 6,8 0,8, г2 — 0,0 0,2 в присутствии АШгд [45]. Насколько такое изменение является общим, неизвестно, но наличие его подчеркивает тот факт, что имеющийся активный центр, по-пидимому, представляет собой некоторую комбинацию ионной пары иона карбония и аниона, получаемого из инициатора, изменяющего вследствие этого его реакционные свойства. [c.160]

    Карбанионная полимеризация. Полимеризация некоторых мономоров, например стирола и диопов с сопряженной системой двойных связей, в присутствии металлического натрия известна давно и фактически была основой для более ранних процессов производства синтетического каучука. Хотя впоследствии этот метод был заменен методом эмульсионной полимеризации, продукты такой натриевой полимеризации продолжают цениться, так как их свойства несколько отличаются от каучука ОВ-З (75]. [c.160]

    Было хлорировано песколько разновидностей синтетических каучуков и в некоторых случаях были получены превосходные продукты. Каучук GR-S требует особой обработки, но дает хлорированный продукт, содеря ащий 53% хлора, который очень выгодно отличается по своим свойствам от хлорированного природного каучука, содержащего 67% хлора. Он имеет болео низкое содержание хлора, так как каучук GR-S состоит из бутадиена и стирола в отношении 75 25. [c.221]

    Полиизобутилены с высоким люлекулярным весом являются эластомерами. Бутилкаучук является сополимером нзобутнлена с небольшим количеством изопрена (около 1,5—4,5%). Нормальные бутилены дегидрируют в бутадиен, который затем сополиме-рнзуется со стиролом (23,5%) или с акрнлонитрилом (25%). При этом получается соответственно бутадиен-стирольный или бута-диен нитрильнып каучук. При обратном соотношении (25% бутадиена и 75% стирола) получается продукт с другими свойствами, в частности высокой износоустойчивостью. При полимеризации изопрена с алкил-алюминиевыми катализаторами получается эластомер, подобный натуральному каучуку [276—278]. [c.582]

    В связи с разработкой технологии получения синтетических латексов из растворов отгонкой растворителя и мономера заслуживают внимания исследования по прививке в эмульсии это дает возможность удалить до модификации непрореагировавший мономер и применять окислительно-восстановительные системы. Прививка метакриловой кислоты в латексе сополимера бутадиена и стирола [46] наряду с улучшением свойств каучука повышает стабильность латекса. Ясно также, что прививка кислот к полиизопрену в растворе сделает полимер поверхностно-активным и облегчит создание эмульсий и латексов. [c.238]

    Бутадиен-стирольные каучуки (БСК) относятся к некристалли-зующимся сополимерам нерегулярного строения. Звенья стирола в полимерной цепи распределены неравномерно 30% из них изолированы и около 40% расположены попарно. Около 80% бутадиеновых звеньев находятся в положении 1,4 главным образом в транс-форме (около 70%) и примерно 20% в положении 1,2. Разновидностью бутадиен-стирольных каучуков являются бутадиен-ос-метилстирольные каучуки, характеризующиеся теми же структурой и свойствами. [c.243]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]

    Промышленность синтетического каучука вырабатывает бутадиен-стирольные и бутадиен-а-метилстирольные каучуки в широком ассортименте. Наиболее распространены низкотемпературные каучуки, получаемые путем полимеризации при 5°С и высокотемпературные, получаемые при 50 °С. Эти каучуки содержат связанного стирола (а-метилстирсла) 23,5—25,0% и относятся к каучукам общего назначения, потребляемым главным образом для изготовления автомобильных шин и резинотехнических изделий. Указанное содержание связанного стирола (а-метилстирола) является оптимальным для получения каучуков с требуемыми свойствами. [c.263]

    Бутадиен-стирольные и а-метилстирольные каучуки с небольшим содержанием связанного стирола (а-метилстирола) относятся к высокоэластичным и морозостойким каучукам. Каучук СКМС-Ю имеет сопротивление разрыву 19—22 МПа, относительное удлинение 500—700%, эластичность 40—47 и коэффициент морозостойкости 0,30—0,36 при удлинении 100% и температуре —45°С. Бутадиен-а-метилстирольный каучук СКМС-50 с высоким содержанием связанного а-метилстирола обладает хорошими технологическими свойствами, имеет oпpotивлeниe разрыву 22—28 МПа и относительное удлинение 450—550%. [c.267]

    При синтезе бутадиен-стирольных и изопрен-стирольных термоэластопластов сначала полимеризуют стирол при 20—50 °С, затем бутадиен или изопрен при 20—60°С и снова стирол при 20— 80 °С [7]. В некоторых случаях для улучшения технологических свойств термоэластопластов в качестве инициатора используют смесь моно- и дилитийорганических соединений [8]. [c.285]

    Аналогичный прием необходимо использовать также при синтезе четырехблочных термоэластопластов полидиен-полистирбл-полидиен-полистирол с сополимерными эластомерными блоками. В этом случае полимеризуют две смеси мономеров сначала с преобладанием стирола, затем — с преобладанием диена. Следует отметить, что четырехблочные полимеры обладают свойствами термоэластопластов только в тех случаях, когда концевой поли-диеновый блок небольшой. [c.285]

    При использовании для синтеза термоэластопластов дилитий-органических инициаторов в реактор сначала подают диен, а после его исчерпывания — стирол. Другой способ заключается в полимеризации сразу смеси двух мономеров, причем блочное строение полимерных цепей возникает за счет разности констант сополимеризации бутадиена и стирола. Этот прием проще по технологическому оформлению, однако в бутадиеновый блок входит до 8—10% стирола [10], что снижает физико-механические свойства материала. Кроме того, необходимо иметь инициатор с высокой степенью бифункциональности 11]. [c.285]

    Оптимальное содержание винилароматического соединения, обеспечивающее наилучший комплекс свойств в термоэластопластах, составляет стирола в бутадиен-стирольных термоэластопластах 28—32%, в изопрен-стирольных термоэластопластах 15—40% а-метилстирола или а-метилстирола и стирола в а-метилстирольных термоэластопластах 30—407о (ДМСТ-35, ДСМСТ-35). [c.288]

    Предельная температура эксплуатации ДСТ-30 и ИСТ-30 составляет 40—50 °С бутадиен-а-метилстирольные термоэластопласты сохраняют прочность при 70—80°С, при 100°С прочностные свойства уменьшаются, Бутадиен-стирол-а-метилстирольные термоэластопласты по температуростойкости, как и следовало ожидать, занимают промежуточное положение между бутадиен-а-ме-тилстирольными и бутадиен-стирольными термоэластопластами. [c.289]

    С целью получения эластичных или полуэластичных материалов, обладающих, наряду с достаточно высокими прочностными свойствами, повышенной морозостойкостью и хорошей адгезионной способностью, разработаны условия сочетания жидких каучуков с различными жесткими смолами. Практическое применение в отечественной технике нашли, например, композиции на основе жидкого полимера с концевыми изоцианатными группами и толуилендиизоцианатом [100]. Аналогичные композиции получены сочетанием полимеров с эпоксиуретановыми группами с промышленными эпоксидными смолами, а также сочетанием полимеров с акрилатуретановыми группами со стиролом или акрилатными смолами. Все композиции такого типа обладают хорошими литьевыми свойствами. [c.455]

    Бутадиен-стирольные латексы — наиболее массовый тип синтетических латексов. Они выпускаются в широком диапазоне соотношений мономеров и концентраций. Варьируя соотношение мономеров, можно значительно менять физико-механические свойства полимера. Наиболее многотоннажным является производство бутадиен-стирольных латексов для пенорезины. Их получают низкотемпературной (5°С) полимеризацией бутадиена со стиролом в отношении 70 30 (СКС-ЗООХ). После отгонки непрореагировавших мономеров их подвергают агломерации (или соагломерации с полистирольным латексом) и затем концентрируют. Так получают латексы СКС-С и СКС-С-30. [c.603]

    В настоящее время химическая промышленность производит много различных видов синтетических каучуков, превосходящих по некоторым свойствам натуральный каучук. Кроме полибута-диенового каучука (СКВ), широко применяются сополимер-пые каучуки — продукты совместной полимеризации ( ono-лимеризации) бутадиена с другими непредельными соединениями, например, со стиролом (СКС) или с акрилонитрилом (СКН)  [c.504]

    Предлагаются и другие методы получения неслипающейся крупки строительного битума. Так, описана обработка гранул битума газом, содержащим озон [235]. Окисление озоном поверхности гранул предотвращает их слипание при транспортировании и хранении. Известны также модифицирующие добавки к битуму стирол, изопрен, порошкообразный каучук, технический углерод [233, 236], которые обеспечивают неслнпае-мость гранулированного битума, но при этом отрицательно влияют на его потребительские свойства и повышают стоимость. [c.154]

    В свете теории Вильке вполне вероятно, что эти катализаторы сводятся к л-комплексам Ni , содержащим четыре молекулы С2Н2. В присутствии лигандов с сильными донорными свойствами основным продуктом реакции является бензол это имеет место в случае ( 0)2Ni [Р(СйНз)з]2 при 60—70° С и 15 атм (147-Ю Па), причем продукты состоят из 90% бензола и 10% стирола. [c.122]


Смотреть страницы где упоминается термин Стирол физ. свойства: [c.236]    [c.162]    [c.318]    [c.128]    [c.32]    [c.280]    [c.322]   
Общая органическая химия Т.1 (1981) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Акустические свойства и содержание стирола в сополимерах

Акустические свойства сополимеров ненасыщенных полиэфиров со стиролом

В отдельных пробирках находятся бензол, толуол, стирол и фенол. Определите, в какой пробирке находится каждое вещество, основываясь на их химических свойствах

Диметилпентен полимера свойств ге иметил стирол, полимеризация

Диэлектрические свойства каучуков дивинил-стироль ных натурального

Методы Ьолучения и свойства стирола

Получение других мономеров Получение стирола Стирол, его свойства и получение

Получение прочих мономеров Получение стирола Стирол, его свойства и получение

Свойства стирола и его получение

Стирол присоединение свойства

Стирол свойства замещенных полимеров

Стирол свойства полимера

Стирол свойства, влияние количества катализатора

Стирол физические свойства

Физические и физиологические свойства стирола

Химические свойства сополимеров стирола

Химические свойства стирола



© 2024 chem21.info Реклама на сайте