Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контактирование реакция

    Равновесная степень контактирования реакции (1.32) выражается уравнением [c.35]

    Из полученных результатов опытов следует, что в условиях начальных стадий контактирования реакция протекает в диффузионной области. С увеличением размеров зерен возрастает влияние пористости на активность. В условиях последней стадии контактирования (температура 420° С) константа скорости реакции для образцов с диаметром зерен меньше 3 мм (данной пористости) сохраняется почти неизменной. [c.129]


    Скорость подачи этилового спирта также оказывает большое влияние на процесс контактирования. Максимальное количество дивинила образуется при определенном времени соприкосновения спирта с катализатором. При малом времени контактирования реакция разложения спирта не успевает дойти до конца и проскок спирта значителен. Наоборот, при слишком длительном соприкосновении спирта с катализатором образовавшийся дивинил вступает во вторичные реакции, переходя в другие продукты. [c.184]

    С повышением температуры увеличивается скорость основной реакции, результате которой образуется бутадиен, а также скорость всех побочных и вторичных реакций, приводящих к образованию побочных продуктов разложения спирта. Так, при повышении температуры процесса от 360 до 465° С резко увеличивается количество неконденсируемых газообразных продуктов. Увеличение выхода бутадиена происходит при этом лишь в интервале температур от 360 до 440° С. При дальнейшем повышении температуры от 440 до 465° С выход уменьшается, что объясняется разложением бутадиена и расходованием его на вторичные реакции. Скорость подачи этилового спирта также сильно влияет на процесс контактирования. Максимальное количество бутадиена образуется при определенном времени соприкосновения спирта с катализатором. При малом времени контактирования реакция разложения спирта не доходит до конца и проскок спирта значителен. Наоборот, при слишком длительном соприкосновении спирта с катализатором образовавшийся бутадиен вступает во вторичные реакции, давая другие продукты. [c.163]

    Некоторые масла также способны воспламеняться, что обусловлено протеканием в них химических реакций. Поэтому не допускается скопление и разбрасывание промасленной ткани, ветоши, розлив масла. Особо опасно контактирование некоторых масел с кислородом. Для предупреждения аварий по этой причине при компримировании кислорода в качестве смазки применяют воду и тщательно обезжиривают аппаратуру, трубопроводы, КИП и средства автоматики. [c.338]

    Условия депарафинизации растворитель — метилэтилкетон разбавление сырья растворителем 1 2 кратность обработки карбамидом 1 1 температура в начале реакции 50 со снижением к концу реакции до 25° продолжительность контактирования 60 мин. [c.150]

    Так, например, в одном из производств формалина при направлении ветра со . тороны ТЭЦ было отмечено значительное снижение выхода формальдегида при контактно-каталитическом процессе его получения из метанола окислением воздухом. В данном случае фактором, замедляющим реакцию, оказался тоже сернистый ангидрид, содержащийся в дымовых газах ТЭЦ, который, попадая с атмосферным воздухом, подаваемым воздуходувками в систему контактирования, отравлял катализатор. [c.168]


    Рассмотренные реакции гидрополимеризации осуществлялись путем контактирования четырех объемов моногидрата серной кислоты с одним [c.193]

    Тот факт, что продукты, получаемые при алкилировании бутенами-1 и -2 в присутствии серной кислоты и фтористого водорода, меньше различаются между собой, можно легко объяснить, если предположить, что при контактировании смеси изобутана и бутена-1 или -2 с жидким фтористым водородом или серной кислотой наиболее легко проходит реакция присоединения кислоты к олефиновому углеводороду с образованием втор-.бутилового эфира. В результате получается равновесная смесь  [c.326]

    При проведении химических реакций часто применяют контактирование газов или жидкостей с твердыми частицами. В наиболее распространенных случаях твердое вещество является катализатором. Обычно твердое вещество гранулируют для улучшения его реакционной способности или когда оно используется в нагревателях в качестве твердого теплоносителя. Такие процессы чаще всего проводят в потоке, и течение сопровождается падением давления по направлению потока. Кроме того, обычно наблюдаются значительные тепловые эффекты, а иногда сам процесс лимитирует скорость диффузионной массопередачи. Нередко все эти явления сопутствуют друг другу. [c.241]

    Если выбранная скорость подачи сырья такова, что диаметр аппарата окажется равным нескольким метрам, то найденная высота слоя возможно будет слишком мала и не обеспечит хороших показателей работы вследствие неравномерного распределения газа. Последнее можно улучшить, если применить более низкое избыточное давление, например 6,86-10 н/м (0,7 ат), а также меньшую массовую скорость. При окончательном расчете следует также принять во внимание различные побочные реакции, вызывающие уменьшение давления или увеличение времени контактирования. [c.283]

    Глицерин получают из пропилена и кислорода, при этом в качестве побочного продукта образуется ацетон. Процесс проходит в несколько стадий. Пропилен окисляют до акролеина при температуре 300—400 °С и давлении от 1 до 10 ат на катализаторе— закиси меди, нанесенной на 81С. Одновременно получают изопро-панол путем гидратации пропилена серной кислотой. Акролеин и. изопропанол образуют аллиловый спирт в присутствии катализатора из необожженной MgO, смешанной с 2пО, при температуре 400°С. Наконец, при реакции аллилового спирта с водой получают глицерин. Катализатором этой реакции является 0,2%-ный раствор первольфрамовой кислоты в 2 М водном растворе перекиси водорода. Температура процесса 60—71 °С, время контактирования 2ч. [c.332]

    Процесс можно проводить контактированием паров углеводородов с расплавами металлов (см. табл. 19). При использовании в этом процессе расплава железа образующийся углерод поглощается расплавом, который затем регенерируется продувкой его кислородом. При проведении этого процесса в расплаве меди образующаяся сажа сепарируется. Температура процесса конверсии метана в расплавах очень велика и составляет 1200—1500° С. Однако не совсем ясно, имеет в данном случае место какой-либо каталитический эффект или разложение метана протекает как гомогенная некатализируемая реакция. [c.38]

    Для гетерогенных систем скорость переноса вещества между фазами (и на поверхностях раздела фаз) во многих случаях определяет величину суммарной скорости реакции и, следовательно, условия контактирования реагентов, находящихся в разных фазах. [c.30]

    Промышленные процессы. В промышленности реакцию осуществляют барботированием воздуха через изопропилбензол при 5—10 ат и 100—130 °С. Контактирование фаз проводят в реакционных колоннах или в автоклавах, снабженных мешалками, в присутствии эмульгаторов (обычно анионного типа), способствующих образованию устойчивых эмульсий. Для обеспечения стабильности образующейся гидроперекиси pH реакционной среды должен быть 8,5— 10,5, а соотношение водной фазы и изопропилбензола 3 1. [c.179]

    Определенные трудности при разработке технологии встретились на стадии контактирования (отвод тепла реакции) и ца [c.690]

    Таким образом, несмотря на двух-четырехкратное увеличение нагрузки существующих колонн (и диспергаторов) по воздуху степень использования кислорода воздуха в реакциях окисления существенно не меняется. Вероятно, уменьшение времени пребывания воздуха в зоне реакции компенсируется более хорошим перемешиванием и контактированием реагирующих фаз. [c.59]

    Пример П1-3. Каталитический риформинг бензиновых фракций проводится в проточном адиабатическом реакторе. Пары бензина смешиваются с водородсодержащим газом (мольное соотношение 1 5), нагреваются до 480—520° С и при контактировании с зернами катализатора, заполняющего реактор, претерпевают химические превращения, в результате которых получается высокооктановый бензин. Для характеристики этих превращений Смит [15] предложил использовать представления о реакциях парафиновых (П), нафтеновых (Н), ароматических (А) углеводородов сырья. В работе [16] показано, что процесс можно описать схемой  [c.104]


    Так, подвод тепла, требуемого для реакции дегидрирования, путем подачи в реактор избытка перегретого водяного пара при смешении такового с этилбензолом непосредственно перед контактированием, сокращает до минимума побочные реакции, так как в этом случае не требуется нагрева чистого этилбензола в печах. [c.230]

    В одинаковых условиях степень превращения соединений различных типов различна. Легче протекают реакции алифатических серосодержащих соединений, труднее всего — разложение производных тиофена. Кроме того, глубина очистки от серосодержащих соединений зависит от молекулярной массы сырья с ее увеличением обессеривание протекает труднее. Поэтому более вязкие фракции необходимо обессеривать в более жестких условиях — при повышении температуры реакции или длительности контактирования сырья и катализатора (т. е. уменьшении скорости про- [c.293]

    Большое влияние на ход процесса оказывает давление водорода. С его повышением нежелательные реакции в значительной мере подавляются. Выбор давления обусловлен целым рядом факторов, многие из которых взаимосвязаны. При этом учитывают необходимость обеспечить требуемую глубину гидрирования сырья, степень его расщепления и изомеризации, возможно большую стабильность работы катализатора, а также экономичность процесса. Обычно парафинистое и высокопарафинистое сырье перерабатывают под давлением до 10—15 МПа, а ароматическое или смешанного состава — при 15—20 МПа. Как и все гидрогенизационные процессы, гидрокрекинг осуществляется в присутствии больших избытков водорода. Увеличение количества циркулирующего через реактор водорода до определенных пределов (2000— 3000 об. на 1 об. сырья) способствует углублению реакций чрезмерное увеличение уменьшает длительность контактирования сырья с катализатором, ухудшает условия процесса и его экономические показатели. Малый расход водорода (менее 800 об. на 1 об. сырья) отрицательно сказывается на стабильности работы катализатора. Таким образом, выбор расхода водорода также основан на оценке ряда факторов. Промышленные процессы гидрокрекинга масляного направления обычно осуществляются при циркуляции в пределах 1000—2000 об. водорода иа 1 об. сырья. [c.312]

    В книге собраны и подробно изложены основные сведения, необходимые для оптимального проектирования химических реакторов и управления ими. В ней приведены основы расчетов и оптимизации химических реакторов рассмотрен вопрос о распределении времени контактирования и перемешивании в непрерывных проточных реакторах, описаны химические реакции в гетерогенных системах. [c.4]

    Агрегатное состояние реагирующих и образующихся при реакции веществ является основным фактором, определяющим тип аппарата в целом. При синтезе присадок практически возможны следующие системы взаимодействия реагентов газ — жидкость, жидкость — жидкость и жидкость — твердое вещество. Взаимодействие газа и жидкости протекает тем активнее, чем больше поверхность их соприкосновения и чем эффективнее газ распределяется в жидкости. Скорость поглощения газа жидкостью увеличивается также при повышении давления системы. Одним из методов создания максимальной поверхности контакта в периодических аппаратах является перемешивание, которое получило наиболее широкое распространение в процессах производства присадок. В системах жидкость — жидкость взаимодействие компонентов ускоряется в результате развития поверхности массообмена реагирующих жидкостей и увеличения скорости перемещения одной жидкости относительно другой. Наиболее развитая поверхность массообмена и теплообмена образуется при пленочном движении жидкости, поэтому создание пленочного движения жидкости следует рассматривать как важнейший путь интенсификации процесса. При взаимодействии несмешивающихся жидкостей или жидкостей и твердых веществ хорошее контактирование является также одним из важнейших факторов. Интенсивность контакта зависит от консистенции реагирующих веществ. [c.221]

    Приготовление загустителя является одной из основных стадий производства смазок, в первую очередь мыльных. В большинстве случаев мыла получают в процессе варки смазки, и стадия омыления наиболее продолжительная. Скорость процесса омыления зависит от состава жировой основы, концентрации раствора щелочи, температуры, давления, условий контактирования реагирующих компонентов, количества воды и катализаторов и ряда других факторов. Более полно реакция омыления протекает в присутствии значительного избытка воды, хотя происходящее при этом увеличение времени на испарение влаги приводит к общему повышению продолжительности процесса. После [c.298]

    Минимальное значение времени %( контактирования достигается при протекании реакции по кри- вой, огибающей семейство кривых. В данном случае несвязность процесса и существование огибающей представляют собой взаимнооднозначное свойство. Это положение доказано и для процессов с любым числом параметров. Установлено, что необходимым и достаточным условием несвязности служит наличие огибающей семейства кривых, описывающих возможные изменения управляющих параметров. Анализ показывает несвязность только простых процессов (с единственной реакцией). [c.493]

    Написать уравпени, реакций, протекающих при получении H2SO4 нз H2S способом мокрого катализа . В чем отличие этого способа от контактного в стадиях контактирования и поглощения SO3  [c.138]

    Н. Д. Зелинским, Б. А. Казанским и А, Ф. Платэ [27], реакции дегндроциклизации парафиновых углеводородов Б. А. Казанским и А. Ф, Платэ Г28] и дальнейшее плодотворное развитие этих реакций в исследованиях Б. А. Казанского и его учеников [29, 30] дали повод для критического подхода к изучению химического состава бензинов методом дегид-рогенизационного катализа. Так, например, этилбепзол и ксилолы могут образоваться не только из соответствующих гидроароматических углеводородов, но и из 2,5-диметилгек-сана и н-октана контактированием этих углеводородов с платинированным углем при 305—ЗЮ" . При этом лучшие результаты получаются, если процесс вести в атмосфере азота или углекислого газа. [c.147]

    Алкилсульфокислоты. При контактировании изобутилена с такими алкилсульфокислотами [621, как метил-, итил- и бутилсульфокислоты, а также смешанные алкилсульфокислоты, нри 30—70 и атмосферном давлении образовывались димеры, тримеры и тетрамеры с преобладанием тримеров. Содержание в сульфокислотах до 12% серной кислоты мало влияет или совсем не влияет на течение реакции нолимеризащш при температурах ниже 70. Активность этих кислот как катализаторов полимеризации изобутилена приблизительно эквивалентна каталитическому действию 75 %-ной серной кислоты. Хотя при применении серной кислоты как катализатора полимеризации изобутилена концентрация ее имеет решающее значение, тем пе менее для алкилсульфокислот были получены приблизительно одинаковые результаты при применении кислот с колебаниями концентраций в широких пределах — от 80 до 100%. [c.194]

    Реакция переноса водорода преобладает при контактировании изобутана с октеном (состоящим в основном из 2-этилгексена-1), полученным дегидратацией 2-этилгексанола-1 в присутствии серной кислоты при 10° [c.327]

    Реакции деполиалкилировапия и переноса водорода идут при контактировании изопентана и диизобутилена в присутствии 97 %-ной серной кислоты при 20°. Продукт реакции в этом случае содержал 2,2,4-триметилпентан, триметилгексаны, триметилгептаны, а также гептаны и гексаны. [c.330]

    С алкилфторидами. Реакция переноса водорода, сопровождаемая деструктивным алкилированием, является основной реакцией при контактировании изопарафинов с алкилфторидами в присутствии фтористого бора [43]. Так, реакция между 2,90 моля изобутана и 0,65 моля фтористого изопропила в присутствии 0,09 моля фтористого бора при 0° завершилась превращением 1,46 моля изобутана яа каждый моль фтористого алкила. В результате реакции получены октаны (72 % триметилпентанов, главным образом 2,2,4-триметилпентана, и 28% диметилгексанов) с выходом 35% от теоретического гептаны (67 % 2,4- и 33 % 2,3-диметилпентанов) с выходом только И %. Были получены и гексаны с выходом 6 %, состоявшие из Я2% 2,3-диметилбутана и 18% 2-метилпентана. [c.333]

    Аналогичные результаты получены и в другой работе [15], в которой вначале получался фтористый бутил путем обработки бутилена фтористым водородом при 20°, затем он подвергался контактированию с изобутаном в присутствии фтористого водорода при 10° при времени контакта 5 мин. Получался продукт, практически идентичный таковому, образовавшемуся в реакции с бутеном-2 без предварительного превращения его во фтористый втор-бутшл.. Более того, алкилат, полученный в реакции с предварительной обработкой бутена-1, был практически идентичен алкилату, полученному в реакции с бутеном-2. С другой стороны, алкилат, полученный из бутена-1 без предварительной обработки, заметно отличался по составу октановой фракции, которая содержала 33% 2,3- и 11% 2,4-диметилгексанов и 46 % 2,2,4-триметилпентанов, в то время как октановая фракция, полученная в опытах с бутеном-2 или с бутиленами, предварительно обработанными, состояла из 7—8% 2,4-диметилгексана и 92—93 % триметилпентанов и совсем не содержала 2,3-диметилгексана. [c.335]

    Процесс термической этерификации в этом случае осуществляется в двух последовательно работающих четырехсекциопных реакторах, снабженных обогревающими змеевиками в каждой секции. Реагирующие компоненты подаются в реактор нагретыми до температуры реакции. Нагрев осуществляется в специальных подогревателях парами органических теплоносителей. Для предотвращения испарения в первом реакторе поддерживается давление 8,5 ат, а во втором реакторе 6,5 ат. Температура процесса этерификации поддерживается на уровне 200° С. Отгонка эфира от избыточного бутанола, рафинация и промывка эфира и ряд других вспомогательных операций осуществляются в непрерывно действующих аппаратах. Условия рафинации эфира температура процесса - 90° С, время контактирования щелочи с эфиром 30 мин. Условия разложения натровых солей кислот (рафинационной щелочи) температура разложения +60° С, время контактирования 30 мин. [c.98]

    Для получения высших спиртов существует, однако, несколько методов один из них — метод альдольной конденсации, другой — так называемая реакция оксосинтеза. Последняя заключается в непосредственном присоединении окиси углерода и атома водорода по месту двойно1 1 связи олефина, в результате чего образуется альдегид, который затем восстанавливается в спирт. Гидро-формилирование (оксосинтез) осуществляется путем контактирования олефина в смеси с синтез-газом (окись углерода — водород в соотношении 1 1) при температуре 75—200° С и давлении 100— 300 атм над металлическим катализатором (обычно кобальтом). Активной формой катализатора, но-видимому, является гидрокарбонил кобальта НСо(СО)4, образующийся в результате воздействия водорода на дикобальтокарбонил. Более детальное описание процесса оксосинтеза см. [252—257]. [c.579]

    Во фракции С1—С2 (водород, метан, этилен и этан) этилен является единственным компонентом, который может реагировать с 1 3804, поэтому проблема выделения его из смеси не возникает. Реакцию следует проводить в контакторах непрерывного действия при температуре около 70 °С и давлении 10—15 ат. Газы с небольшим содержанием этилена требуют сжатия, нагревания и контактирования с На804 в большом объеме. [c.69]

    Продолжительность контактирования сырья с катализатором определяется прежде всего объемной скоростью и выражается частным от деления скорости подачи утлеводо родного сырья в единицу времени на объем кислоты в реакторе. На этот параметр реакции существенное влияние оказывает конструкция реактора, и особенно эффективность работы его перемешивающего устройства. [c.101]

    Преобладающим вариантом процесса в промышленной практике является завершающая доочистка масел, прошедших селективную очистку и депарафинизацию — процесс гидродоочистки. Гидродоочистка применяется при выработке широкого ассортимента масел взамен доочистки отбеливающими глинами. Процесс проводят при давлении 4—5 МПа, температуре 300—380 °С, объемной скорости подачи сырья от 0,5 до 3—4 ч и объемном отношении водородсодержащего газа к сырью от 300 до 800. Расход водорода на реакцию составляет 0,1—0,5% (масс.). Режим процесса в значительной мере зависит от вязкости сырья и глубины его очистки селективными растворителями [14—17]. Доочистку маловязких масел осуществляют при повышенных скоростях. По мере увеличения вязкости масел требуется более длительное контактирование сырья с водородом и катализатором, поэтому скорость подачи сырья уменьшают. Остаточные масла доочищают при скоростях не более 0,5—1 ч . При одинаковой вязкости масла менее глубокой селективной очистку требуют более жесткого режима гидроочистки — повыщения температуры, увеличения подачи водорода, уменьшения скорости подачи сырья. [c.304]

    Рассмотрим один пример. Расположив металлы ио величине их 298, мы получим ряднапряженийметаллов. В этом ряду каждый предыдущий металл активнее последующего и поэтому может его вытеснять из раствора. Так, цинк стоит выше меди поэтому и происходит реакция (VIII). Действительно, для нее 293 = ( 29ч)си — ( 29s)zn = +0,34— —(—0,76) 1,10й, т. е. 298 >0 и в соответствии с (11.15) AG298< 0. Очевидно, при контактировании двух металлов в растворе первым будет растворяться тот, который распо- [c.65]

    В аппарате / 70—90%-ный метиловый спирт при 74°С испаряется в токе воздуха, и спирто-воздушная омесь, перегретая в аппарате 2 до 110°С, пропускается в реакторе 3 со скоростью 1,5—1,6 м/с через слой катализатора. В зоне контактирования за счет теплоты реакции устанавливается температура 650—690 °С. Реакционный газ, проходя через подконтактный трубчатый холодильник 4, охлаждается до 140 °С за счет испарения воды в межтрубном пространстве. Полученный пар используется для испарения спирто-водной смеси в аппарате 1. В абсорбере 5 формальдегид и непревращенный метиловый спирт поглощаются водой, а отходящие газы, пройдя промывку в скруббере 7, выбрасываются в атмосферу. Теплота абсорбции [c.263]


Смотреть страницы где упоминается термин Контактирование реакция: [c.60]    [c.171]    [c.208]    [c.290]    [c.190]    [c.295]    [c.227]    [c.227]    [c.321]    [c.273]    [c.296]   
Технология серной кислоты (1950) -- [ c.388 ]




ПОИСК







© 2025 chem21.info Реклама на сайте