Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимные фазовые

    Особого внимания заслуживают методы низко- и высокочастотной вибрационно-механической активации различных веществ (ультразвуковая обработка, вибрация, механические воздействия). С их помощью можно повысить величину эффективной удельной поверхности твердых веществ и изменить характер их взаимодействия с дисперсионными средами различного химического строения. В ряде случаев этими методами можно также осуществить взаимные фазовые переходы дисперсных минералов без применения электролитных добавок. [c.127]


    Процесс взаимного фазового перехода молекул нефтяных дисперсных систем (парамагнитных молекул дисперсной фазы при рекомбинации - в диамагнитные молекулы дисперсионной среды, и обратно - диамагнитных молекул среды в результате гомолиза -и парамагнитные, которые, скопляясь в ассоциатах, образуют новые частицы фазы) может иллюстрироваться схемой, в которой приведены разные пути воздействия на нефтяные дисперсные системы (С1и- рисунок). [c.91]

    В КЖХ подобное состояние равновесия не возникает. Приняв упрощенное объяснение, можно предположить следующее. В ТСХ, которую можно рассматривать как жидкостную хроматографию в присутствии газовой фазы, находящейся в равновесии с элюентом, продольная диффузия — размывание зон — затруднена, поскольку перед отдельными веществами перемещается фронт пониженного давления паров элюента, но отношению к которому поддерживается равновесие путем взаимного фазового обмена. Это равновесие преимущественно устанавливается с тем компонентом системы растворителей, в котором растворяется соответствующее вещество. [c.81]

    Принципиально оба сравниваемых метода вполне эквивалентны друг другу, но каждый обладает своими практическими удобствами. Метод, не связанный с поверхностным натяжением и геометрическими представлениями, может с успехом применяться к коллоидным системам, в которых дисперсионная среда и дисперсная фаза не способны к взаимному фазовому превращению. В таких системах легче определить размер и число молекул коллоидной частицы. Однако этот метод становится неудобным при применении к микрогетерогенным системам с взаимно превращающимися фазами (например, к предкритическим эмульсиям), в которых физические границы малого объекта четко не определены. В этом случае использование геометрических представлений, как это делалось нами ранее при рассмотрении зародыщей новых фаз, является желательным, так как позволяет более строго сформулировать задачу и проследить всю область состояний малого объекта. [c.378]

    Равновесная фазовая тепловая диаграмма для однородного в жидкой фазе азеотропа с максимумом точки кипения постоянно кипящей смеси также строится по соответствующим изобарным кривым кипения и конденсации и тепловым свойствам компонентов системы и имеет, по очевидной причине, вид, взаимно обратный с рассмотренной выше тепловой диаграммой азеотропа с минимумом точки кипения. [c.39]

    На фиг. 53 показана изотермическая равновесная фазовая диаграмма, представляющая условия парожидкого равновесия в системах компонентов, характеризующихся слабой взаимной растворимостью, на которой парциальные упругости паров компонентов системы выражены в функции ее мольного состава. По оси абсцисс отложены составы второго компонента системы -w. Растворимость компонента iiy в а имеет место в пределах концентраций от О до Ха, а растворимость компонента а в w—в пределах [c.155]


    Чтобы построить фазовый портрет динамической системы, необходимо определить взаимное расположение не всех фазовых траекторий (что практически невозможно и совсем не нужно), а только некоторого конечного числа так называемых особых траекторий . [c.122]

    Взаимное превращение фаз рассматривалось здесь как равновесное и изотермическое, поэтому 8,-8, =. = (IV, 55) Здесь /.—теплота фазового превращения, поглощаемая при переходе моля вещества из фазы 1 в фазу 2 —V]—разность мольных объемов двух фаз. Из уравнений (IV, 54) и (IV, 55) получим  [c.139]

    Жидкие трехкомпонентные системы могут состоять из жидких веществ, как дающих растворы любого состава, так и взаимно ограниченно растворимых. В последнем случае на диаграмме состояния появляется область расслаивания. Фигуративной точке системы, лежащей внутри этой области, отвечают фазовые фигуративные точки двух растворов, на которые распадается система. Так же как и в двух компонентных системах, взаимная растворимость трех компонентов зависит от температуры, и в некоторых случаях при соответствующей критической температуре наступает взаимная неограниченная растворимость всех трех компонентов. Область ограниченной растворимости может иметь различные очертания. [c.433]

    Результаты определения соотношения пар-жидкость для бензинов разных марок в зависимости от температуры приведены на графиках рис. 8. Как видно из рисунка, бензины, мало различающиеся давлением насыщенных паров (например, образцы 1 и 5), существенно различны по фазовому соотношению пар-жидкость при одинаковых температурах, что свидетельствует об отсутствии прямой взаимной зависимости этих показателей. [c.30]

    При близких размерах твердых частиц Л и 5 (на практике — узкие фракции) одинаковой плотности фазовые диаграммы замкнуты (рис. Х1-4й), аналогично диаграммам плавкости веществ, образующих твердые растворы (например, Ag—Ап, Си—N1 и др.). В случае 3 наблюдается условный разрыв кривых (рис. Х1-4,б) при концентрациях компонента В, близких к единице (сд -> 1), а при 2)р > 5 — и при Св -> 0. Такие фазовые диаграммы характерны для веществ с ограниченной взаимной растворимостью. Вообще с ростом Ор площадь между кривыми начала взвешивания и полного псевдоожижения (аналоги линий солидуса и ликвидуса ) увеличивается. [c.482]

    Выражения (11.86)—(11.89), полученные в работах [26, 76], имеют очень большое значение для изучения массопередачи при соизмеримых сопротивлениях в фазах. Прежде всего, становится очевидным, что имеет место взаимное влияние фазовых сонротивлений, а также влияние материального баланса массопередачи на скорость процесса. В этих условиях для расчета скорости массопередачи неприменима формула аддитивности, которая предполагает квазистационарный характер процесса. [c.211]

    Фазовые диаграммы систем углеводородный газ — вода резко отличаются от фазовых диаграмм бинарных смесей углеводородных газов с жидкими УВ. Из фазовых диаграмм давление— состав систем этан — вода и метан — вода (рис. 26) можно видеть, что при температурах ниже 300°С граничные кривые газа и жидкости в системе этан — вода очень слабо сближаются, что объясняется их слабой взаимной растворимостью. [c.52]

    В результате все указанные элементы печной системы как химические вещества имеют свой состав, физико-химические свойства, фазовые состояния, температуру, давление, концентрацию, плотность и находятся в одном объеме, огражденном от влияния окружающей среды, в непосредственном контакте между собой, взаимодействии и взаимной зависимости, т. е. представляют собой внутри-печную химическую систему материал—среда—футеровка . [c.10]

    В зависимости от природы веществ компоненты смеси могут обладать ограниченной взаимной растворимостью, образуя, таким образом, отдельные фазы многокомпонентной системы. В простейшем случае при смешении жидкостей образуются две фазы, в каждой из которых содержатся отдельные компоненты органического и неорганического происхождения. Иногда такие системы образуются искусственно путем добавления компонента, склонного к избирательному растворению. Добавление такого компонента (разделяющего агента) изменяет условия фазового равновесия системы, увеличивая движущую силу процесса, и позволяет применить специальный метод для разделения компонентов исходной смеси. Часто введение разделяющего агента в исходную смесь обуславливается не столько близостью свойств компонентов, а склонностью к разложению, полимеризации и т. п. при высоких температурах. [c.285]

    Рассмотрим агрегацию крупных частиц с учетом фазовых переходов (роста кристаллов). Пусть существуют силы отталкивания в системе и расстояние к, при сближении, на котором начинают существенно действовать силы отталкивания, пусть система находится в агрегативно устойчивом состоянии. В случае кристаллизации частицы растут и под действием сил роста преодолевают этот порог /г., расстояние между частицами уменьшается на более малом расстоянии, чем /г., действуют в большой степени силы Ван-дер-Ваальса, чем силы отталкивания, и, следовательно, возможна агрегация частиц. Запишем уравнение изменения расстояния между частицами вследствие роста частиц и их взаимного сближения за счет сил взаимодействия  [c.97]


Рис. 31. Кривые фазового равновесия бинарных систем, образованных компонентами с ограниченной взаимной растворимостью Рис. 31. <a href="/info/1150806">Кривые фазового равновесия</a> <a href="/info/1360630">бинарных систем</a>, <a href="/info/324816">образованных компонентами</a> с <a href="/info/224322">ограниченной взаимной</a> растворимостью
    Для адекватного описания равновесия можно применить два подхода. Использование одного из них—функционального— позволяет учесть взаимное влияние компонентов в системе щ -тем введения функций коэффициентов активности от концентраций всех идентифицированных форм в растворе. При этом обычно используют как эмпирические, так и полу эмпирические зависимости. Общая структура фазовых и химических равнове- [c.82]

    При рассмотрении многофазных систем достижение фазового равновесия интерпретируется как состояние, при котором скорости взаимного перехода молекул компонента из одной фазы в [c.40]

    В системах с фазовыми переходами первого рода энергии Гиббса каждой из фаз (О и О ) являются различными функциями термодинамических параметров. На рис. 107 показана зависимость О и О" от температуры в таких системах. Кривые О = ЦТ) и О = /(Г) пересекаются при температуре фазового перехода T r, при которой О = О и (7 = 0. При Т < устойчивой является фаза (I), так как 0 < О , а при Г> T , - фаза (II), так как О" < G . При фазовом переходе первого рода функции О и от температуры в точке фазового перехода не имеют математических особенностей, и кривые этих функций продолжаются в обе стороны от этой точки (пунктирные кривые на рис. 107). В системах с фазовыми переходами первого рода имеется возможность существования метастабильных состояний, например переохлаждения или перегрева фаз, которые наблюдаются иногда при медленном переходе через температуру Т . Примерами фазовых переходов первого рода служат взаимные переходы [c.325]

    Когда одно и то же вещество может существовать в двух кристаллических формах, то имеется некоторая температура перехода, выше которой устойчивой является одна из модификаций, а ниже — вторая. Если превращение в точке перехода может самопроизвольно протекать как в прямом, так и в обратном направлениях, то такой переход называется энантиотропным. Примером энантиотропного фазового перехода может служить процесс взаимного перехода серы ромбической и серы моноклинной. [c.335]

    Если охлаждению подвергается не индивидуальное вещество, а смесь газов, то температуры фазового перехода компонентов смеси будут отличаться от приведенных выше, так как будет иметь место взаимное влияние компонентов. После перехода системы в двухфазное состояние в жидкой фазе способны растворяться компоненты, температура кипения которых существенно ниже температуры смеси. И причем количество растворенных газовых компонентов будет тем больше, чем выше доля компонентов жидкой фазы. Рост давления повышает температуры кипения компонентов, но понижает их относительную летучесть, а следовательно, снижает четкость ректификации. [c.148]

    В 2.1.2—2.1.5 рассматривался теплообмен в системах без фазовых переходов. Фазовые превращения имеют место во многих практических случаях, таких, как конденсация, испарение, сушка и химические реакции. Во всех этих случаях, и особенно если рассматриваются смеси, процессы тепло- и массопереноса протекают одновременно и взаимно влияют друг на друга. Поэтому представляется [c.87]

    Зависимость между групповой избирательностью и растворяющей способностью а — системы с открытой фазовой диаграммой б—системы с замкнутой фазовой диаграммой в—область полной взаимной смешиваемости фаз г—полоса оптимальной избирательности д — полоса оптимальной растворяющей способности. [c.51]

    В опытах использовались НМП, отвечающий нормам МРТУ 42 Л о 67—15, н-тридекан марки хч по МРТУ 6-09-4535-67, а-ме-тилнафталин марки ч по МРТУ 6-09-6030-69 и дважды перегнанная вода. Опытные данные по взаимной растворимости в исследуемых системах при температурах 20, 40 и 60°С определялись по методике, описанной в [1] результаты определения взаимной растворимости приведены в табл. 1 и 2. Для расчета составов равновесных фаз в изучаемых системах применен аналитический метод расчета по опытным данным о взаимной растворимости и количеству фаз в одноступенчатой экстракции [1, 2]. Составы равновесных фаз при различных температурах приведены в табл. 3, полученные диаграммы фазового равновесия трехкомпонентных систем представлены на рис. 1 и 2. [c.52]

    Рассмотрим в качестве примера систему, состоящую из частично взаимно растворимых жидкостей — воды и фенола. Фазовая диаграмма взаимной растворимости (или, кратко, график растворимости) для этой системы показана на рис. 8.9 [61], на котором через л обозначена массовая доля фенола (компонент В) в его смеси с водой нент А). [c.261]

    Вид изобарической фазовой диаграммы и кривой равновесия пар — жидкость системы взаимно нерастворимых жидкостей показан на рис. 8.12. [c.265]

    Рис, 8.12, Изобарическая фазовая диаграмма для систем взаимно нерастворимых жидкостей. [c.265]

    В тех случаях, когда частота колебаний (или однозначно связанный с нею период колебаний) особого интереса не представляет, а существенными являются относительные амплитуды колебаний отдельных перел1енных и их взаимные фазовые сдвиги (иначе говоря, нужны только амплитуднофазовые соотнощения), можно применить более наглядный [c.23]

    В химической промышлеииостц процесС1эг классифицируются 10 принципу осуш,ествленця процессов, взаимного перемещения реагирующи.ч веществ и.чи тсплов.лх потоков, достижения полноты протекания обратимых реакций и фазовому состоянию. [c.87]

    Было показано, что особые точки относительно указанных траекторий могут быть или узлами , или седлами различной структуры [30, 33]. Типы диаграмм прннято различать по соотношению особых точек этих типов, расположенных на различных элементах концентрационного симплекса (вершинах, ребрах, гранях и т. д.). Допустимые сочетания особых точек разных типов в диаграмме фазового равновесия жидкость — пар были выявлены методами топологии в независимо выполненных работах [29, 37—40], в которых получены взаимно дополняющие друг друга результаты. [c.193]

    Рассмотренные выше уравнения (17.11) н (17.12) создают основу для проведения полной классификации и аналитического исследования диаграмм. С их помощью можно чисто теоретическим путем выявить все термодинамически возможные типы диаграмм и провести их полный анализ [41—43]. Тогда в ряде типов при одинаковом соотношении особых точек типа узел и седло их взаимное расположение может быть различным. Диаграммы, обладающие указанными свойствами, являются подтипами одного и того же типа. В зависимости от ориентации траекторий фазового процесса в диаграмме все возможные типы объединяются в попарно-сопряженные диаграммы, у которых характер хода траекторий одинаков, но ориентации этих траекторий противоположны. Диаграммы такого типа названы антиподами. Появление антиподов обусловлено симметрией эстремумов температур кипения азеотропных смесей, а именно ма-ксиму.мом и минимумом. [c.194]

    Для случая мгновенной обратимой химической реакции траектории процесса ректификации будут располагаться иа многообразиях химического равновесия, в связи с чем структура полной диаграммы фазового равновесия будет оказывать лишь косвенное влияние на поведение этих траекторий. В случае протекания одной обратимой реакции размерность многообразия химического равновесия будет на единицу меньше размерности концентрационного симплекса, соответствующего всей рассматриваемой многокомпонентной смеси. Это и понятно, так как выбранным условиям соответствует одно дополнительное уравнение связи. Естественно, каждое из многообразий химического равновесия будет обладать своей термодинамико-топологичес кой структурой, при> ем в основу различия этих структур может быть также положено общее число и взаимное расположение особых точек рассматриваемого многообразия. [c.195]

    Напротив, если рассчитывается движение в очень большой области (например, в целой нефтяной или газовой залежи) то шияще кашш-лярных сил на распределение давления незначительно и их действия сказываются через локальные процессы перераспределения фаз. Взаимное торможение фаз, благодаря которому относительные фазовые проницаемости не равны соответствующим насыщенностям, обусловлено, прежде всего, капиллярными эффектами. В тех случаях, когда можно пренебречь капиллярным скачком (з), капиллфность косвенно учитывается самим видом опытных кривых относите ьных фазовых проницаемостей к,(х). [c.255]

    В зависимости от взаимной растворимости реагентов и продуктов реакции химические п физические реакции в твердых телах (или между твердыми телами) могут сопровождаться фазовыми переходами. Для большинства реакций твердых тел процесс диффузии является достаточно медленным и он становится лимитирующим. Процесс же образования центров зарождения не является в этих случаях существенным, как было показано на примере реакции СоО -Ь ZnO, ведущей к образованию смешанных окислов [91], и реакции KG1 + sBr [92]. О диффузии твердых галогеиидов щелочных металлов см. [93]. [c.560]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    Приведем еще одну точку зрения на возникновение структурных фазовых переходов в НДС, которая описывает физико-химический аспект процесса. В физической химии в случае разбавленных однофазных растворов ВМС пренебрегают взаимным влиянием макромолекул. С ростом концентрации ВМС до некоторой критической С сферы действия молекул с учетом их диффузной размытой грашщы перекрываются, и начинается ассоциация ма1фомолекул [6]. Поскольку ВМС нефтяных растворов являются многокомпонентной смесью, то начало ассоциации может происходить при достижении критической концентрации некоторой группой высокомолекулярных компонентов смеси [2], состоящей, в основном, из парамагнитных соединений. [c.5]

    В правой части уравнения (5.1) первое слагаемое ( кс = /пО выражает плотность теплового потока, обусловленного конденсацией пара, поступающего на поверхность конденсации из ядра парогазового потока в результате конвективной и молекулярной диффузии второе слагаемое [9кв = акв(Т — Tf)] выражает плотность теплового потока, обусловленного конвективным теплообме- ном между газовой 1Г жидкой фазами. Во многих случаях эта составляющая из-за незначительности температурнога напора (Г — Г/) оказывается. малой по сравнению с теплотой фазового превращения пара ( кв <. Чкс) и ею в расчетах можно пренебречь. При этом основное значение в конденсаторах парогазовой смеси приобретает массоотдача. Однако при больших разностях температур Т — Tf) величина <7кв может быть достаточно большой и пренебрежение ею в расчетах становится недопустимым. В этом случае важными являются оба процесса тепло- и массообмена, которые должны рассматриваться в их взаимной связи. [c.149]

    Растворимость воды в кетш-толуоловых растворителях и растворяющая способность последних по отношению к маслам определяется условиями взаимной растворимости и фазовыми переходами системы масло-кетон-толуол-вода. Исследование таких систем было выполнено при температурах 20 и минус 20°С с растворителями ацетон - толуол и ЫЭК-толуол. В качестве масляного кшпонента взят образец депарафинированного масла фр.350-420°С с температурой застывания минус 16°С, полученный ва Кременчугском НШ. Выполненные исследования позволили сравнить растворяхщую способность сухих и влажных растворителей ацетон - толуол и МЭК - толуол по отношению к маслу при изменении концентрации кетона от 30 до 80 об. Изменение растворяющей способности насыщенных водой растворителей определяли по разности КТР масла во влажных и сухих растворителях при равных концентрациях кетонового компонента. [c.133]

    В отличие от низкомолекулярных соединений полимеры существуют только в конденсированных афегатных состояниях жидком и твердом. Однако фундаментальное свойство высокомолекулярных соединений - гибкость макромолекул - обусловливает возможность реализации различных способов взаимной упаковки полимерных цепей и, следовательно, разнообразие фазовых состояний. [c.122]

    Физические состояния полимеров определяются как кинетической энергией частиц (афегатными состояниями), так и их взаимным расположением в пространстве (фазовыми состояниями) [рис. 3.1]. [c.123]


Смотреть страницы где упоминается термин Взаимные фазовые: [c.76]    [c.23]    [c.475]    [c.39]    [c.299]    [c.147]    [c.158]    [c.91]    [c.122]    [c.180]   
Спектральный анализ и его приложения Выпуск 2 (1972) -- [ c.106 , c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимная спектральная плотность фазовый угол

Диаграммы фазовые взаимные пары

Фазовые диаграммы взаимно нерастворимых

Фазовые равновесия во взаимных системах

Фазовый переход взаимное подавление роста соседних центров

Экспресс-метод изучения фазового комплекса взаимных солевых систем в расплавах



© 2024 chem21.info Реклама на сайте