Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная энергия связывания лигандов

    Молекула имеет два идентичных центра связывания для лиганда X. Свободная энергия взаимодействия между лигандами, связанными с одной и той же молекулой, е, определяется как изменение свободной энергии связывания лиганда с молекулой, обусловленное связыванием первого лиганда с соседним центром. Покажите, что если [c.333]

    Определим энергию взаимодействия Д Су в расчете на центр как разность между величинами свободной энергии связывания /-й иу-й молекул лиганда. Эта величина энергии взаимодействия составляет [c.18]


    Одна из важнейших функций белков состоит в специфическом катализе химических реакций. Лигандом в этом случае служит молекула субстрата, связывание которой ферментом - необходимая предпосылка химической реакции (рис. 3-52, Б). Ферменты способны очень сильно ускорять химические реакции - значительно сильнее, чем любые искусственные катализаторы. Столь высокую эффективность можно приписать нескольким факторам. Во-первых, ферменты увеличивают локальную концентрацию молекул субстрата в каталитическом центре и удерживают соответствующие атомы в ориентации, необходимой для последующей реакции. Но наиболее важное значение имеет тот факт, что часть энергии связывания непосредственно используется для катализа. Дело в том. что молекулы субстрата, перед тем как превратиться в продукты реакции, проходят через ряд промежуточных форм с измененной геометрией и измененным электронным распределением. Свободная энергия всех этих промежуточных форм и особенно наименее стабильных переходных состояний существенно снижена, если молекула связана с поверхностью фермента. Обычно ферменты имеют значительно большее сродство к нестабильным переходным состояниям субстратов, чем к их стабильным формам. Используя энергию связывания, ферменты помогают субстратам принять определенное переходное состояние и таким образом значительно ускоряют одну определенную реакцию. [c.158]

    Свободная энергия связывания составляет —7,1 ккал/ моль, что соответствует константе сродства 10 л/моль. Присоединение лиганда перетаскивает белок К из обычной неактивной формы К в каталитически активную форму К. В примере на рис. 3.17 в отсутствие лиганда неактивная конформация в 1000 раз предпочтительнее активной, а в присутствии лиганда активная конформация в 100 раз предпочтительнее (табл. 3.4). [c.126]

    И. Линейная молекула имеет очень большое число идентичных центров связывания лиганда X. Свободная энергия взаимодействия между лигандами, связанными с расположенными по соседству друг с другом центрами, равна е. Считается, что взаимодействие между лигандами, не являющимися ближайшими соседями, пренебрежимо мало. Если обозначить константу связывания с центром, расположенным рядом с незанятыми центрами, через Кт, то выражение для изотермы связывания будет иметь вид [c.333]


    Особенности связывания могут быть выражены также через термодинамические функции. Так, в результате взаимодействия альбумина с лигандом свободная энергия уменьшается, что характеризует [c.234]

    АО принимает участие в связывании с одной определенной комбинацией орбит свободных электронных пар лигандов, что приводит к накоплению примерно 0,5 единицы электронного заряда на N1 и к сравнительно небольшой энергетической стабилизации, так как обычные энергии связей бывают, по-видимому, порядка 30 ккал. Обе эти величины малы вследствие относительно большого различия в энергии между 4 и электронами свободных пар у лигандов, как указано на рис. Г-8. [c.32]

    Конечно, прямой доступ к иону железа для лигандов закрыт аминокислотами, особенно дистальным гистидином. Как уже отмечалось, один из атомов азота имидазольного кольца гистидина обращен к железу, а другой фактически находится на поверхности, так что этот гетероцикл может работать как своего рода люк, перекрывающий лигандную полость. Поэтому связывание любого лиганда представляет собой сложный процесс, включающий промежуточные изменения конформации белка, например поворот гистидина Е7 вокруг его связи Са —Сз или небольшое искажение структуры спирали Е [161]. Тем не менее скорость связывания кислорода исключительно велика. Константа скорости реакции второго порядка при 20°С для различных миоглобинов находится в интервале 1,0-10 — 1,9-10 дм -моль с [определенные к настоящему времени значения свободной энергии активации для этих процессов составили в трех случаях 23,0, 23,0 и 29,3 кДж/моль (5,5, 5,5 и 7,0 ккал/моль) соответственно], а константы скорости для изолированных, но слегка модифицированных а- и 3-цепей составили 5-10 — 8-10 дм моль с , тогда как для мономерного гемоглобина hironomus получено более высокое значение 3-10 дм -моль 1-с [6]. Для гемоглобйнов кинетика реакции имеет сложный характер вследствие изменений четвертичной структуры, однако константы скорости и в этом случае попадают в интервал 10 — 10 дм моль с . Константы скорости отщепления кислорода составляют 10—70 с , а соответствующие энергии активации равны 80—88 кДж/моль (19—21 ккал/моль) для миоглобинов и 10— 15 с и 67—105 кДж/моль (16—25 ккал/моль) для большинства гемоглобйнов (эти значения сильно зависят от pH). Библиографию по этому вопросу см. в работе [8]. Даже если гистидин существенно уменьшает величину константы скорости, которая была в отсутствие белка, наблюдаемые скорости вполне достаточны для физиологических потребностей. Мутантные гемоглобины, в которых гистидин замещен на аргинин или тирозин, обнаруживают несколько более высокие скорости, особенно в реакциях с СО [8]. Некоторые гемоглобины с очень малыми константами скорости диссоциации ( 10 с 1), которые явно не могут функционировать как переносчики кислорода, встречаются у нематод [91]. [c.163]

    Рис. 15.8 иллюстрирует определение величины ДО 2-Ясно, что при А0 2 = О взаимодействие между лигандами отсутствует связывание каждого лиганда протекает независимым образом. В других случаях знак величины изменения свободной энергии взаимодействия определяет, является ли взаимодействие между лигандами кооперативным или антагонистическим. Если АО 2 < О, то связывание или Ь], или 1 2 облегчает присоединение другого лиганда. И наоборот, при АС 2 > О наблюдается антагонизм при связывании лигандов. [c.29]

    Допустим, что все места связывания эквивалентны. Пусть константа равновесия для связывания лиганда в том случае, когда соседние места свободны, равна к = ехр(—ДС /ЛГ). Если два лиганда связываются рядом, полное изменение энергии системы будет равно 2ДС д -Н ЛС , где соответствует взаимодействию соседних [c.364]

    Изменение свободной энергии Л С,-, сопровождающее связывание n лигандов одним из тех способов, которые представлены на рис. 23.27, при концентрации свободных лигандов (т) равно [c.365]

    Вывод, что вода может вступать в реакцию через 4 /-орбиту, в то время как анионы не могут сделать этого, можно понять на основании теории Крейга о сжатии, вызываемом во внешних -орбитах электронопритягивающими (электроотрицательными) лигандами [19]. Анионы отталкивают электроны (электроположительны), хотя в связанном виде они становятся менее электроположительными. Внешние й -орбиты не пригодны для связывания таких лигандов из-за своей большой протяженности и низкой амплитуды, вследствие чего, несмотря на полное перекрывание, интеграл перекрывания с относительно маленькими и подразделенными орбитами лигандов очень мал. Однако молекула воды, почти нейтральная в свободном состоянии, становится заряженной положительно и потому электронопритягивающей (электроотрицательной), когда она связана. Такой лиганд в состоянии оттянуть обычно диффузную с/-орбиту и сконцентрировать ее против себя, в результате чего возникает значительный интеграл перекрывания, а значит, и существенная энергия связи. [c.128]

    По относительной силе связывания атомом цинка в ферменте галогенид-ионы можно расположить в ряд 1-->Вг- С1"- р-, что обратно ряду по силе связывания свободного иона 2п +. Эту противоположную направленность можно интерпретировать как своего рода смягчающее влияние белка на ион цинка в противоположность сильному лиганду СН-, для которого энергия связи одинакова как со свободным так и в ферменте (в обоих [c.588]


    При взаимодействии лиганда X с новой орбиталью (с энергией Нм) эффект связывания Дг будет меньше, чем при взаимодействии со свободным атомом металла  [c.154]

    В отсутствие лигандов сверхспирализованные молекулы обладают большей свободной энергией, чем открытые формы двойной спирали. Доказательством тому служит тот факт, что при образовании разрыва в одиночной цепи сверхспирализация спонтанно исчезает, при этом молекула переходит в релаксированное состояние. Ббльшая величина свободной энергии в этом случае является результатом уменьшения энтропии при переходе ДНК в более компактную и более упорядоченную сверхспирализованную форму, а также увеличения энтальпии из-за появления напряжений и деформаций в структуре молекулы. Так как при < = О нативная сверхспиральная молекула находится на более высоком энергетическом уровне, чем эквивалентная ей во всем остальном открытая форма ДНК, то отсюда с необходимостью следует, что при V < свободная энергия связывания всякого лиганда, способного уменьшать число сверхвитков, должна быть меньше для сверхспира- [c.400]

    Если центры идентичны и независимы, п — Для этого случая парциальные свободные энергии при связывании первого и второго лигандов X одинаковы АРх — Разность АР х — АР х = АРхх есть энергия стабилизации системы, приходящаяся на центр. Считая ее положительной при п> получаем [c.435]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    Следует напомнить, что транс-влияние определяется как эффект влияния транс-лиганда на скорость реакций. Так как скорости реакций связанх. с разностью в энергиях активации мен ду исходными соединениями и активированными комплексами, то из этого следует, что оба состояния долишы рассматриваться в теориях транс-влияиия. Поляризационная теория подчеркивает важность вклада основного состояния в скорость реакции, в то время как теория я-связывання в основном рассматривает переходное состояние. Р1екоторые трудности вызываются тем, что обе теории имеют дело с полными, а не со свободными энергиями. К сожалению, для тех комплексов Р1(П), для которых энергии активации были измерены, обнаружено, что высокие скорости реакций соответствуют низким энергиям активации. Однако следует иметь в виду, что использование только данных по скоростям реакций может привести к ошибочным выводам при сравнении энергетических теорий. [c.322]

    Кооперативность при связывании двух молекул лиганда может быть выражена в энергетических единицах следующим простым способом. Пусть ДО) ЯТ пК. — изменение кажущейся стандартной свободной энергии при связывании /-й молекулы лиганда. (Напомним, что К. — константа диссоциации, поэтому —КТЫК. представляет собой изменение свободной энергии при диссоциации следовательно, +/ Г1л /Г,- является изменением свободной энергии при связывании.) Это выражение для изменения свободной энергии содержит чисто статистический множитель ЯТ 1п (0 , , /0 , ) [см. уравнение (15.20)]. Для того чтобы вычленить этот статистический множитель, обозначим ДОР изменение микроскопической стандартной свободной энергии при связывании /-й молекулы лиганда. Эта величина равна [c.18]

    РИС. 15.8. Схематическое изображение изменения свободной энергии в системе, состоящей из двух лигандов L и Lj и макромолекулы М. Макромолекула имеет один центр для связывания каждого из лигандов. Стандартные химические потенциалы обозначны jP с индексами, относящимися к отдельным формам (Weber, 1975). [c.28]

    В табл. 15.1 приведен ряд величии изменения свободной энергии взаимодействия для связывания двух различных лигандов с некоторыми белками. Обнаружено, что свободная энергия взаимодействия имеет как положительное, так и отрицательное значение, что соответствует антагонистическому и кооперативному эффектам. Все найденные величины свободной энергии лежат в интервале от О до 2,5 ккал/моль. Следует отметить, однако, что полученные данные не многочисленны и дальнейшие исследования, по-вцднмому, расширят область значений ДС 2- По крайней мере в некоторых случаях энергия взаимодействия достаточно велика, чтобы вызвать вполне заметное изменение кривых насыщения макромолекулы лигандом, которое можно было ожидать на основании графика на рис. 15.9. Примеры изменения кривых насыщения демонстрируются в гл. 17, где обсуждается взаимодействие лигандов прн их связывании с аспартат-карбамоилтрансферазой и гемоглобином. [c.31]

    Взаимное отталкивание связанных лигандов, или их антикооперативное взаимодействие, также может иметь разную природу. Крупные лиганды могут контактировать только с одной или двумя парами оснований, но стерически препятствовать подходу других молекул лиганда к соседним местам связывания. Сближение лигандов при их связывании с соседними участками может быть просто термодинамически невыгодным. Чтобы получить представление о тех трудностях, с которыми приходится сталкиваться при более детальном анализе, рассмотрим связывание катионов. Такие лиганды при связывании с соседними участками будут отталкиваться друг от друга, но, кроме того, при этом изменится локальная противоионная атмосфера, так что электростатическая свободная энергия всего полимера будет иной, что необходимо учитывать при анализе экспериментов по связыванию. [c.364]

    Рассмотрим термодинамику сверхспирализации и то, как она сказывается на связывании ДНК с лигандами. Прежде всего заметим, что и замкнутой, и открытой релаксиро-ванным формам должна (по определению) отвечать одна и та же величина свободной энергии и они должны содержать одно и то же количество связанного лиганда. Это означает, что образование разрыва в одной из цепей или, наоборот, сшивание цепи в этом месте (см. рис. 24.7) должны сопровождаться лищь незначительными изменениями и или конформационной свободной энергии. [c.400]

    Эти величины будут называться изменениями оби ей свободной энергии. Они являются, по существу, изменениями обычной свободной энергии Гиббса, которая определяет равновесие в ансамбле вместе с омывающими растворами. Вслед за Хиллом введем следующую систему обозначений и выбора знака для изменений основной и общей свободной энергии. Для процесса будь то изомерическое изменение или изменение, включающее связывание и освобождение лиганда, изменения основной и общей свободной энергии соответственно описываются выражениями [c.79]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    Если О < 0 < 0,5, то образуются я-молекулярные орбитали, которые заселяются электронами с несвязывающих атомных орбиталей комплексообразователя, что равносильно переносу электронной плотности от иона металла к лигандам. Такая связь обозначается символом я (М -> Ь) и называется обратной я-дативной связью. В образовании я-дативных связей могут принимать участие лиганды, у которых имеются подходящие по симметрии и энергии свободные орбитали, т. е. лиганды с электроноакцепторными свойствами, такие, как СО, СЫ , ароматические гетероциклические соединения, в особенности соединения с высокой степенью сопряжения и др. Для последнего из указанных типов лигандов наличие гетероатомов (азота, кислорода, серы) — необходимое условие для связывания металла в комплекс с активатором. Если в качестве комплексообра-зователя-катализатора выступает нейтральный аТом металла, то роль активатора могут играть сопряженные органические соединения, которые являются хорошими электроноакцепторами и в отсутствие гетероатома, например фенантрен, циклопентадиенил и др. [c.29]


Смотреть страницы где упоминается термин Свободная энергия связывания лигандов: [c.246]    [c.246]    [c.96]    [c.230]    [c.8]    [c.29]    [c.403]    [c.78]    [c.84]    [c.225]    [c.217]   
Биофизическая химия Т.3 (1985) -- [ c.27 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Свободная энергия

Связывание



© 2025 chem21.info Реклама на сайте