Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны состав липидов

    Плазматическая мембрана состоит из двойного липидного слоя. Гидрофобные концы молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные головки — наружу. Благодаря гидрофобным взаимодействиям между остатками жирных кислот, входящих в состав липидов, и электростатическому взаимодействию между гидрофильными головками мембрана стабилизируется. В двойной слой липидов встроены белки так называемые интегральные белки мембран. Они плавают в этом слое, будучи погружены в него частично, или же пронизывают его насквозь. Другие белки прикреплены к поверхности мембраны, и их называют периферийными белками (рис. 1.6). Некоторые мембраны, по-видимому, с одной или с обеих сторон покрыты сетью вытянутых белковых молекул. [c.23]


    Плазматическая мембрана состоит из двойного липидного слоя. Гидрофобные концы молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные головки -наружу. Благодаря гидрофобным взаимодействиям между остатками жирных кислот, входящих в состав липидов, и электростатическому взаимодействию между гидрофильны- [c.44]

    С увеличением числа двойных связей значительно снижается температура плавления жирных кислот (а также содержащих эти кислоты липидов) и повышается их растворимость в неполярных растворителях. Поскольку функциональная активность мембранных белков регулируется фазовым состоянием липидов мембраны (как правило, в жидком состоянии их активность выше), при снижении температуры в мембране должно повышаться содержание ненасыщенных кислот. Благодаря постоянству внутренних условий (гомеостазу) животного макроорганизма влияние температуры на жирнокислотный состав липидов обычно проявляется слабо, но, например, в липидах нижних конечностей пингвинов повышено содержание ненасыщенных жирных кислот. [c.17]

    Фосфолипиды (а иногда и иные липиды, например глико- или сульфолипиды) входят в состав всех мембран на их долю приходится около трети массы сухого вещества мембраны. Фосфолипиды связаны с белками мембран слабыми водородными и неполярными связями. У разных мембран состав основания фосфолипида может быть различным, но все они способствуют образованию упо- [c.388]

    Большая часть фосфолипидов бактерий образуется путем превращения фосфатидных кислот в DP-диглицериды (рис. 12-8, реакция е). Последние вступают в реакцию с различными нуклеофилами, что сопровождается высвобождением СМР. В частности, при взаимодействии с L-серином образуется фосфатидилсерин (реакция ж), а при реакции с инозитом (реакция и) синтезируется фосфатидилинозит. Фермент катализирующий образование фосфатидилсерина, по имеющимся данным, связан с рибосомами [60, 61]. В противоположность этому большая часть других ферментов биосинтеза фосфолипидов включена в состав цитоплазматической мембраны или тесно с ней связана. Один из мембраносвязанных ферментов катализирует декарбоксилирование фосфатидилсерина с образованием фосфатидилэтаноламина (реакция з . рис. 12-8) [63]. Хотя фосфатидилхолин не относится к основным компонентам липидов бактерий, однако он может быть синтезирован из фосфатидилэтаноламина путем трехступенчатого трансметилирования-с использованием S-аденозилметионина в качестве донора метильных групп. [c.556]

    Ввиду амфифильного характера молекул липидов, входящих в состав мембраны, возможны два типа связей с белками полярные (ионные, водородные) и гидрофобные. [c.311]


    Состав и строение биологических мембран. Биологические мембраны состоят из белков и липидов. Углеводы присутствуют лишь в качестве составных частей сложных белков (гликопротеинов) и сложных липидов (гликолипидов). Нуклеиновые кислоты в небольшом количестве бывают ассоциированы с мембранами, но в состав мембранных структур не включаются. Вода составляет 20% от мембранного материала, а отношение белок/липид в зависимости от вида мембран колеблется от 0,25 (клетки миелиновой оболочки) до 3,0 (митохондриальные мембраны). [c.298]

    В состав клеточных мембран входят в основном белки и липиды, среди- которых преобладают фосфолипиды, составляющие 40—90 % от общего количества липидов в мембране. Строение биомембраны интенсивно изучается в настоящее время. В одной из моделей клеточная мембрана рассматривается как липидный бислой. В таком бислое углеводородные хвосты липидов за счет гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов располагаются на внешней поверхности бислоя (рис. 14.2). [c.466]

    Липиды входят в состав всех клеток, но особенно богата ли пидами нервная ткань и, в частности, мозг. Липиды образуют с белками сложные комплексы - липопротеиды, из которых состоят многочисленные мембраны, образующие внутренние структуры клетки и клеточную оболочку [232]. Сами липиды подразделяют ся на простые и сложные. К простым липидам относятся тригл и цериды (жиры и масла). [c.58]

    Содержание запасных жиров определяется составом питательной среды (высоким отношением /N), и эти жиры могут быть выделены непосредственно из клеток. Количество других липидных соединений от состава среды почти не зависит. Эти липиды освобождаются лишь после гидролиза белков и полисахаридов и представляют собой компоненты липопротеинов, входящих в состав плазматической мембраны и внутренних мембран, и липополисахаридов. [c.34]

    Все клетки, даже самые простые, имеют мембраны. Мембраны отделяют внутреннее содержимое клетки от окружающей среды, поэтому нарушение целостности мембраны приводит к гибели клетки. Мембраны не только сохраняют молекулы веществ, входящих в ее состав, но и реализуют специфику химического состава клеточной цитоплазмы. С помощью специальных устройств мембрана избирательно выбрасывает из клетки ненужные вещества и поглощает из окружающей среды необходимые. Главные компоненты биологических мембран живых организмов — это сложные липиды. Следует обратить внимание на то, что все сложные липиды, описанные в разд. 9, имеют характерное строение для поверхностно-активных веществ, т. е. две большие неполярные углеводородные группы и полярную часть, способную к образованию водородных связей. Таким образом, эти молекулы способны самопроизвольно агрегировать, образуя в воде бислойные структуры, составляющие основу мембраны. В состав мембранного бислоя входят и молекулы белков, и свободные жирные кислоты. Последние встраиваются в бислой так, что их жирные хвосты погружены внутрь, а полярные группы во внешнюю среду и контактируют с ионами натрия с внешней, а с ионами калия с внутренней стороны бислоя (см. рис. 73). Биологические мембраны не только регулируют обмен веществ в клетке, но и воспринимают химическую информацию из внешней среды с помощью специальных рецепторов. Биологические мембраны обеспечивают иммунитет клетки, нейтрализуя чужие и свои вредные вещества. Они также способны передавать информацию соседним клеткам о своем состоянии. Наконец, совсем недавно было обнаружено, что многие белки-ферменты могут работать только внутри мембраны, запрещая, разрешая или сопрягая ферментативные процессы. [c.407]

    Достаточно сказать, что, хотя структура и функции белков растительных мембран в деталях в основном не изучены, вряд ли можно сомневаться в том, что их общий аминокислотный состав существенно разнится с аминокислотным составом других, гораздо лучше изученных белков. Аминокислоты в этих белках соединены ковалентно обычной пептидной связью в субъединицы, состоящие из нескольких сотен или тысяч аминокислотных остатков. Специфическая мембрана должна быть построена из множества таких белковых субъединиц, скрепленных между собой более слабыми силами, чем ковалентные связи. Природа и прочность этих связей зависят от типа аминокислот. Количественные характеристики этих сил притяжения, влияющих на сцепление белков и липидов, будут обсуждаться в следующем разделе. [c.47]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]


    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Состав липидов бактерий представлен прежде всего сложными липидами — фосфо- и гликолипидами. Нейтральные липиды составляют очень небольшую часть общего количества липидов. Фосфатидилинозиты являются основными фосфатидными компонентами сложных гликолипидов микобактерий и коринебактерий. Биологические функции их неизвестны. Фосфати-днлхолины (лецитины) у большинства видов бактерий не обнаружены. Фосфатидилэтаноламииы (кефалины) являются основными фосфатидными компонентами грамотрицательных бактерий, выполняют структурную функцию. Фосфатидилсерин — предшественник фосфатидилэтаноламина — является липидным компонентом мембраны АТФ-й системы в клетках. [c.331]

    Толщина мембраны обычно составляет 4—10 нм. Состав мембран существенно зависит от их функций и типа клеток, однако во всех случаях основными составляющими являются липиды и белки, соотношение между которыми колеблется от 0,4 до 2,5. Липидная часть мембраны состоит из триацилглицеринов, стероидов, фосфо- и сфинголипидов (см. главу 7). Основу мембраны составляет липидный бислой, в котором гидрофильные концы фосфолипидов обращены к молекулам воды внутри и снаружи клетки, а гидрофобные хвосты жирных кислот — внутрь мембраны хвост к хвосту . Отдельные участки мембраны, образованные липидами с высоким содержанием насыщенных жирных кислот, находятся в жестком состоянии, другие участки, где содержится больше ненасыщенных жирных кислот, более пластичны. Холестерин, содержащийся между ацильными цепями липидного бислоя, препятствует его кристаллизации, т. е. поддерживает состояние текучести. Таким образом, мембрана не является статическим образованием, а благодаря жидкокристаллической структуре представляет собой двухслойный раствор, в котором часть липидов и белков способна диффундировать перпендикулярно или параллельно поверхности мембраны первый (перпендикулярный) вид перемещения известен как флип-флот-иерескок. [c.442]

    Существенным для понимания всех аспектов переноса электронов в мембранах, а также сопряженных с ним процессов является вращательная и латеральная диффузия не только подвижных переносчиков, но и отдельных комплексов и их агрегатов. Подвижность комплексов приводит к тому, что теряет смысл понятие единой структурной электронтранспортной цепи, так как стехиометрия взаимодействия комплексов определена лишь в среднем и может меняться при изменении внешних условий. Если регулируемая условиями внешней среды латеральная асимметрия в распределении комплексов переносчиков достаточно хорошо установлена для фотосинтетического аппарата высших растений, то, несомненно, аналогичные процессы регулирования пространственной обособленности отдельных реакций могут происходить и у фотосинтезрфующих бактерий и митохондрий. Динамическая организация электронного транспорта, проявляющаяся в процессах агрегации— дезагрегации как отдельных переносчиков электронов с комплексами, так и самих комплексов, приводит к быстрому и высокоэффективному переносу электронов (внутри комплексов), увеличивает надежность функционирования цепи переноса электронов, обеспечивая возможность замены вышедших из строя элементов, а также их встраивание в процессе б иогенеза и, кроме того, обеспечивает возможность эффективных способов регуляции транспорта электронов за счет изменения степени агрегации комплексов, их пространственной обособленности и взаимного положения в мембране. Асимметричная латеральная и трансмембранная организация комплексов в мембране может направленно регулироваться такими факторами, как липидный состав мембраны, соотношение липид/белок, микровязкость, энзиматическая модификация белков, ионный состав среды и др. [c.286]

    Липиды — это амфифильные соединения они образуют мицеллы, если содержат по одной жирнокислотной цепи, и двойные слои или бислойные пузырьки, если таких цепей две. Свойства и состав двух поверхностей бислоя не обязательно одинаковы. Природные мембраны помимо липидов содержат большое количество белков. Периферические белки легко экстрагируются из мембраны, в то время как интегральные мембранные белки прочно связаны с ней, вероятно, с помощью гидрофобного участка пептидной цепи. Некоторые интегральные цепи локализуются только на одной поверхности мембраны, другие пронизывают ее насквозь. В липидных бислоях происходят фазовые переходы между состояниями, которые условно можно считать твердым и жидким. В природных мембранах тоже наблюдаются аналогичные переходы, а также латеральное фазовое разделение. От других биологических тpyктyi) мембраны отличает то, что они являются динамическими системами. В них происходит довольно быстрое латеральное перемещение белков и липидов и вращение различных компонентов. Однако перескок компонентов с одной поверхности на другую происходит весьма редко. [c.235]

    Все перечисленные формы миотонни наследственно детерминированы. Вопрос о том, как первичный генный дефект связан с нарущениями работы ионных каналов, остается открытым. Есть основания считать, что генная мутация может опосредованно влиять на свойства каналов, прежде всего на липидное окружение канала. Известно, например, что мембрана эритроцитов больных paramyotonia ongenita имеет измененный состав липидов и жирных кислот. Нельзя также исключить, что первичным продуктом мутантного гена являются какие-то ферменты в составе цитоплазмы мышечного волокна, влияющие на процесс построения молекулы канала еще до момента ее встраивания в мембрану. [c.173]

    О плазматической мембране эритроцитов человека (рис. 6-22) известно гораздо больше, чем о любой другой мембране эукариотической клетки. Такая ситуация сложилась вследствие ряда причин. 1) Эритроциты можно ползгчать в большом количестве (например, из банков крови). При этом они практически не загрязнены клетками других типов. 2) Поскольку эритроциты не имеют ядра и внутренних органелл, их плазматическая мембрана - это единственная мембрана данных клеток и ее можно выделить в чистом виде, без примеси внутренних мембран. Между тем при получении плазматической мембраны из клеток других типов, в которых она обычно составляет менее 5% от массы всех мембран (см. табл. 8-2), это представляет серьезную проблему. 3) Мембраны эритроцитов, ши тени (пустые оболочки), легко получить, поместив клетки в гипотетический солевой раствор. Концентрация соли в таком растворе ниже, чем в клетке, поэтому вода устремляется внутрь эритроцитов, заставляя их разбухать и лопаться (лизис), высвобождая гемоглобин (главный немембранный белок). 4) Мембранные тени можно изучать как в поврежденном виде (в этом случае реагенты взаимодействуют с молекулами на обеих сторонах мембраны), так и после самопроизвольного восстановления их целостности, когда водорастворимые реагенты не могут проникать во внутреннее пространство. Кроме того, из теней эритроцитов можно получить замкнутые, вывернутые наизнанку пузырьки (рис. 6-23), это дает возможность изучать независимо друг от друга внешнюю и внутреннюю (цитоплазматическую) стороны мембраны. Использование теней эритроцитов с разрывами и без разрывов впервые п вoлилo установить, что некоторые мембранные белки пронизывают липидный бислой (см. ниже), и что состав липидов на двух сторонах бислоя различен. Как и в большинстве основных принципов, первоначально установленных при изучении мембран эритроцитов, эти факты постепенно были подтверждены и при изучении мембран ядерных клеток. [c.363]

    Подобно микоплазмам, клетки Е. oli окружены тонкой ( 8 нм) мембраной, в состав которой входят белки ( 50%) и липиды ( 50%) -Под электронным микроскопом окрашенная (например, перманганатом) мембрана имеет внд двух тончайших ( 2,0 нм) темных линий, разделенных неокрашиваемым слоем ( 3,5 нм) (рис. 1-2,6). Мембраны примерно такой толщины и таким же образом прокрашивающиеся имеются во всех клетках, как у бактерий, так и у эукариот. [c.21]

    Биологические мембраны, состоящие из сложных смесей различных классов липидов с разными алкильными цепями, при физиологических температурах находятся, по-видимому, в состоянии латерального разделения фаз. Высокая способность к латеральному сжатию, обусловленная одновременным существованием твердой и жидкой фазы, может влиять на активность находящихся внутри мембраны ферментов, что позволяет включаться в мембрану новым компонентам и сказывается на процессах транспорта. Исследованы [23] свойства мембран клеток мутантных щтаммов Е. oli, для роста которых необходимо наличие жирных кислот состав их внутренней мембраны может быть обогащен определенными алкильными цепями путем прибавления к питательной среде соответствующих жирных кислот. Изменение текучести бислоя и скорости транспорта -глюкозида для внутренней мембраны соИ, выращиваемой на среде с добавкой линолевой кислоты, в зависимости от температуры показано на рис. 25.3.6. Точки перегиба на графике Аррениуса соответствуют экстремумам латерального разделения фаз. Наблюдается также изменение энергии эктивации транспорта, которое приблизительно коррелирует с гра- [c.119]

    Напомним, что плазменные липопротеины —это сложные комплексные соединения, в состав которых, кроме белка, входит липидный компонент. Плазменные липопротеины имеют характерное строение внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, этерифицированный холестерин). Жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Толщина этой оболочки составляет 2,0—2,5 нм, что соответствует половине толщины фосфолипидного бислоя клеточной мембраны. [c.405]

    Все изученные к настоящему времени опсины, которые были выделены из сетчатки многих видов животных, представляют собой небольшие белки с мол. массой 30 ООО—40 000. Для опсинов, выделенных из палочек некоторых видов животных, был определен аминокислотный состав (но не последовательность аминокислот). Углеводная часть комплекса, состоящая из одного (или нескольких) остатка глюкозамина и маннозы, прочно связана с аспарагиновым остатком молекулы белка. С белком ассоциировано также значительное количество липидов, главным образом фосфатидилхолин и фосфатидилэтаноламин. Вопрос о том, связаны ли эти фосфолипиды со зрительным пигментом, составляя часть его молекулы, или они просто являются загрязнениями, попавшими из липидной области рецепторной мембраны, остается открытым. [c.306]

    Фазовый переход из кристаллического в жидкокристаллическое состояние является эндотермическим процессом количество тепла, необходимое для плавления цепей жирных кнслот, можно определить в калориметре (рис. 3.5). Если липпдный бислой состоит только из одного липида, то фазовый переход пропсходит в узком интервале температур. Так как биологические мембраны обычно состоят из большого количества разных липидов, они не имеют четко выраженного фазового перехода и при физиологических температурах являются жидкокристаллическими. Однако очевидно, что текучесть биологических мембран может быть весьма различной как в разных органах, так даже и в разных частях мембраны одной клетки. На это указывает различный липидный состав разных мембран или их доменов. Хотя еще не установлена общая зависимость между текучестью мембран и их биологической функцией, некоторые факторы, влияющие на текучесть, были выявлены в экспериментах на искусственных липидных мембранах. Накапливаются данные, свидетельствующие о том, что те же факторы действуют и в биомембранах. Температура фазового перехода зависит от природы боковых цепей жирных кислот. [c.71]

    Структура мембран. Мембранные липиды всех эубактерий и части архебактерий образуют бислои, в которых гидрофильные головы молекул обращены наружу, а гидрофобные хвосты пофужены в толщу мембраны (рис. 15). Углеводородные цепи, прилегающие к гидрофильным головам , довольно жестко фиксированы, а более удаленные части хвостов обладают достаточной гибкостью. У некоторых архебактерий (ряд метаногенов, термоацидофилы) мембранные липиды, в состав которых входит С40-СПИРТ, формируют монослойную мембрану, по толщине равную бислойной. Монослойные липидные мембраны обладают [c.48]

    С трансмембранной миграцией липидов тесно связан вопрос об их распределении между двумя сторонами бислоя. В результате замыкания бислоя в везикулярные структуры обе его поверхности становятся топологически неэквивалентными наружная поверхность бислоя в таких структурах контактирует с окружающим водным раствором, а внутренняя ограничивает собственный водный объем везикул. Более того, обе поверхности отличаются по своей кривизне —наружная является аыпуклой, а внутренняя — вогнутой. Все это приводит к тому, что условия, в которых находятся липидные молекулы на разных сторонах бислоя, значительно различаются по таким параметрам, как плотность упаковки молекул, ионный состав среды, pH, наличие или отстутствие каких-либо мембрано- [c.569]

    Внешние, или плазматические, мембраны многих клеток, а также мембраны ряда внутриклеточньк органелл, например митохондрий и хлоропластов, удалось вьщелить в свободном виде и изучить их молекулярный состав. Во всех мембранах имеются полярные липиды в количестве, составляющем в зависимости от типа мембраны от 20 до 80% ее массы, остальное приходится главным образом на долю белков. Так, в плазматических мембранах животньк клеток количество белков и липидов, как правило, примерно одинаково во внутренней митохондриальной мембране содержится около 80% белков и только 20% липидов, а в миелиновьк мембранах мозга, наоборот, около 80% липидов и только 20% белков. Липидная часть мембран представляет собой смесь [c.342]

    НИЗКИЙ оптический дихроизм хлоропластов может объясняться именно этой недостаточно строгой ориентацией. Парк и др. [251—253] определили молекулярный состав квантосом, исследуя разрушенные хлоропласты шпината. Для зеленых ламеллярных структур диаметром от 2000 до 80 нм, полученных центрифугированием при постепенно возрастающих скоростях, отношение хлорофилла к азоту было довольно постоянным. Крупные структуры были, по-видимому, лишены гран, тогда как фракция более мелких частиц содержала граны. Эти результаты служат доказательством равномерного распределения хлорофилла по всей ламеллярной структуре хлоропласта. Было высказано предположение, что обычно наблюдаемая флуоресценция одних только гран объясняется более высоким содержанием ламеллярных структур. В квантосомах были обнаружены небольшие количества трех переходных металлов — железа, марганца и меди, причём концентрация марганца оказалась наиболее низкой. Марганец необходим для выделения кислорода при фотосинтезе. Учитывая это. Парк и Пон [253] рассчитали молекулярный вес наименьшей единицы в ламелле, которая, очевидно, еще могла бы осуществлять фотосинтез, т. е. частицы, соответствующей одному атому марганца. Он оказался равным 9,6-10 . Позже [251] расчеты были проведены с учетом данных об объеме квантосом (полученных путем измерений на электронных микрофотографиях), а также результатов определений эффективной плавучей плотности разрушенных ламеллярных структур в ультрацентрифуге. Было обнаружено, что молекулярный вес квантосом равен 2-10 , что соответствует двум атомам марганца. Данные о молекулярном составе квантосом представлены в табл. 1. Мембрана толщиной 10 нм содержит 50% липида и 50% белка. Следовательно, с учетом разницы в плотности (1,0 1,4) можно считать, что на долю липида приходится около 6,5 нм толщины мембраны, а это согласуется с представлением о существовании двойного липидного слоя. [c.35]


Смотреть страницы где упоминается термин Мембраны состав липидов: [c.158]    [c.158]    [c.363]    [c.114]    [c.349]    [c.148]    [c.303]    [c.28]    [c.390]    [c.88]    [c.89]    [c.140]    [c.65]    [c.16]    [c.125]    [c.303]    [c.342]    [c.58]    [c.346]    [c.268]    [c.274]   
Жизнь микробов в экстремальных условиях (1981) -- [ c.251 , c.341 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте