Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов от азота и оксида углерода

    Каталитическая очистка газов основана на каталитических реакциях, в результате которых находящиеся в газе вредные примеси превращаются в другие соединения. Таким образом, в отличие от рассмотренных приемов каталитические методы заключаются не в извлечении токсичных примесей из газового потока, а в превращении их в соединения, присутствие которых допустимо в атмосфере, или в соединения, сравнительно легко удаляемые из газа. При этом требуются дополнительные стадии очистки— абсорбция жидкостями или твердыми адсорбентами. Для очистки газов применяется почти исключительно гетерогенный катализ на твердых катализаторах (см. ч. I, гл. VII). Наиболее распространен способ каталитического окисления токсичных органических примесей и оксида углерода при низких температурах, т. е. без подогрева очищаемого газа (кли воздуха). Каталитическая очистка от вредных оксидов и сернистых соединений производится также их гидрированием так, методом избирательного катализа гидрируют СО до СН4 и Н2О, оксиды азота — до N2 и Н2О и др. [c.237]


    В последнее время повысился интерес к использованию катализаторов в процессе очистки газов от оксидов азота и углерода (II), сернистого ангидрида и летучих органических соединений. [c.148]

    В последнее время для очистки газов от оксида углерода все шире применяют жидкий азот, через который барботирует очищаемый газ. При этом вследствие конденсации происходит весьма тонкая очистка газов не только от оксида углерода, но и кислорода. [c.237]

    На рис. П1-59 приведена зависимость степени извлечения с от абсорбционного фактора А и числа теоретических тарелок п в абсорбере. Количество жидкого азота Ь, необходимое для очистки 100 м конвертированного газа от оксида углерода, можно определить по опытным данным, приведенным на рис. П1.60—Ш.62. [c.325]

    Система отвода и очистки конвертерных газов. В процессе продувки образуется большое количество конвертерных газов, нагретых до 1450—1650°С. При интенсивности выхода газов 5—14 м /т металла, объем их для 350-тонного конвертера достигает 5000 м . Конвертерные газы состоят главным образом из продуктов окисления углерода и содержат около 85% оксида углерода (И), 10% оксида углерода (IV) и 5% азота, а также значительное количество (до 250 г/м ) мелкодисперсных частиц оксида железа (Ш) — бурый дым. [c.84]

    Решение проблемы возможно в рамках замкнутой по газовой фазе технологии переработки угля, которая одновременно с очисткой дымовых газов от оксидов серы и азота (путем утилизации их в кислоты) обеспечивает улавливание диоксида углерода путем сжижения и последующей его фиксации каким-либо экономически оправданным методом. [c.238]

    Чистый кислород или обогащенный кислородом воздух используются в процессах конверсии углеводородных газов, в металлургии, для окисления в органическом синтезе, в качестве окислителя в ракетной технике, в медицине. Жидкий азот применяется для тонкой очистки водорода от оксида углерода (II) и метана, получения АВС стехиометрического состава, в качестве хладоагента. [c.229]

    Снижения содержания ЗОг в дымовых газах можно достигнуть двумя путями 1) очисткой котельного топлива от серы (гидрообессеривание) и 2) очисткой дымовых газов. О гидрообессеривании нефтяных остатков сказано в гл. УП. Для очистки дымовых газов разработан ряд методов — мокрая очистка растворами различных оксидов и солей (аммиачно-бисульфитный, магнезитовый и другие методы) и сухая очистка адсорбентами (активированным углем, оксидом меди и др.). Однако большие объемы газов, подвергаемых очистке, а также разнообразие компонентов (оксиды азота, оксид углерода, водяные пары, азот) обусловливают значительные трудности для создания достаточно экономичного метода очистки. Концентрацию оксидов азота в продуктах сгорания снижают, уменьшая коэффициент избытка воздуха, т. е. снижая содержание кислорода в зоне горения. [c.320]


    Глубокая очистка водорода от примесей азота, оксидов углерода, метана и аргона может быть осуществлена также переводом примеси в конденсированную фазу. При этом степень очистки определяется равновесным содержанием примеси в газе над твердой фазой при данных температуре и давлении. Следует иметь в виду, что фактическое содержание примеси в газовой фазе в этих условиях (высокое давление и низкая температура) значительно выше, чем рассчитанное по законам идеальных газов и равновесному давлению примеси над твердой фазой чистой примеси. При этом имеют место не только количественные различия, но и изменение характера зависимости остаточного содержания примеси в газе от давления в некоторой области и Т с ростом давления наблюдается не снижение, а повышение содержания примеси в газе. В соответствии с этим для снижения содержания указанных примесей в водоро- [c.910]

    Значительное влияние на растворимость газов в воде оказывает давление. Количество водорода, азота, оксида углерода и кислорода, растворяющихся в воде, возрастает прямо пропорционально увеличению их парциального давления, т.е. эти газы подчиняются закону Генри. Выбор наиболее выгодного давления для очистки газа водой имеет большое значение. С увеличением давления возрастает растворимость СО2, вследствие чего улучшается очистка газа, снижается расход воды и уменьшаются габариты оборудования. Однако при использовании высоких давлений увеличивается расход энергии, поэтому на практике для удаления СО2 из газов применяют давление в пределах 1,6-3,0 МПа. [c.36]

    Получаемый техническим способом водород в большинстве случаев бывает сильно загрязнен примесям[ других газов. Очистка водорода — ие менее важная часть производства, чем его получение. Главными примесями к водороду являются сероводород Но5, диоксид углерода СО,, оксид углерода СО, азот N2, водяные пары и пр. [c.623]

    Очистка. В этом процессе происходит удаление из ОКГ высококипящих примесей, оксидов азота и сероводорода. Такие вещества как вода, бензол, нафталин, оксид углерода (IV) при низких температурах могут кристаллизоваться на стенках аппаратуры, ухудшая теплообмен. Оксиды азота способны образовывать взрывоопасные смеси. Удаление из газа сероводорода, помимо предотвращения коррозии аппаратуры, вызвано также целесообразностью его последующего использования для производства элементарной серы и серной кислоты, так как в ОКГ переходит до 30% серы, содержащейся в коксуемой угольной шихте. [c.207]

    Разработка новых систем каталитического крекинга продолжается. Так, во ВНИИ НП разработан процесс адсорбционно-каталитической очистки мазутов, позволяющий удалять до 95% тяжелых металлов и асфальтенов, 40% серы, 60% азота, 75% коксообразующих веществ при минимальном содержании оксида углерода и серы в отходящих газах. [c.82]

    Наибольшую опасность в азотной промышленности представляют производства аммнака и азотной кнслоты, так как прн нарушениях режима в этнх производствах возможно выделение в рабочую зону водорода, аммнака, оксидов азота и углерода, сероводорода н других горючих н токсичных газов. При недостаточной герметичности аппаратуры н коммуникаций, а также прн аварийном выбросе таких газов в атмосферу, как правило, может возникать сильная загазованность рабочих помещений н близлежащей территории. Поэтому герметизации аппаратуры н очистке отходящих газов следует уделять особое внимание. [c.431]

    Очистка конвертированного газа. В конвертированном газе наряду с азотом и водородом содержатся диоксид углерода, а также небольшие количества сероводорода (до 0,1 %) Оксид углерода и сероводород являются сильными ядами для катализатора синтеза аммиака, поэтому синтез-газ должен быть тщательно очищен от этих примесей. [c.236]

    Заслонки служат для регулирования подачи первичного и вторичного воздуха. Горелка опорожняется через трубопровод 14. Подача газа для разжигания осуществляется от баллона с пропаном. Фильтр для очистки воды имеет диаметр 800 мм и загружен слоем щебня и гравия высотой 800 мм. К технологическим недостаткам следует отнести то, что отходящие газы содержат токсичные продукты оксид углерода, оксид азота, формальдегид и пр. Поэтому для снижения концентрации этих загрязнений в воздухе до предельно допустимых требуется большое разбавление газов атмосферным воздухом. Себестоимость сжигания [c.291]

    Газ при 30—40°С, содержащий 4,0—5,0% (об.) СО и 1,2—2,0% (об.) СОг под давлением 31,4 МПа, проходит маслоотделитель 1, а затем скруббер 2, орошаемый медноаммиачным раствором, где очищается от СО и основного количества СОг. В щелочном скруббере 3, на верх которого подается 4— 5%-ный раствор КаОН или водный раствор аммиака, завершается тонкая очистка газа и очищенная азотоводородная смесь, содержащая СО 5— 20 см /мз и СОг 5—10 см /м газа, направляется на синтез аммиака. Отработанный медноаммиачный раствор поступает в цилиндры рекуперационной машины 4, где его давление снижается до 0,5—0,9 МПа. Полученная энергия используется для сжатия регенерированного раствора до давления очистки. В промежуточном десорбере 5 из раствора выделяется основное количество труднорастворимых газов (водород и азот), а также некоторое количество -оксида и диоксида углерода и аммиака. Эти газы дросселируются до давления, близкого к атмосферному, и отводятся на установку улавливания аммиака (на схеме не показана). [c.316]


    В котельном агрегате сжигают 125 кг угля состава, мае. % углерод — 69,6 сера — 5,5 вода — 4,0 азот — 0,8. При этом расходуется 241,4 кг кислорода. В печной афегат подают 69,3 кг кислорода и сжигают 40 кг серы. В отделение очистки из котельного афегата поступает дымовой газ в количестве 341,4 кг с температурой 350 °С, содержащий 13,8 кг диоксида серы, 5 кг воды и 3,6 кг оксидов азота. Дымовые газы смешивают с отходящим из контактно-нитрозного отделения газом. Этот газ, рециркулируемый на очистку с температурой 40 С, содержит 0,98 кг диоксидов серы и 0,5 кг оксидов азота. В отделение очистки подают 30 кг жидкого триоксида серы и 45 кг 98 %-ной серной кислоты, содержащей 0,42 мол. д. 80з. Очистку газов ведут при температуре 25 °С. Извлечение 80з из газа, подаваемого в аппарат 14, составляет 99,99 %, а содержание его в абсорбенте на выходе аппарата возрастает до 0,52 мол. д. В отходящем из абсорбера 14 газе не более 2,686 10 мол.д. 80з. [c.243]

    Так, в отделении низкотемпературного блока очистки азото-водородной смеси от примеси оксида углерода произошел взрыв водородовоздушной смеси в помещении, вызванный локальным взрывом отложений нитросоединений в теплообменном аппарате. Локальный взрыв в аппарате сопровождался залповым выбросом конвертированного газа в атмосферу через образовавшиеся неплотности. [c.79]

    Газы нефтехимических процессов требуют той же очистки перед алкилированием, что и топочные газы (главным образом удаление оксида углерода). Основными разбавителями этилена являются этан, метан, водород, азот и оксид углерода, которые могут использоваться в качестве топлива после отделения алкилата. Процесс алкилирования можно проводить и без предварительной очистки газов от СО,, воды и (их отделение проводят с помощью стандартных операций), но тогда будет наблюдаться повыщенное старение катализатора. Если провести отмывку щелочью и СО, и осушку охлаждением, то полученный газ будет иметь следующий состав (% об.) метан - 37 этан - 19 этилен - 19 Н, - 9 Ы,— 13 СО — 3. Однако в результате очистки образуется большое количество сточных вод, загрязненных щелочью, и потребуется затратить значительное количество энергии на осушку газа. [c.293]

    Принципиально оксиды азота можно удалить в результате их разложения. Реакции разложения оксидов азота до азота и кислорода в условиях работы автомобильных нейтрализаторов термодинамически возможны. Однако разложение этих соединений на известных в настоящее время катализаторах происходит со столь малыми скоростями [186], что эти реакции нельзя положить в основу очистки отработавших газов. Каталитическую очистку газов от N0 осуществляют их восстановлением при этом в качестве восстановителей могут выступать оксид углерода и органические вещества, содержащиеся в отработавших газах и подлежащие удалению [26, с. 103-119]. [c.159]

    Цеолит NaA адсорбирует большинство компонентов промышленных газов, критический размер молекул которых не превышает 0,4 нм сероводород, сероуглерод, диоксид углерода, аммиак, низшие диеновые и ацетиленовые углеводороды, этан, этилен, пропилен, органические соединения с одной метильной группой в молекуле, а также метан, неон, аргон, криптон, ксенон, кислород, азот, оксид углерода. Последняя группа веществ в значителышх количествах поглощается только при низких температурах. Пропан и органические соединения с числом атомов углерода в молекуле более 3 не адсорбируются цеолитом и таким образом при осушке и очистке не подавляют адсорбцию указанных выше примсссй. [c.367]

    Для любой схемы получения технологического газа для синтеза аммиака характерно наличие нескольких операций по очистке исходного сырья — технологического газа — от примесей диоксида углерода, оксида углерода, оксида азота, кислородсодержащих и сернистых соединений, масляных аэрозолей и т. д. [c.19]

    Среди разнообразных процессов очистки технологических газов можно назвать, например, очистку природного газа от высших углеводородов каталитическим деструктивным гидрированием (гидрокрекингом) каталитическое гидрирование, гидрогенолиз сероорганических соединений и каталитическое окисление сероорганических соединений каталитические методы удаления оксидов углерода и кислорода из синтез-газа (каталитическое гидрирование, тонкая каталитическая очистка), очистку коксового и природного газа от оксидов азота и ацетилена каталитическим гидрированием и т. д. [c.88]

    Токсичность продуктов сгорания. Все продукты сгорания жидких и газообразных углеводородных топлив поступают в-атмосферу, в той или иной мере загрязняя воздух. Современные теплоэлектростанции, котельные и промышленные печи являются источниками выброса в атмосферный воздух диоксида серы, оксидов углерода и азота. Для борьбы с загрязнением атмосферы нефтяные топлива подвергаются обессериванию, а дымовые газы очистке с помощью, уловителей и утилизаторов. [c.82]

    Для получения жидкого водорода экономически целесообразно использовать газы, содержащие не менее 25 % водорода [207]. Газы, идущие на получение водорода, должны быть подвергнуты тщательной очистке от примесей, позволяющей достигнуть остаточного содержания всех примесей в газообразном водороде порядка 10 —10 объемн. долей. Более высокое содержание примесей может в процессе охлаждения привести к забивке аппаратов, арматуры и трубопроводов ожижительной установки [103]. В табл. 2.61 [207, 103] представлены некоторые данные о методах очистки водородсодержащих газовых смесей и их эффективности для ряда примесей. Очистку от кислорода, азота, аргона, оксида углерода чаще всего проводят на активном угле или силикагеле при 80 К. Если в процессе десорбции активного угля или силикагеля, использованных для низкотемпературной очистки газообразного водорода, используют вакуум и нагрев до 373— 473 К, то водород может быть очищен от примесей азота и кислорода до их остаточного содержания 2-10 ° объемн. долей [208]. Нагрев сорбента и последующее его вакуумирование дают возможность очистить водород от метана, аргона, оксида углерода, азота до содержания этих примесей не более 1 МЛН [207]. По техническим условиям, действующим в США [209], общее содержание примесей в водороде после его прохождения системы очистки должно быть не выше 5-10 , а содержание кислорода не выше 1-10 масс, долей [103]. [c.99]

    I — аммиачные холодильники коксового газа 2а, 26, 4а, 46, 2. 13, 20, 21 — теплообменники 3, 7, 10 — сборники 5, 11 — сепараторы в, 9 — конденсаторы 8 — этиленовая колонна /4 —промывная колонна 15, 16 — испарители соответственно азота и фракции оксида углерода 17 — переохладитель жидкого азота 18, 22 — аммиачные холодильники азота М —аппараты для очистки азота ог масла и влаги 23а, 236 — фильтры 24 — детандер. [c.201]

    При получении синтез-газа для аммиака по методу каталитической конверсии применяют двухступенчатую конверсию углеводородов с подводом подогретого воздуха во П ступени для полного превращения остаточного после I ступени метана. В отличие от трубчатого реактора I ступени конвертор П ступени работает автотермично. Полученный синтез-газ подвергают каталитической очистке от остатков оксида углерода. При получении синтез-газа по методу окислительной конверсии для очистки газа от оксида углерода используют способ промывки его жидким азотом. [c.245]

    Радикальное решение проблемы очистки указанных газов — каталитическое восстановление оксидов азота горючими газами — природным газом, водородом, оксидом углерода и аммиаком. Условия проведения процесса и тип используемого катализатора определяются видом применяемого газа. Восстановление оксидов азота снижает их содержание в очищенном газе до 0,001—0,0057о (об.), что обеспечивает санитарные нормы по содержанию оксидов азота в приземном слое воздуха при мощностях производств кислоты до 1,0 млн. т/год, сосредоточенных в одной точке при высоте выброса 100—150 м. [c.217]

    К числу аппаратов и механизмов с повышенной взрывоопас-ностью относятся абсорберы и адсорберы для взрывоопасных и токсичных сред автоклавы, работающие со взрывоопасными средами агрегаты для конверсии природного газа, оксида углерода, метана и оксида углерода, для моноэтаноламиновой очистки, промывки газа от оксида углерода жидким азотом, окисления аммиака, пиролиза природного газа, а также агрегаты, использующие тепло нейтрализации в производстве аммиачной селитры, синтеза мочевины, синтеза метанола выпарные аппараты для взрывоопасных и токсичных продуктов, контактные аппараты с перемешивающими устройствами для взрывоопасных и токсичных продуктов ацетиляторы блоки. раздедещя воздуха и коксового газа варочные кот- лы периодического действия выдувные резервуары газо-дувки, турбогазодувки и вакуум-насосы для взрывоопасных и токсичных газов газогенераторы газгольдеры для взрывоопасных газов и кислорода детандеры всех типов и назначений газгольдеры для взрывоопасных газов и кислорода дробилки и мельницы всех типов и назначений гидроразбиватели вертикального и горизонтального типов испарители сжиженных газов клеемешалки ксантогенераторы и турборастворители в производстве вискозных волокон компрессоры всех типов и [c.24]

    Химические отрасли в промышленности являются источниками загрязнения атмосферного воздуха. Наиболее характерными компонентами, загрязняющими атмосферу, являются оксиды серы, оксиды азота, сероуглерод, углеводороды, оксид углерода(И) и углекислота. В СССР разрабатываются и внедряются методы улавливания вредных химических соединений и загрязнений. Так, к концу 12-й пятилетки выбросы химических предприятий в атмосферу должны сократиться на 19 %. Значительное распространение получают методы каталитического дожигания отходящих газов, сухого каталитического восстановления оксидов азота, мокрой совмещенной очистки от оксидов серы и азота. [c.27]

    На установках получения азота способом сжигания дымовой газ очищается чаще всего от СОг моноэтаноламином, а от СО — гопкалитом и после очистки содержит (в % об.) N2 — 98,6, СО2—1,0, СО — до 0,1, О2 — 0,3. Там, где такая глубина очистки недостаточна, вследствие того, что оксиды углерода отравляют катализаторы, применяют азот, получен- [c.240]

    В нефтеперерабатывающей промышленности в качестве илсртного газа используется главным образом азот, получаемый двумя сиособами сжиганием топливного газа с минимальным избытком воздуха с последующей очисткой образо-вл ииегося дымового газа от оксидов углерода и осушкой разделением атмосферного воздуха на азот и кислород на воздухоразделитсльных установках прп низких температурах и высоких давлениях. [c.240]

    В целях повышения эффективности производства аммиака в 1966-1970 гг. введены в действие производства иа основе парокислородной noj влиянием 2—3 МПа высокотемпературной (Куйбыщев, Гродно) и каталити ческой конверсии (Невннномысск, Новгород, Гродно), Для очистки газа о диоксида углерода применяли, в частности, растворы поташа с добавко активатора — диоксида мышьяка (процесс фирмы Монтекаткни ), охлаж денного метанола (процесс фирмы Лурги ), а для выделения оксида угле рода — промывку газа жидким азотом. [c.424]

    Очистку азотоводородной смеси от СО2 и СО можно скомбинировать в одной схеме. На этом принципе основана схема парокислородной каталитической конверсии природного газа (без повышенного давления), по которой двухступенчатая мо-ноэтаноламиновая очистка газа от диоксида углерода сочетается с промывкой газа жидким азотом для удаления СО. Замкнутый конденсатный цикл, предусмотренный в системе очистки газового потока раствором моноэтаноламина (МЭА), позволяет исключить из схемы стадию каталитического гидрирования оксида азота и ацетилена. [c.20]

    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]

    Помимо органических веществ и оксида углерода в отработавших газах газотурбинных двигателей могут находиться также и оксиды азота. В(Зсстановление оксидов азота - достаточно сложная проблема, в качестве восстановителей обычно используют аммиак, а также углеводороды и оксид углерода. Наличие последних в качестве примесей в отрабо-Тс1вших газах принципиальтю гюзволяет обеспечить их очистку от оксидов азота при использовании бифункциональных катализаторов. [c.215]

    Метод конденсации позволяет получить водород высокой степени чистоты. Например, при охлаждении смеси газов до мпературы жидкого азота (- 77 К) оксиды углерода и углеводороды переходят в жидкое состояние. Чистота получаемого водорода составляет 99,95%. Высокую степень чистоты можно получить и электрохимическим способом с помощью ячейки с твердополимерным электролитом [12]. Все более широкое применение для разделения газов находят селективно проницаемые мембраны, в частности полимерные мембраны [86, с. 1273—1278]. Наиболее чистый водород можно получить в результате диффузионного разделения через проницаемую для водорода мембрану из палладиевого сплава [32]. Этот способ обеспечивает получение водорода чистотой до 99,9999%. При использовании электрохимического и диффузионного методов очистки необходима предварительная очистка газов от каталитических ядов соединений серы, мышьяка, фосфора и др- [c.105]

    При сгорании органической части отходов образуются диоксид и оксид углерода, пары воды, оксиды азота и серы, аэрозоли. Методы сжигания не нужддются в организации шламового хозяйства, имеют компактное, просгое в обслуживании оборудование, низкую стоимость очистки отходящих газов. Однако область их применения ограничивается свойствами продуктов реакции. Их нельзя использовать для переработки отходов, если последние содержат фосфор, галогены, серу. В этом слз чае могут образовываться продукты реакции, например диоксины и фураны, по токсичности во много раз превосходящие исходные газовые выбросы. [c.17]

    Осушка и одновременная очистка газов с температурой кипения ниже -180 °С от примесей кислорода, азота, диоксида и оксида углерода, угаеводородов Силикагель марки КСМ, охлаждаемый жидким азотом, диаметр зерен 1-5 мм предварительно газ подвергают осушке силикагелем при комнатной температуре 60-80 Не более 02 — 0,0005 СО, СОг — 0,001 влаги — 0,05 мг/л Вакуумирование при 200-230 С [c.907]

    Метан в настоящее время чаще всего выделяют из природного газа. Метановые фракции получают также при низкотемпературном разделении газов пиролиза и крекинга нефтепродуктов, продувочных газов синтеза аммиака. Метан получают либо каталитическим гидрированием оксида углерода, либо из метилиодида, метилбромида по реакции Гриньяра через магнийиодметил или соответственно магнийбромметил. Дополнительная очистка метана может быть проведена низкотемпературной ректификацией с использованием жидкого азота в качестве хладоагента, а также низкотемпературной адсорбцией. Наиболее чистый метан содержит (мол. %) основного вещества — 99,9995, примесей азота — 210 кислорода —0,5-10 водорода — 0,110 СОг — 1-10 мол. %. [c.912]

    При абсорбции оксида углерода жидким азотом одновременно поглощаются и такие компоненты конвертированного газа, как кислород и аргон, а также метан, этилен, ацетилен й другие углеводороды, образующиеся при парокислородной конверсии газообразных и газификации жидких углеводородов. Достоинством низкотемпературного метода очистки конвертированного газа от остаточных количеств оксида углерода является возможность получения азотоводородной смеси, практически не содержащей каталитических ядов и инертных (для синтеза аммиака) примесей. [c.320]

    Газ с низкой теплотой сгорания образуется при использовании воздушного или иаровоздушного дутья. В соответствии с этим его называют воздушным или паровоздушным (смешанным). Он характеризуется высоким содержанием балласта — азота [до 40—50% (об.)], что обусловливает низкую теплоту сгорания такого газа. Основная область применения таких газов— сжигание в топках промышленных печей. Кроме того, пос-,ле конверсии содержащегося в них оксида углерода и очистки от СОг получают азотоводородную смесь — исходное сырье для синтеза аммиака. [c.97]

    С. 3. Васильев, В. И. Летичевский, И. И. Маергойз (Всесоюзный научно-исследовательский институт электротермического оборудования, Москва). Специфика процесса очистки контролируемых атмосфер, образующихся при неполном сгорании природного газа, заключается в необходимости удаления из многокомпонентной системы (основу которой составляют азот, 80 %, и водород) примесей, имеющих существенно отличные друг от друга величины адсорбционных взаимодействий с цеолитом. Наряду с хорошо сорбирующимися влагой (в газе ее исходный объем составляет около 3 %) и диоксида углерода (до 12 %) требуется очищать газ от малосорбирующихся оксида углерода (1—6%) и кислорода (0,01 %). Экспериментальные исследования статики адсорбции показали, что цеолит СаА имеет равновесную адсорбционную емкость по СО, в 5—6 раз меньшую, чем по СО2, и в 7—8 раз меньшую, чем по Н2О. При этом степень отработки этой емкости в динамических условиях при совместной адсорбции СО и СО2 составляет соответственно 0,125 и 0,667 (при поглощении только СО 0,4—0,5). В результате цеолит показывает в таком процессе при нормальных условиях динамическую активность по СО менее 0,1 г на 100 г, в то время как по СО2 7,5—9 г на 100 г. [c.181]

    Систему конверсии метана, оксида углерода, метанирование оставляют под давлением азота или газа, а системы этаноламиновой (карбонатной или водной) очистки от диоксида углерода и аммиачной очистки от СО и С02 переводят на горячую или холодную циркуляцию при малых расходах абсорбента или производят нормальную остановку этих отделений. [c.145]

    Коксовый газ после очистки от нафталина, бензола, оксидов азота, диоксида углерода, органических соединений серы и ацетилена промывают и охлаждают в скруббере 1 умягченной водой. Воду, подаваемую на орошение скруббера 1, предварительно охлаждают до 276—278 К в теплообменнике 3 отходящими из агрегата разделения коксового газа потоками азотоводородной смеси и метановой фракции. После сепаратора 2 коксовый газ при 278—280 К поступает в теплообменники 4 низкотемпературного блока [c.197]


Смотреть страницы где упоминается термин Очистка газов от азота и оксида углерода: [c.240]    [c.242]    [c.424]    [c.147]   
Справочник по физико-техническим основам криогенетики Издание 3 (1985) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Азот азота оксид

Азот очистка

Азота оксиды

Оксид газов

Очистка газа от оксида углерода

Очистка газов от оксида углерода

Очистка газов от оксидов азота

Очистка от оксидов азота

Углерода оксиды



© 2025 chem21.info Реклама на сайте