Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интенсивность прозрачность

    Все эти пигменты ценятся за красоту и яркость оттенков они прочны к растворителям (за исключением спирта) и обладают очень высокой интенсивностью прозрачность некоторых пз них оказывается полезной при использовании в графике. Но, как правило, они неустойчивы к щелочам, которые разлагают комплексную соль. Их светопрочность значительно выше,, чем у исходных основных красителей, но в большинстве случаев все же лишь удовлетворительна, поскольку яркость и светопрочность трудно совместимые свойства. [c.393]


    Запах определяется так же, как и при анализе природных вод. Сначала определяют характер запаха, затем по пятибалльной системе оценивают его интенсивность. Прозрачность — показатель степени общей загрязненности воды. Прозрачность городских сточных вод обычно не превышает 3—5 см. Сточные воды посте биологической очистки имеют прозрачность более 15 см. Прозрачность сточных вод определяется по шрифту. [c.104]

    Используемые в визуальных методах для сравнения интенсивности окрасок испытуемых и эталонных растворов калиброванные пробирки или цилиндры (У = 10—30 мл) должны быть одинакового диаметра с одинаковой прозрачностью стекла. Такие пробирки и цилиндры называют колориметрическими. Кюветы, применяемые в различных приборах для измерения D (Т), также должны быть одинакового размера и равной прозрачности. [c.475]

    Плохой цвет может быть перекрыт примешиванием воздуха при охлаждении. Прозрачность парафина интенсивно изучалась. Установлено, что нагревание в течение долгого времени ниже температуры плавления ведет к появлению прозрачности [106]. Этот результат можно объяснить потерей межкристаллического [c.530]

    Многочисленные опыты показывают, что в среде жидкого кислорода и воздуха горение ряда органических веществ протекает более интенсивно. Необходимо при этом, чтобы реакция началась до соприкосновения с жидким кислородом или воздухом. Например, уголь дуговой лампы, один из концов которого нагрет до красна, при погружении в прозрачный сосуд Дьюара с жидким кислородом продолжает гореть очень спокойно с интенсивным выделением света и теила. Бурная реакция происходит при погружении в сосуд с жидким кислородом раскаленных проволок из стали и магния. В ряде случаев реакция горения сопровождается взрывом. Например, прп погружении в жидкий воздух горящего кусочка фосфора происходит сильный взрыв. Смеси жидкого кислорода со спиртом и керосином обладают очень сильными взрывчатыми свойствами при наличии достаточного импульса. Эти свойства жидких воздуха и кислорода позволили использовать их для получения взрывчатых веществ. В качестве взрывчатого вещества вначале применяли древесные опилки, пропитанные жидким воздухом, обогащенным кислородом. В настоящее время взрывчатые вещества, представляющие смесь тонко измельченного горючего вещества с жидким кислородом, получили название оксиликвитов [22] и их широко применяют в промышленности. [c.44]


    Инфракрасный спектрофотометрический метод измерения влажности. Основан на зависимости между содержанием воды в эмульсии и ее спектральными свойствами [144]. Характерные спектрограммы коэффициентов пропускания для воды и нефти приведены на рис. 9.4 (кривые 3 а 4). Метод измерения состоит в следующем. Измеряемую пробу нефти заливают в прозрачную кювету и через нее пропускают световой луч, получаемый при помощи узкополосного оптического фильтра. Спектральные характеристики двух таких фильтров даны на рис. 9.4 (кривые I и 2). Интенсивность светового сигнала, прошедшего через кювету, измеряют фотоэлементом. Если обозначить через /о и 1 интенсивности светового потока до и после прохождения через нефть, а через и к2 — коэффициенты поглощения воды и нефти в измеряемом спектральном диапазоне с учетом толщины слоя нефти в кювете, то можно записать следующее равенство [c.169]

    При перпендикулярном падении на поверхность оптически анизотропной прозрачной частицы линейно поляризованный свет разлагается на две волны, характеризующиеся взаимно перпендикулярными направлениями колебаний и различными скоростями распространения в пределах микроскопического объекта. При этом интенсивность св та, получаемого при скрещенных поляроидах, после выхода из анализатора j определяется из следующего уравнения- [c.32]

    Иногда необходимо провести детальное исследование течения в пограничном слое. Только что описанный метод, использующий распыленный в воде порошкообразный алюминий, оказался эффективным для изучения поведения потока жидкости, обтекающего ребра в поперечном направлении (см. рис. 3.21). Анемометры с нагретой проволочкой доказали свою эффективность при исследовании тонкой структуры турбулентного потока, но с ними очень трудно работать, и потому они скорее могут быть использованы опытным экспериментатором, чем специалистами, проектирующими теплообменники. Для решения некоторых задач полезным, может оказаться введение красящего вещества. Следы раствора иода можно ввести в крахмальный раствор, что даст резко очерченный след, распространяющийся по потоку от места впрыска. Перемещение и скорость размытия окрашенного пятна позволяют судить о характере и интенсивности турбулентных токов в данной окрестности. Добавлением в раствор крахмала малого количества тиосульфата натрия, реагирующего с иодом, можно добиться обесцвечивания окрашенного пятна, что позволяет производить многократное впрыскивание без потери прозрачности массы жидкости. [c.322]

    Фильтры и монохроматоры. Светофильтры, используемые для выделения необходимой спектральной области источника света, так называемые первичные фильтры, не должны пропускать свет в области, где измеряется люминесценция, и, наоборот, пропускать как можно больше света в области поглощения объекта. Длинноволновая граница пропускания светофильтров должна быть несколько смещена в коротковолновую сторону по сравнению с самым длинноволновым максимумом поглощения. Фильтры, использующиеся для выделения флуоресценции, так называемые вторичные фильтры, должны отсекать весь рассеянный возбуждающий свет и пропускать весь свет флуоресценции. В качестве первичных и вторичных фильтров используются стеклянные фильтры из цветного стекла. В качестве вторичных фильтров могут использоваться клееные стеклянные фильтры и интерференционные-фильтры. Первые состоят из двух стеклянных пластинок и заключенного между ними слоя желатины, окрашенной органическими красителями. Под действием интенсивного облучения эти фильтры со временем портятся. Интерференционный фильтр представляет собой стеклянную пластинку, на которую нанесены две (или более) полупрозрачные металлические пленки, разделенные слоем прозрачного вещества. Для защиты металлического слоя на него наклеивается еще одна стеклянная пластинка. Расстояние между металлическими пленками определяет длину волны света, проходящего сквозь фильтр. Свет, половина длины волны которого равна расстоянию между пленками, пройдет через фильтр, а свет с любой другой длиной волны отразится. Интерференционные фильтры также разрушаются от интенсивного облучения. [c.65]

    Спектры газов. Спектры веществ в газовой фазе снимают в стеклянных трубках с прозрачными для ИК-излучения окошками. Кюветы обычно снабжают вакуумными кранами и шлифами для соединения с вакуумной установкой. Для кюветы длиной 10 см используют давления до 0,1 МПа ( 1 атм) в зависимости от интенсивности полос вещества. Для уменьшения объема газовой кюветы при неизменной длине оптического пути ее размеры в поперечном сечении делают близкими к форме пучка света объем такой кюветы при длине 10 см может быть равен 30 мл. Для увеличения чувствительности изготовляют газовые кюветы с многократным отражением от окон, при этом длина оптического пути может достигать десятков метров. При работе с газами необходимо добиваться максимально возможного разрешения во всей спектральной области. [c.210]


    В процессе образования шейки и однородной вытяжки происходит интенсивное побеление многих (прозрачных) полимеров. Природа данного явления связана с пустотами, которые образуются либо в связанном виде внутри трещин серебра (разд. 9.2, гл. 9) или полос сдвига, либо в несвязанном виде распределены в деформируемых элементах объема. Несвязанные пустоты имеются в частично-кристаллических (ПЭ, ПП) и в аморфных полимерах (ПВХ), а также в эластомерах при криогенных температурах (полибутадиеновый каучук и [c.309]

    Реакцию рекомендуется проводить при 100". а-Хлоракриловые эфиры легко полимеризуются в присутствии инициаторов свободно-радикальной полимеризации, образуя прозрачные твердые аморфные полимеры. Скорость полимеризации а-хлоракрилатов значительно больше скорости полимеризации нехлорированных акриловых эфиров. Блочная полимеризация сопровождается интенсивным теплообразованием, что в свою очередь вызывает частичное дегидрохлорирование полимера. Внешне это выражается в пожелтении образующегося стекловидного полимера. Световое воздействие также постепенно вызывает дегидрохлорирование полимера, поэтому желтизна полимера с течением времени увеличивается. Чтобы предотвратить пожелтение полимера, рекомендуется в процессе полимеризации вводить в мономер стабилизаторы—вещества, вступающие в реакцию с выделяющимся хлористым водородом. Стабилизаторами могут служить гликоли, амины. [c.346]

    VIп. 1.2. Точность измерения интенсивности света с помощью некоторого прибора составляет 0,1%. Какова должна быть минимальная толщина слоя раствора L для надежной регистрации оптическим методом (по изменению прозрачности) начальной стадии коагуляции коллоидного раствора при объемной доле дисперсной фазы в растворе ф=10- Другие параметры те же, что в предыдущей задаче. [c.259]

    До начала коагуляции По = 1—При v = 2 П = = 1—2 qL. Таким образом, прибор должен надежно зарегистрировать изменение прозрачности (или, что то же самое, интенсивности света) порядка и оно должно быть не меньше точности измерения —0,1 % или 0,001. Отсюда следует, что и при o=10 i м  [c.259]

    Прозрачное стекло используется для изготовления термостойкой и химически стойкой лабораторной посуды, смотровых люков и стекол реакторов, прозрачных элементов летательных аппаратов, оболочек интенсивных источников света, специального стекловолокна, оптических деталей приборов и т. п. [c.39]

    Получение растворимых сульфатов металлов из их оксидов. 1. В фарфоровый тигель поместите 0,1—0,2 г оксида меди (П) и 1—2 г дисульфата калия и перемешайте их. Тигель нагревайте на пламени газовой горелки до тех пор, пока весь оксид меди (И) не прореагирует с дисульфатом калия и не образуется прозрачный зеленый расплав. Охладите тигель, поместите его в стакан с водой и прокипятите до полного растворения плава. Затем проведите опыты по определению ионов Си + в растворе к нескольким каплям раствора прибавьте раствор аммиака до образования интенсивного синего раствора. Какое соединение меди образуется Напишите уравнения реакций. [c.137]

    Результат опыта. В стакане с фильтратом каолинита после прибавления хлорида бария появляется интенсивно белый осадок. Фильтрат монтмориллонита после прибавления хлорида бария остается без изменения, т. е. прозрачным. [c.35]

    Опалесценция золей (особенно, металлических) интенсивнее, чем растворов высокомолекулярных соединений из-за большей плотности, а следовательно, большего показателя преломления дисперсной фазы первых систем. Влияние соотношения показателей преломления дисперсной фазы и дисперсной среды на светорассеяние и мутность дисперсных систем очень удобно наблюдать на эмульсиях. Как известно, эмульсии обычно сильно мутны. Однако эмульсии глицерина в четыреххлористом углероде, стабилизованные олеатом натрия, прозрачны. Это объясняется тем, что показатели преломления глицерина и четыреххлористого углерода почти одинаковы и, следовательно, множитель в уравнении Рэлея, в который входят коэффициенты преломления, практически равен нулю, т. е. эмульсия глицерина в четыреххлористом углероде практически не рассеивает свет. [c.37]

    Для структурных помех коэффициент прозрачности не зависит от толщины слоя. Это явление связано с тем, что в этом случае уровень структурных помех определяет не амплитуда, а интенсивность, пропорциональная энергии прошедшего импульса, которая равна произведению квадрата амплитуды на длительность импульса, а она остается практически постоянной при изменении условий интерференции в тонком слое. Если, например, коэффициент прозрачности уменьшается, то соответственно упадет амплитуда, но возрастет длительность импульса, таким образом, что энергия прошедшего через слой импульса остается постоянной. В результате электрический уровень структурных помех на экране ЭЛТ не зависит от толщины слоя контактной жидкости при контроле контактным методом. [c.134]

    В качестве реактора хлори-ровация применена вериикальная труба из прозрачного материала, например стекла, с шарообразными расширениями, которая интенсивно облучается я может охлаждаться снаружи путем орошения водой. Хлор подводится в низ трубы, а хлористый метиле поступает сверху. [c.147]

    Ход определения. К 100—150 мл раствора, содержащего не более 0,01 г магния, прибавляют 1—2 г ЫН4С1 и 5—10 мл ЫН40Н. Если образуется аморфный осадок Mg(OH)2, его растворяют, добавляя еще некоторое количество ЫН4С1. Полученный совершенно прозрачный раствор нагревают до 60—70 °С и осаждают магний небольшим избытком спиртового раствора о-оксихинолина, прибавляя его, как обычно, небольшими порциями до тех пор, пока раствор над осадком не окрасится в желтый цвет (образуется интенсивно окрашенный оксихинолинат аммония). [c.415]

    Величину g йl l) называют оптической плотностью поглощающего вещества и обозначают буквой О. Отношение интенсивиости монохроматического потока излучения, прошедшего через исследуемый объект, к интенсивности первоначального потока излучения называется прозрачностью или пропусканием раствора (Т)  [c.462]

    Для определения содержания меркаптановой серы требуется 1 л аммиачного раствора сернокислой меди. Для приготовления раствора берут навеску 3,9 г свежеочищенной (перекристаллизованной) сернокислой меди, растворяют ее в 700 мл воды и добавляют водный аммиак до полного растворения осадка основной соли меди. К прозрачному раствору интенсивно синего цвета добавляют еще 50— 100 мл водного аммиака и доводят объем раствора водой до 1 л. [c.145]

    С целью обеспечения максимальной передачи энергии облучения растворам в фотореакторах иммерсионного типа стенки сосудов и промежуточные слои охлаждающих агентов должны быть прозрачны 6 заданной области длин волн, для облучения больших объемов необходимо интенсивное перемешивание. Чтобы избежать осаждения на стенках реактора продуктов или субпродуктов реакции, нарушающих передачу света, применяют реакторы с падающей пленкой [31]. Источники света размещают как внутри, так и снаружи реакторов. [c.189]

    Когда необходимо знать спектральные значения при высоких Ts, обычно измеряют спектральную направленную степень черноты, помещая нагретый образец в низкотемпературную ПОЛОСТ1. и сравнивая интенсивность /х образца со значением //, . из полости, излучающей при температуре T . Когда нужно знать спектральные значения при умеренных или низких Ts, обычно определяют спектральную направленную отражательную способность р(0, ф, X, Ts) и путем вычитания из единицы (для ие-прозрачных образцов) находят степень черноты Е(0, ф, X, Ts) a(0, ф, X, Г,,)-- —р(0, ф, X, Ts). (II) Для прозрачных образцов измеряют отражательную и пропускательную способности, а поглощательную способность определяют вычитанием из единицы. [c.455]

    Излучение, возникающее в отсутствие химической реакции (или радиоактивного распада), называется тепловым. В этом случае наиболее интенсивное при данной температуре излучение имеет так называемое абсолютно черное тело, которое полностью поглощает любые падающие на него лучи, т. е. отличается нулевой прозрачностью и отражательной способЕюстью. Интенсивность теплового излучения абсолютно черного тела не занисит от его иных фи-яико-химических свойств и однозначно определяется величиной абсолютной температуры она пропорциональна Т, т, е. быстро возрастает с повышением температуры. [c.110]

    Единственная причина, по которой иногда выступают против использования газа в стеклоплавильных печах, — низкая излуча-тельная способность прозрачного газового пламени по сравнению с высокосветящимся пламенем нефтяных топлив. Однако было установлено, что по своей эффективности эти два вида топлива не очень сильно отличаются друг от друга, что объясняется эффектом переизлучения боковыми стенками и сводом печи, который при омывании его прозрачным газовым пламенем факела изнашивается меньше, чем при работе с сажистым интенсивно излучающим факелом нефтяного топлива. Тепловое излучение факела зависит от фактора излучения топлива, определяемого отношением содержащихся в нем углерода и водорода. [c.277]

    На пути левого светового луча устанавливают кювету, заполненную дисперсионной средой. В правый кюветодержатель помещают две кюветы одну с дисперсионной средой, другую — с исследуемой системой (золем) и вращением рукоятки на правой панели прибора на пути правого светового луча устанавливают кювету с золем. Индексы правого и левого барабанов устг1навливают на О по шкале оптической плотности (нанесена красными цифрами). Затем шторку, перекрывающую световые лучи, переводят в положение открыто . Вследствие поглощения или рассеяния света исследуемой системой (в данном случае — рассеяния) на правый фотоэлемент будет падать световой поток меньшей интенсивности, чем на левый фотоэлемент, и стрелка микроамперметра будет отклоняться от нулевого положения. Вращая барабан левой раздвижной диафрагмы, стрелку микроамперметра возвращают на О (уравнивают интенслвности обоих световых потоков). Затем поворотом рукоятки на правой панели прибора по ходу правого луча устанавливают кювету с дисперсионной средой. При этом стрелка микроамперметра. установленная на О , смещается, так как фотометрическое равновесие снова нарушается (дисперсионная среда прозрачнее, и интенсивность светового потока, падающего на правый фотоэлемент, увеличивается). Вращением правого барабана добиваются первоначального нулевого положения стрелки и отсчитывают по шкале правого барабана значение оптической плотности исследуемой системы. [c.115]

    Интенсивно развиваются методы снятия спектров магнитной дисперсии оптического вращения (МДОВ) и особенно магнитного кругового дихроизма (МКД). В основе этих методов лежит эффект Фарадея любое прозрачное вещество, помещенное в магнитное поле, вращает плоскость поляризации при прохождении через [c.43]

    Згарубежные 4 фмы "Миллипор (США) и "Райхельт Хемитехник (ФРГ) изготовляют мембраны методом так называемых следов адер-ных частиц. Прозрачные пленки толщиной 10 мкм из поликарбоната или полиэфира подвергаются интенсивной обработке заряженными частицами в адерном реакторе. [c.122]

    В докладе обсуждается методика измерения термодинамических параметров углерода на основе исследования оптико-акустических с налов при импульсном лазерном нагреве. Воздействие коротких лазериьк импульсов через оптически прозрачную и акустически жесткую среду на поверхность образш приводит к динамическому изменению температуры и давления в зоне воздействия. При значениях интенсивности лазерного пучка Ф - 1-10 Дж/см достижима область значений термодинамических параметров Р 10 -10 Па, Т 10 -10 К. Измерение генерируемьга при этом акустических импульсов позволяет определить абсолютные значения давления в зоне воздействия. В свою очередь, измерение излучения поверхности скоростным пирометром позволяет определить температуру. Таким образом, одновременные измерения P(t), T(t) позволяют проследить за изменением термодинамического состояния в динамике импульсного воздействия. Особенности этих зависимостей несут информацию об условиях фазовых переходов, в частности, фафит - жидкий углерод. [c.107]

    Совершенно отлично соотношение между воспроизводимостью и абсолютной точностью измерений интенсивности (Г, Е) полос поглощения и соответственно их формы и ширины. Современные серийные спектрофотометры позволяют быстро и с хорошей воспроизводимостью (от нескольких процентов до долей процента) измерить прозрачность Т или погашение Е испытуемого образца в зависимости от частоты. Однако эти величины зависят не только от образца, но и от характеристик примененного спектрального прибора и условий измерений и не могут отождествляться с соответствующими истинными величинами — характеристиками исс-чедуемого образца и только образца. Расхождения между измеренными на различных приборах или в различных условиях спектрами одного и того же вещества могут на порядки величин превосходить невоспроизводимость измерений. Например, если вычислить коэффициенты погашения в максимуме полос по приведенным [c.493]

    Изучение спектров поглощения различных парафинов (от пропана до гептана) в ходе их медленного окисления Эгертон начал еще в 1933 г. совместно с Пидженом [14]. В этой ранней работе было найдено, что хотя сами углеводороды прозрачны во всей кварцевой ультрафиолетовой области, но по ходу медленного их окисления в спектрах наблюдается поглощение. При этом для такого углеводорода, как, нанример, пропан, поглощение отсутствует на протяжении всего периода индукции. Впервые возникает оно сразу после окончания периода индукции в виде сплошного интенсивного поглощения в далеком ультрафиолете. Лишь после этого, т. е. на дальнейшей стадии окисления, в спектре появляются полосы поглощения в области от 3200 до 2800 А. Эти последние вполне совпадают с хорошо известным спектром поглощения формальдегида. Сложнее обстоит вопрос с установлением природы вещества, обусловливающего сплошное поглощение в далеком ультрафиолете. Такое поглощение дают как пе-рекиспые соединения, так и органические кислоты. Поэтому авторы провели специальные опыты по сопоставлению интенсивностей сплошного поглощения, измеренного, во-нервых, при медленном окислении парафинов, и, во-вторых, при исследовании спектра кислот, взятых в концентрациях, в которых они возникают при этом окислении. Оказалось, что сплошное поглощение в далеком ультрафиолете в основном связано с образованием кислот. Только нри окислении бутана было найдено, что оно сильнее, чем то поглощение, которое вызывается получающимися в этом случае кислотами. [c.148]

    Здесь Т — пропускание вэображения на фотопластинке /, / — соответ ственно интенсивности света, прошедшего через прозрачное место фотопМ стинки и через изображение ао, а — соответствующие отбросы по шкале гальванометра. [c.123]

    Смешивают 2 см 1%-ного раствора USO4, 2 см 5%-<ного раствора NH4OH, 1—4 MI 0,4%-ного водного раствора гуммиарабика, 100 см воды и 2 см 1%-ного раствора гидрата гидразина. Смесь осторожно нагревают почти до кипения в колбе Эрленмейера, которую ставят на проволочную сетку. Следует избегать встряхивания раствора. Через 1 —10 ми,н раствор приобретает слабую краоную окраску, которая затем быстро становится интенсивной. При правильном ходе синтеза получают ярко-красный прозрачный золь меди. Если получается коллоид зеленого цвета или мутный со смешанной окраской, это означает, что гидрат гидразина уже не оказывает необходимого действия. [c.568]

    Зависимость интенсивности поглощения света образцом вещества от длины волны называется спе1Стром поглощения вещества. Видимый спектр поглощения прозрачных образцов, например раствора транс-[Со(ЫНз)4С12], можно изучить при помощи показанной на рис. 23.19 установки. На рис. 23.20 приведен спектр поглощения комплекса Т (Н20)й , о котором речь пойдет в следующем разделе. Максимум интенсивности [c.389]

    Планктон и бентос принимают активное участие в переработке загрязнений сточной жидкости. Жидкость, очищенная в прудах, обладает высокой прозрачностью, но содержит обильный планктон. Очищенная вода имеет низкую концентрацию органических веществ (БПКиолн снижается до 5—6 мг/л), низкое содержание азота аммонийных солей и сильное снижение числа бактерий. Интенсивность процессов очистки возрастает с повышением температуры и уменьшается с ее понижением. [c.311]

    Электронные спектры веществ снимают в растворе. В качестве растворителей применяют жидкости, наиболее прозрачные в УФ-области. Обычно это вода, этиловый спирт, гексан, ацетонитрил. Если концентрация исследуемого вещества (с) выражена в молях на литр, а толщина поглощающего слоя с1) - в сантиметрах, то интенсивность монохроматического светового потока (7), прошед-1пего через слой раствора, по закону Бугера Ламберта - Вера (основной закон светопоглощения) равна  [c.273]

    Взаимодействие света с веществом зависит от соотношения длины волны света и размеров частиц, на которые падает световой поток. Это взаимодействие происходит по законам геометрической оптики (отражение, преломление), если размеры объекта больше длины волны света. Если размеры частиц меньше половины длины волны света, то происходит рассеивание света в результате его дифракции. Область видимого света характеризуется длиной волн от 760 до 400 нм. Поэтому в молекулярных и коллоидных системах видимый свет рассеивается, а в проходящем свете эти растворы прозрачны. Наибо.льшей интенсивности рассеивание света достигает в коллоидных системах, для которых светорассеяние является характерной качественной особенностью. Обнаружение в растворе пути луча источника света при рассматривании раствора перпендикулярно к направлению этого луча позволяет отличить коллоидный раствор от истинного. На этом же принципе основано устройство ультрамикроскопа, в котором наблюдения проводят, в отличие от обычного микроскопа, перпендикулярно направлению проходящего через объект света. Схема поточного ультрамикроскопа Б. В. Дерягина и Г. Я. Власенко приведена на Рис. 10.6. Схема поточного ультрами-рис. 10.6. с помощью этого прибора кроскопа В. В. Дерягина и Г. Я. Вла-определяют концентрацию дисперс- сенко 1 — кювета 2 — источник света ных частиц в аэрозолях и коллоид- 3 — линза 4 — тубус микроскопа, ных растворах. [c.297]

    СПОДУМЕН (трифан) иЛ1 (81 0 ) -минерал, алюмосиликатлития. С/ образует крупные продолговатые кристаллы, иногда достигающие 15 м длиной. В катодных лучах С. интенсивно люминесци-рует ярким желто-оранжевым светом. С. является основной рудой для получения металлического лития и его солей. Прозрачные, красиво окрашенные разновидности С. используют как драгоценные камни. С. применяют также в электроке-рамической промышленности, в производстве стекла, как люминофор. [c.235]

    Препарат, подлежащий исследованию под микроскопом 1 осве-чивающего типа, должен быть прозрачным для электронов. Поглощение электронов недопустимо, так как может вызвать перегрев и разрушение препарата. Электроны, проходя сквозь препарат, соударяются с атомами вещества и вследствие этого рассеиваются. Угол, на который отклоняются при этом электроны, изменяется в зависимости от плотности и толщины препарата. Тонкие участки препарата меньше рассеивают электроны, поэтому проходящий через них плотный пучок частиц вызывает интенсивное свечение этих мест объекта на экране. Наоборот, толстые и плотные участки препарата рассеивают значительную часть проходящих через них электронов на большие углы, в результате этого они отсекаются апертурной диафрагмой объективной линзы и не попадают на экран. Такие участки препарата на экране имеют серую и темную окраски. [c.132]


Смотреть страницы где упоминается термин Интенсивность прозрачность: [c.318]    [c.178]    [c.90]    [c.557]    [c.495]    [c.595]    [c.26]    [c.544]    [c.396]    [c.84]   
Крашение пластмасс (1980) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

прозрачный



© 2024 chem21.info Реклама на сайте