Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формальная кинетика и термодинамика

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и предельное значение адсорбции (Г ), константа скорости химического акта (/гуд), а также константы, характеризующие процессы массопереноса (О, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость и куц от строения и свойств катализатора и реагирующих молекул. Проблема эта очень сложная и далеко еще не решенная. [c.654]


    ФОРМАЛЬНАЯ КИНЕТИКА И ТЕРМОДИНАМИКА [c.11]

    Решение этой задачи важно в двух отношениях. Бо-первых, предельный переход (3.52) при К = N формально можно рассматривать как условие необходимости того, что кинетическая модель правильно аппроксимирует реальный процесс, поскольку решения для у по (3.53) (т. е. термодинамическим образом) и решения для по (3.14) при i ->оо (т. е. кинетическим образом) должны с очевидностью тождественно совпадать, что означает проверку кинетики термодинамикой. Во-вторых, знание равновесных составов и свойств необходимо для ряда практических приложений, о чем свидетельствует обширная справочная литература. [c.151]

    Пособие знакомит учащихся с основными положениями химической термодинамики и формальной кинетики. [c.2]

    Главный вывод, который можно сделать как из общих соображений,так и анализа теоретических разработок, заключается в принципиальной несовместимости спонтанного, быстрого и безошибочного свертывания беспорядочно флуктуирующей белковой цепи в строго детерминированную трехмерную структуру, с одной стороны, и используемого для изучения этого явления аппарата классической равновесной термодинамики и формальной кинетики, с другой. Ни в одной работе по моделированию процесса структурной самоорганизации белка не обращено внимание на "противоестественность", с точки зрения этого аппарата, самого феномена спонтанного возникновения высокоупорядоченной структуры из беспорядка. [c.84]

    Если же обратиться к проблеме белка - главному предмету нашего рассмотрения, то приходится констатировать, что становление нелинейной неравновесной термодинамики прошло практически незамеченным для составляющих эту проблему задач, в том числе задачи структурной организации белковых молекул - исходной в логической цепочке, связывающей строение белка с его функцией и структурами надмолекулярных систем. Между тем предпринимаемые уже в течение трех десятилетий попытки подойти к решению вопроса, используя эмпирические подходы, равновесную термодинамику и формальную кинетику, неизменно терпят неудачу. Оставаясь нерешенной, структурная задача сдерживает рассмотрение всех последующих и создание теоретической молекулярной биологии - науки, столь же необходимой для понимания процессов жизнедеятельности, как молекулярная физика и квантовая химия для трактовки физических и химических свойств органических и неорганических низкомолекулярных соединений. А. Сент-Дьердьи писал "Мы действительно приблизимся к пониманию жизни только тогда, когда наши знания обо всех структурах и функциях на всех уровнях - от электронного до надмолекулярного - сольются в единое целое", и далее "...одним из основных принципов жизни является организация мы понимаем под этим, что при объединении двух вещей рождается нечто новое, качества которого не адекватны и не могут быть выражены через качества составляющих его компонентов" [37. С. 11-12]. [c.89]


    Физическая химия по мере своего развития переходит от феноменологического, макроскопического описания явлений (термодинамика, электрохимия, формальная кинетика) к микроскопическому , молекулярному. Так, развитие статистической физики позволило дать практические методы нахождения ряда термодинамических величин. Микроскопическое описание твердого состояния позволило глубже понять электрохимические и поверхностные явления и некоторые особенности гетерогенного катализа. Исследование молекулярных пучков способствовало превращению химической кинетики в одну из наиболее развитых областей физической химии. Поэтому большинство разделов физической химии включает две части старую и новую подобное раздвоение неизбежно отражается на построении курса физической химии. [c.7]

    Пользуясь упрощенными представлениями о механизме процесса, которые, впрочем, совершенно правомочны как с точки зрения термодинамики, так и с позиций формальной кинетики, процессы, развивающиеся на [c.69]

    К сожалению, до последнего времени в монографиях и курсах по теории металлургических процессов используется с той или иной полнотой и строгостью лишь одна сторона физикохимического анализа, а именно термодинамическое учение о равновесии. При этом почти полностью игнорируется, за редкими исключениями, термодинамика поверхностных явлений и статистическая термодинамика. Только в отдельных случаях применяется формальная кинетика молекулярно-кинетический метод обычно не затрагивается. [c.7]

    Наконец, несколько слов о перспективах. Общая схема химической кинетики разработана прежде всего для энергетически равновесных и идеальных систем. Вместе с тем представляется, что в первую очередь она может быть распространена на кинетику неравновесных процессов [327, 393]. Несомненно, перспективным будет выделение общих мест в близких областях деятельности, что приведет к их взаимному обогащению. Этому способствовало бы включение в курсы химической кинетики [54, 270, 319,425,427 и термодинамики, статистической физики и физической кинетики [20, 50, 235,246,271,377] новых результатов, которые получены в рамках формальной кинетики [167, 169,436,437]. Три не являются движущей силой развития исследований в химической кинетике и макрокинетике — это нелинейность, нестационарность и неидеальность. Причем каждое из этих не не является неделимым, каждое из них структурируется и является сложным. [c.237]

    Гл. 1 традиционно посвящена формализму кинетики элементарных реакций п вопросам термодинамики, поскольку знание формального аппарата кинетики и природы связи между кинетикой и термодинамикой совершенно необходимо для понимания существа возникающих проблем. Далее (гл. 2) рассматриваются различные аспекты физико-химического подхода, связанные в основном с микроскопической частью проблемы описания сложных химических процессов. Универсальный последовательный анализ — его структура и этапы — обсуждается р гл. 3, [c.8]

    Поскольку коллоидные системы, обладающие большой удельной поверхностью и большой свободной энергией, являются принципиально неравновесными системами, к ним неприложимо известное правило фаз. Такие системы, очевидно, всегда будут стремиться к равновесному состоянию, отвечающему разделению системы на две сплошные фазы с минимальной межфазной поверхностью, хотя это равновесие практически может никогда и не наступить. Термодинамическое толкование причин устойчивости или неустойчивости коллоидных систем чрезвычайно просто. Однако, как и всякая термодинамическая трактовка, это объяснение формально, т. е. она не раскрывает сущности свойства агрегативной неустойчивости. Кроме того, термодинамика не устанавливает связи между свободной энергией системы и тем, как долго система может пребывать в неравновесном состоянии. Поэтому более полным в данном случае является объяснение агрегативной неустойчивости или устойчивости коллоидных систем с позиций физической кинетики.  [c.19]

    Электрический разряд в газе, как и всякое сложное явление, может быть исследован и описан с двух точек зрения. Во-первых, могут быть выяснены общие макроскопические зависимости, определяющие свойства разряда в целом. Во-вторых, можно попытаться объяснить эти общие закономерности с помощью детального механизма проходящих в разряде элементарных процессов. Первый, феноменологический, путь является естественным, начальным этапом любой теории. Второй путь должен обосновать, опровергнуть или, наконец, дополнить и расширить выводы, полученные первым путем. Нет необходимости объяснять, например, с помощью аналогий с термодинамикой или формальной химической кинетикой, что общие феноменологические закономерности могут отклоняться от реально существующих. От феноменологической теории можно требовать только того, чтобы она не содержала внутренних противоречий, т. е., чтобы основанные на опыте предпосылки теории не входили в противоречие с выводами из нее в целом. Это нисколько не обесценивает значения такой теории в они-сании конкретных явлений, а напротив, является преимуществом перед любой детальной теорией, как правило, основанной на принятии той или иной модели и, следовательно, ограниченной в своей истинности адекватностью этой модели с реальным процессом. В электротехнике общие феноменологические свойства электрических приборов принято изображать в виде эквивалентных схем, которые позволяют производить расчет приборов, так как эти схемы состоят из простых элементов и отображают прибор только как источники или потребители электрической энергии, но не являются его моделью [30]. Как отмечалось выше, химическое дейст- [c.80]


    Многие читатели, вероятно, давно уже обращали внимание на одну особенность некоторых отраслей науки — таких, как гидродинамика, термодинамика, теория теплопроводности и диффузии, реология, формальная химическая кинетика и ряд других. Свойства вещества в них описываются так, как будто оно не состоит из молекул. [c.42]

    Таким образом, использование приемов и методов формальной химической кинетики при применении соответствующего математического аппарата в общем дает удовлетворительное совпадение между расчетными и экспериментальными данными. Это является важным доказательством принципиальной возможности использования метода формальной химической кинетики для описания поведения биологических систем. Однако степень адекватности таких математических моделей зависит от того, насколько полно учтены реакции метаболизма, протекающие в микробных клетках. Химическая кинетика не может быть рассмотрена в отрыве и без учета стехиометрических соотношений реагирующих компонентов и термодинамики. Поэтому если будут изучены все особенности реакций в микробных клетках, приводящих к увеличению биомассы популяции, а также все изменения в величинах констант скоростей реакции в цепях метаболических процессов, возникающие в ответ на увеличение биомассы популяции и изменения в составе культуральной жидкости, то принципиально возможно будет описать такое явление строго в терминах химической кинетики. Однако трудно представить, какое количество уравнений отдельных реакций потребуется в данном случае для описания такой системы и сколько машинного времени потребуется для расчета того или иного параметра. Можно полагать, что такая математическая модель потеряет все преимущества математического моделирования и в общем-то будет бесполезной в практическом отношении. С другой стороны, если пытаться описать рост популяции лишь незначительным числом избранных кинетических уравнений конкретных изученных реакций метаболизма и сводить к ним весь процесс, то всегда [c.95]

    В основе химической технологии лежат химические, физические и физико-химические закономерности. Пользуясь этими закономерностями, производят разного рода расчеты технологических процессов. Уравнения химических реакций применяются в технологии, главным образом, для стехиометрических и термохимических расчетов. Эти уравнения, однако, большей частью отражают лишь начальное и конечное состояние системы и притом в известной степени формально, так как основаны на предпосылке, что процесс идет до конца и не осложнен побочными процессами между тем на практике это наблюдается сравнительно редко. Соответствующие указания, поправки и дополнения вносит термодинамика, показывающая, в каком направлении может протекать процесс прн данных физико-химических условиях, каков будет его энергетический эффект и какой степени достигнет превращение, т. е. каково будет конечное состояние системы. Не меньшее значение имеет кинетика реакций, которая, наряду с другими физико-химическими данными, позволяет во многих случаях определить эффект технологического процесса во времени и наметить пути для его ускорения, т. е. для повышения его интенсивности. [c.60]

    Динамика закрытых химических систем, для которых могут записаны термодинамические функции Ляпунова к настоящему времени может быть представлена в наиболее законченном виде. Более того, как показано в [169], аппарат термодинамических функций Ляпунова работает и для распределенных систем. Поэтому химическая динамика закрытых и изолированных систем может быть изложена как стройная и плодотворная теория, объединяющая формальную химическую кинетику и термодинамику. [c.65]

    Эмпирическое направление, рассмотрение которого было начато во втором томе настоящего издания, базируется на данных статистического анализа известных кристаллических структур белков, равновесной термодинамики, формальной кинетики и концепциях Полинга-Кори и Козмана, т.е. исходит из предположения об исключительной роли в сборке гетерогенной аминокислотной последовательности регулярных вторичных структур и представления о гидрофобных взаимодействиях как главной упаковочной силе. Считается, что по сравнению с множеством мыслимых нерегулярных локальных структур вторичные структуры являются самыми стабильными их возникновение, инициирующее процесс и обусловливающее дальнейшее его развитие, осуществляется с наибольшей скоростью. Благодаря гидрофобным взаимодействиям вторичные структуры образуют супервторичные, т.е. полярные остатки стремятся расположиться на внешней оболочке глобулы, а неполярные - в ее интерьере. Идеальная модель трехмерной структуры белка, согласно эмпирическому подходу, должна представлять собой ансамбль вторичных и супервто-ричных структур и иметь гидрофобное ядро, экранированное от водной среды гидрофильной оболочкой. Процесс создания такой модели из статистического клубка должен быть равновесным фазовым переходом первого рода, подчиняющимся классической термодинамике, статистической физике и формальной кинетике так же, как им подчиняются процессы кристаллизации малых молекул и образования линейных спиральных сегментов гомополипептидов. [c.6]

    Имеется еще одно возражение против гипотезы о расплавленной глобуле, использующейся вместе с аппаратом равновесной термодинамики и формальной кинетики для объяснения экспериментальных фактов. Конкретной теоретической основой интерпретации данных о денатурации служит термодинамическая теория двух состояний Брандтса [12, 13]. Как уже отмечалось, белковая молекула в растворе, согласно этой теории, может быть представлена большим количеством микросостояний. Все они входят в состав либо распределения N (нативное макросостояние белка), либо О (денатурированное макросостояние). Теория Брандтса сделала возможным относительно простой термодинамический анализ конформа-ционного перехода N — О в предположении, что реализующиеся микросостояния не являются чем-то вновь созданным, а присутствуют в распределении N и О. Это означает, что в теории постулируется отнюдь не очевидное положение об отсутствии новых промежуточных конформационных состояний в области перехода N - О. Следовательно, главный критерий справедливости теории двух состояний Брандтса состоит в требовании отсутствия максимумов, минимумов и потенциальных ям в наблюдаемых изменениях энтальпии и энтропии при переходе от О к N (и наоборот). Иными словами, если образование трехмерной структуры белка происходит, как того требует теория двух состояний, путем постоянного усложнения и приближения к нативному состоянию, то изменения энтальпии, энтропии и свободной энергии по ходу ренатурации должны быть монотонными. Отсутствие экстремумов означает отсутствие между нативной структурой и статистическим клубком метастабильных промежуточных состояний. Механизм сборки белка проходит в этом случае в одну стадию. А теперь обратимся вновь к обсуждаемой гипотезе о расплавленной глобуле в которой постулируется образование на пути к нативной структуре близкое к ней промежуточное состояние. При существовании достаточно устойчивых обнаруживаемых экспериментально интермедиатов зависимости изменений энтальпии, энтропии и свободной [c.85]

    Исследование процесса ренатурации барназы Ферштом и соавт. [31-33] (как и панкреатического трипсинового и ингибитора Крейтоном [29, 30]) подробно изложено во втором томе издания "Проблема белка" [2. Ч. III]. Анализ результатов привел к заключению, что первая попытка воссоздать на уровне отдельных аминокислотных остатков количественную картину всего пути свертывания белка, не содержащего дисульфидные связи, не достигла желаемой цели. Декларированный Ферштом порядок ренатурации не является неизбежным следствием объективного рассмотрения, а представляет собой один из многих правдоподобных вариантов. Принципиальное возражение заключается в несоответствии равновесной термодинамики и формальной кинетики - теоретической основы эмпирического подхода Фершта - сугубо неравновесному характеру процесса структурной самоорганизации белка. [c.88]

    Таким образом, к началу XX в. была создана формальная кинетика, основанная на применении кинетической теории газов и термодинамики, которая занималась изучением специфики протекающих реакций (структурнокинетических закономерностей, влияния растворителя и температуры, механизмов реакций). Но прогностические возможности формально-кинетических теорий в 1900— 1910-х годах были в основном исчерпаны. Речь идет именно о теориях формальной кинетики, а не об основополагающих понятиях, таких, как, например, константа скорости реакции, энергия активации и т. д. [c.152]

    Привлечение к проблеме свертывания белка сайт-направленного мутагенеза и использование уравнений равновесной термодинамики и формальной кинетики позволили Фершту и соавт. предпринять попытку решить две задачи. Первая из них основывалась на опытных значениях констант равновесия и заключалась в определении вызванных мутациями изменений в стабильности основных состояний белковой цепи. Ее цель состояла в установлении эмпирических соотношений между глобальной свободной энергией и энергией невалентных взаимодействий боковых цепей в различных областях белковой глобулы [133]. Вторая задача исходила из результатов кинетических измерений процессов свертывания и развертывания нативного белка и мутантов и имела цель обнаружить изменения энергии промежуточных состояний и энергии активации (рис. П1.16). Различия в энергетических уровнях промежуточных (AAGj) и переходных (ДДО ) состояний помогали определить их положения на пути структурной самоорганизации белковой цепи. При этом каждая аминокислотная замена служила своеобразной репортерской меткой наблюдаемого изменения, происходящего на мутированном участке по ходу ренатурации или денатурации. [c.390]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    Уже в 20-х гг. возникла потребность выделить нек-рые вопросы современной физики и химии в определенную новую научную область с целью постановки задач исследования и подытоживания полученных результатов. Советские физики вначале назвали эту область электронной химией. Под этим названием в 1927 вышла в Советском Союзе одна из первых книг, освещающая рассматриваемый круг вопросов, написанная В. Н. Кондратьевым, Н. И. Семеновым и Ю. Б. Харитоном. В 1930 эта новая пограничная между физ1щой и химией область была названа Эйкеном. X. ф. Под таким наименованием вышел написанный им учебник. В 1931 в Советском Союзе был создан первый научно-исследовательский институт химпч. физики. Появились новые журналы для печатания работ, посвященных развитию новой науки в 1928 возник раздел Б нем. журнала физич. химии, а в 1933 — амер. журнал химич. физики. Так шел процесс оформления новой научной области. В период возюшновения и первоначального развития X. ф. водораздел между ней и физической химией был довольно отчетлив. Классическая физич. химия, начиная со 2-й половины 19 в., сформировалась в совершенно определенную науку, характеризующуюся широким применением термодинамики и молекулярной статистики к ряду хпмич. явлений. Следует отметить, что термодинамика, классич. молекулярная статистика и электродинамика являлись основными и наиболее успешно развивавшимися разделами физики 2-й половины 19 в. Физич. химия включала след, основные разделы формальное учение об агрегатных состояниях и явлениях адсорбции, учение о растворах, термохимию и химич. термодинамику, электрохимию, коллоидную химию и в очень узком, и в значительной мере формальном, разрезе химич. кинетику. В основном физич. химия занималась вопросами равновесных состояний и квазиравновесных процессов. Круг вопросов физич. химии был существенно отличен от основных вопросов органич. и неорганич. химии, изучавших преим. строение и реакционную способность химич. соединений. [c.319]

    Кроме упомянутых сюда относятся теория упругости, реология, теория теплопроЕОдности и диффузии, химическая термодинамика, формальная химическая кинетика и ряд других. [c.14]

    Поэтому в химии протона рассматриваются в основном следующие вопросы а) существование протона в сольватированной форме б) перенос протона от одного типа ионов или молекул к другому в кислотно-основных реакциях в) перенос протона при электро-лроводности в слабом поле и г) гетерогенный перенос в электродных процессах, включающих выделение молекул, образование Н-спла-вов (например, систем а- и Р-Рс1Н), и в других гетерогенных электрохимических реакциях с присоединением или отрывом протона, например в стадиях выделения кислорода на электродах и при электрохимическом восстановлении органических соединений. Очевидно, что кинетика указанных процессов, в которых возможен туннельный переход протонов, будет в значительной степени определяться термодинамикой и молекулярным механизмом сольватации. Характерной особенностью процессов переноса протона является также и то, что в них формально участвует только протон ядра, в то время как почти во всех химических реакциях с участием других атомов в образовании переходного комплекса принимает участие ядро вместе с окружающими его электронами. Вследствие [c.55]


Смотреть страницы где упоминается термин Формальная кинетика и термодинамика: [c.8]    [c.83]    [c.484]    [c.106]    [c.83]    [c.484]    [c.7]    [c.11]   
Смотреть главы в:

Простая кинетика -> Формальная кинетика и термодинамика




ПОИСК





Смотрите так же термины и статьи:

Кинетика формальная



© 2025 chem21.info Реклама на сайте