Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные ионы фрагментация

    Масс-спектрометрия основана на ионизации молекул при воздействии пучка электронов на образец. При распаде (фрагментации) образующегося положительно заряженного молекулярного иона возникает смесь полол<ительных ионов, которая затем ускоряется и разделяется в сильном магнитном поле на [c.26]

    Достоинства метода ионизации сложных смесей фотонами при энергии 10,2 эВ рассмотрены в работе [199]. Эти же авторы применили фотоионизационную масс-спектрометрию по методике молекулярных ионов для анализа высоко- и низкокипящих фракций нефти [189]. Такая техника близка к низковольтной масс-спектрометрии электронного удара, но благодаря изменению характера физического взаимодействия с веществом при переходе от электронов к фотонам и сохранении интенсивного пика молекулярных ионов, повышается доля наиболее энергетически выгодных (обычно наиболее ценных для структурного анализа) первичных процессов фрагментации. Ионизация фотонами в сочетании с химической ионизацией [200] была применена для получения отпечатка пальцев и частичного количественного анализа смесей аренов и алканов. [c.135]


    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]

    Количество внутренней энергии, приобретенное молекулой при взаимодействии с ионизирующим электроном, зависит от энергии электрона и характера его взаимодействия с молекулой. Энергии ионизации большинства органических молекул лежат в пределах 7-10 эВ. Для получения масс-спектров используют электроны с энергией выше 20 эВ (чаще всего 70 эВ), поэтому полученные в таких условиях молекулярные ионы имеют большой избыток энергии электронного или электронного и колебательного возбуждения. Избыток энергии колебательного возбуждения и приводит к разрыву связей, т.е. к фрагментации молекулярных ионов. [c.8]


    Масс-спектры ангидридов во многих случаях не имеют пика молекулярного иона. Фрагментацию ациклических ангидридов часто можно предсказать они распадаются так же, как и карбоновые кислоты  [c.315]

    По мере увеличения энергии электронного пучка вероятность ионизации при столкновении возрастает и возникают пики с большей интенсивностью. При дальнейшем росте энергии электронов большая ее часть передается образующемуся молекулярному иону. Она может быть настолько большой, что в ионе рвутся связи, и происходит фрагментация частицы. Ускоряющий потенциал бомбардирующего электрона, которого только-только хватает для начала фрагментации, называется потенциалом возникновения фрагментарного иона. Если энергия электрона достаточно высока, то в молекуле может происходить разрьш более чем одной связи. Следующая последовательность реакций описывает процессы с участием гипотетической молекулы В — С — О — Е, когда она бомбардируется электронами  [c.318]

    Простой разрыв связей в молекулярных ионах возможен в -положениях к разветвлению цепи, а при наличии в молекуле кратной связи или системы кратных связей (бензольное кольцо) преобладает разрыв связей в Р-поло-жениях к кратной (фрагментация ал-лильного или бензильного типа), так как образующиеся катионы эффективно стабилизируются сопряжением. Аналогичный р-распад наблюдается, если молекула содержит гетероатомы, имеющие неподеленные пары электронов. В этом случае образуются стабильные ониевые ионы  [c.177]

    Ионизация и фрагментация органических соединений в сильном электрическом поле (полевая ионизация) представляет собой комбинацию трех процессов 1) распад молекулярных ионов, получивших избыточную энергию от электрического поля по закономерностям, сходным с фрагментацией при электронном ударе 2) рас- [c.134]

    По современным представлениям фрагментация молекулярных ионов и, следовательно, вид масс-спектров определяются в основном их внутренней энергией (зависящей от энергии ионизирующих электронов), местом локализации заряда и стабильностью образую- [c.176]

    Вопросы интерпретации масс-спектров выходят за рамки настоящего руководства и подробно изложены в специальных монографиях [65, 66]. Кратко следует отметить, что в хромато-масс-спектрометрии в настоящее время основным приемом анализа полученной информации является масс-спектрометрическая идентификация, т. е. поиск в больших массивах данных масс-спектров, лучше всего совпадающих со спектрами определяемых соединений, осуществляемый с помощью ЭВМ. Существуют способы предварительной групповой идентификации, т. е. определения на первой стадии анализа масс-спектра гомологического ряда вещества [66] с последующим уточнением его структуры с учетом известных закономерностей фрагментации данного ряда. Однако в хромато-масс-спектрометрии особый интерес представляют методы совместного использования для идентификации как газохроматографических, так и масс-спектрометрических характеристик. Действительно, все типы параметров удерживания, обсуждаемые в разделе III.2.2, могут быть определены в ходе хромато-масс-спектрометрического анализа одновременно с регистрацией масс-спектров. Если в спектре неизвестного вещества регистрируется пик молекулярных ионов, то вычисление так называемых гомологических инкрементов индексов удерживания позволяет уточнять результаты групповой идентификации, что важно для соединений разных классов, обладающих практически одинаковыми закономерностями фрагментации [64]  [c.203]

    Анализ области молекулярного иона. Обнаружение в спектре пика молекулярного иона является важнейшей предпосылкой успешной интерпретации масс-спектра. Поэтому для более надежной регистрации слабых пиков М+- иногда повторно записывают масс спектры при относительно малой энергии ионизирующих электронов (10— 15 эВ), незначительно превышающей потенциалы ионизации большинства органических соединений (7—12 эВ), когда глубина фрагментации меньше, чем при 70 эВ. [c.182]

    При обычной энергии ионизации (70 эВ) интенсивность пика молекулярного иона М- , претерпевающего последующие реакции, уменьшается. Поэтому максимальный пик в спектре — не всегда ппк М- . К тому н е и пик с наивысшей массой может не соответствовать М- , так как а) возможна полная фрагментация М и б) наличие изотопов приведет к образованию меньших по интенсивности пиков с величинами т е, равными М + 1, М + 2 и т. д. В спектре эти изотопные пики и будут пиками с наивысшими массами. Тщательное рассмотрение рис. 28-14 позволяет обнаружить такие пики с т е выше 136. [c.524]

    Признаком пика молекулярного иона (или группы пиков — см. далее) служит наибольшая среди всех пиков спектра масса (за вычетом сигналов фона). Большинство органических соединений характеризуется четной молекулярной массой, а по нечетной сразу опознаются вещества с нечетным числом атомов азота в молекуле (так называемое азотное правило ). Кроме того, разность массовых чисел пика М+ и ближайших к нему пиков осколочных ионов обычно не может принимать значений в интервалах 4—14 и 21—24 (при фрагментации большинства органических соединений отщепление частиц с такой массой невозможно). Обнаружение пиков с разностью массовых чисел в указанных интервалах свидетельствует либо о том, что предполагаемый пик не относится к иону М+-, либо исследуемый образец является смесью веществ. [c.182]


    Фрагментация ацетатов полиолов такого типа относительно проста. Она включает первичные ионы, образующиеся путем разрыва С—С-связей углеродного скелета, а также отщепления СНдСОО . Зная массу таких осколков и массу молекулярного иона, легко составить пред- [c.70]

    В большинстве случаев масс-спектры получают при энергии 70 эВ, т.е. в области насыщения. Это позволяет обеспечить наибольшую чувствительность прибора и получение воспроизводимых результатов. Работа при энергии до 30—40 эВ, т.е. на участках крутого подъема, не дает воспроизводимых результатов, поскольку небольшое изменение энергии ионизирующих электронов ведет к заметным колебаниям интенсивности ионного тока. Однако в ряде случаев для аналитических целей используют масс-спектры, полученные при низких энергиях электронов (низковольтные масс-спектры), например, для идентификации молекулярного иона при низкой интенсивности его пика в высоковольтном масс-спектре. В низковольтных масс-спектрах вследствие резкого уменьшения фрагментации увеличивается доля молекулярных ионов в полном ионном токе. Для иллюстрации сказанного выше на рис. 2.3 приведены масс-спектры бензойной кислоты, полученные при различной энергии ионизирующих электронов. Этот пример свидетельствует о том, что снижение энергии электронов дает возможность идентифицировать молекулярный ион, особенно в том случае, когда интенсивность его пика в масс-спектре невелика. [c.20]

    Ион М+ называют молекулярным ионом, поскольку его отношение массы к заряду соответствует молекулярной массе Мг исследуемого соединения. В основном в результате ЭУ образуются однозарядные ионы. В процессе ионизации электронным ударом образовавшемуся молекулярному иону передается избыточная энергия. Таким образом, ионы характеризуются распределением внутренней энергии, зависящим от свойств аналита и энергетических характеристик бомбардирующих электронов. Максимальная энергия, которая может быть передана при ионизации, равна разности между энергией электрона (обычно около 70 эВ) и энергией ионизации изучаемого соединения, которая обычно находится в диапазоне от б до 10 эВ (0,6-1 МДж/моль). Обычно средняя внутренняя энергия составляет около 2-6 эВ. Избыток внутренней энергии и радикальный характер молекулярного иона могут быть причиной мономолекулярной диссоциации, в результате которой образуются осколочные ионы, характерные для данной структуры. Далее приведены типичные реакции фрагментации молекулы М под действием электронного удара. Ионный фрагмент [c.260]

    В результате реакций переноса протона образуется протонированный молекулярный ион, обычно обладающий меньшей внутренней энергией и, следовательно, менее подверженный фрагментации, чем молекулярный ион, образовавшийся при электронном ударе. Номинальное значение тп/г этого иона соответствует + 1. [c.267]

    Фрагментация молекулярного иона представляет собой сложную сеть конкурирующих и последовательных реакций, выход которых определяется устойчивостью как исходных, так и образующихся ионов. Масс-спектр отражает результаты этих процессов. Устойчивость и интенсивность пиков молекулярного иона уменьшается в ряду  [c.291]

    Учитывая указанное выше значение методов мягкой ионизации и их использование в сочетании с тандемной МС, следует уделить внимание фрагментации протонированных молекул. В общем случае, можно сказать, что данный тип фрагментации изучен не столь глубоко и систематически, как ионизация электронным ударом. Общие правила совпадают со случаем ионизации электронным ударом, например в отношении устойчивости ионов. Однако в то время, как в случае ионизации электронным ударом молекулярные ионы с нечетным числом электронов могут фрагментироваться с образованием осколочных ионов, имеющих как четное, так и нечетное число электронов (уравнения 9.4-21 и 9.4-22), протонированные молекулы с четным числом электронов при фрагментации обычно теряют нейтральную частицу, а не радикал [c.297]

    Если энергия ионизирующих электронов равна энергии ионизации молекулы (см. гл. 1), которая для большинства органических соединений лежит в пределах 7-12 эВ, происходит ионизация. Вероятность протекания этого процесса возрастает с увеличением энергии электронов. Одновременно с ионизацией начинает происходить и фрагментация молекулярных ионов. Зависимость выхода молекулярных ионов (величина ионного тока) от энергии ионизирующих электронов, называемая кривой эффективности ионизации, приведена на рис. 2.2. Здесь же приведена аналогичная кривая и для фрагментного иона. Естественно, что эта кривая начинается при более высоких значениях энергии ионизирующих электронов, поскольку энергия появления фрагментных ионов всегда выше энергии ионизации. Кривые эффективности ионизации имеют участки крутого подъема ионного тока (обычно до энергии 30-40 эВ), за которыми следует область насыщения, где величина ионного тока практически не изменяется с возрастанием энергии ионизирующих электронов. [c.19]

    Другой, более общий, подход к анализу закономерностей фрагментации основан на представлениях о локализации заряда в молекулярных ионах. При их образовании наиболее вероятна потеря электронов с верхних занятых молекулярных орбиталей. Если молекула содержит гетероатомы, имеющие неподеленные пары электронов, или кратные связи, то такими орбиталями оказываются несвязывающие п-орбитали или связывающие л-орбитали, преимущественно локализованные на указанных фрагментах структуры. При наличии в молекуле систем сопряжения любого типа можно, однако, говорить о делокализации заряда в молекулярных ионах. Таким образом, можно достаточно определенно указать атомы или группы атомов, несущих в основном заряд молекулярных ионов, фрагментация которых чаще всего протекает по простым связям, ближайшим к месту локализации заряда. [c.43]

    Химическая ионизация. При химической ионизации (ХИ) вещество ионизируется при газофазной ион-молекулярной реакции. Для этого в источник ионов при относительно высоком давлении (0,01-2 мм рт.ст.) вводится газ-реагент (обычно метан, изобутан, аммиак или вода), из которого в результате ионизации под действием электронного удара генерируются ионы. Определяемые молекулы ионизируются непосредственно за счет ряда реакций с газом-реагентом, при которых во время столкновений на молекулы аналита переносится небольшая порция энергии с достаточно узким распределением. Это объясняет, почему ХИ часто называют мягким методом ионизации. Мягкая ионизация приводит к меньшей фрагментации и поэтому к большей интенсивности пиков молекулярных ионов по сравнению с ЭУ. Низкий [c.601]

    Молекулярные ионы в зависимости от избытка внутренней энергии находятся в различных возбужденных состояниях, что обусловливает различное время их фрагментации или диссо- [c.8]

    При ионизации полем образуются ионы [М]" , а иногда и ионы [М + Н]". Степень фрагментации ионов [М]" и [М -к Н]" обычно ниже, чем при ЭУ, поскольку в процессе туннелирования электрона молекулярный ион не переходит в высоковозбужденное состояние и не содержит достаточно энергии для интенсивной фрагментации. Изменение характера масс-спектра при переходе от ЭУ к полевой ионизации показано на примере лейцина (рис. 2.5,а и рис. 2.8,а). [c.29]

    Процессы фрагментации молекулярных ионов характеризуются значительным числом последовательных и конкурирующих направлений распада, вероятность которых определяется природой молекулы и элементов, ее составляющих, энергией разрывающихся связей, внутренней энергией образующихся [c.9]

    Осколочные фрагментные, или дочерние) ионы - это ионы, которые образуются при распаде молекулярных, псевдомолекулярных и кластерных ионов. Распад молекулярных ионов может протекать в результате гомолитического или гетеро-литического разрыва связей, а также в результате пере-группировочных процессов. Фрагментация молекулярных катион-радикалов (М" ) рассматривается в гл. 7. [c.57]

    Вероятность диссоциации ионов [М + Н]+ или [М-Н]+ значительно ниже, чем таковая молекулярных ионов, генерируемых ЭУ. Это связано с тем, что внутренняя энергия ионов, образующихся при ХИ, гораздо меньше, чем внутренняя энергия при ионизации электронами, и приближается к энергии ионов при реакциях в конденсированной фазе. Тем не менее есть примеры, когда фрагментация проходит довольно интенсивно. [c.25]

    Дифталоцианины актиноидов (IV) могут быть сублимированы в высоком вакууме практически без разложения при температуре 773— 873 К [129, 130]. Сообщается также о сублимации дифталоцианина тория при температуре 873 К в токе азота при атмосферном давлении. В масс-спектрах дифталоцианинов урана и тория присутствует интенсивный пик молекулярного иона фрагментация почти не наблюдается. [c.121]

    В последние годы — как и ранее — продолжают появляться работы, посвященные выявлению общих законом-ерностей фрагментации органических соединений под действием электронного удара с образованием положительных ионов [166, 167] и масс-спек-трам классов и типов соединений, встречающихся в нефтях. Впервые появилась монография, посвященная образованию и фрагментации отрицательно заряженных молекулярных ионов [168]. Можно рекомендовать и монографию [169], посвященную пиролитической масс-спектрометрии, которая успешно применяется к анализу неперегоняющихся органических составляющих нефти. Остается актуальной и книга [170], включающая статьи по молекулярной структуре нефти, анализу нефтяных фракций и масс-спектрам аренов. [c.131]

    При переходе от алканов к цикло-и полициклоал-канам с одинаковым Диелом атомов углерода вклад молекулярных ионов в суммарный ионный ток (обозначаемый символом Wm) обычно возрастает. Это связано с тем, что их фрагментация требует одновременного или постадийного разрыва двух связей С—С и более и обычно сопровождается глубокой перестройкой структуры. [c.177]

    В соединениях, содержащих гетероатомы и кратные связи, заряд ионов М+- локализован преимущественно на этих фрагментах, так как при ионизации теряются наименее прочно связанные электроны неподеленных пар гетероатомов и л-связей. Основные процессы фрагментации таких соеди-вений при электронном ударе затраги-нают ближайшие (а- или Р-) связи к месту локализации заряда. Образование и удлинение системы сопряжения в молекуле способствует делокализации заряда в молекулярных ионах и обычно приводит к увеличению их стабильности (возрастает значение д,). [c.177]

    Примерами таких процессов может быть образование ионов [М—Н2Н]+ при фрагментации арилгидразонов ароматических карбонильных соединений АгЫНЫ=СНАг, ионов [М—СОг] из молекулярных ионов метиларилкарбо-натов СН3ОСО2АГ и многие другие. [c.179]

    Параметр х характеризует положение частицы в гомологическом ряду и однозначно связан с числом атомов углерода в ней. В результате четыр-надцатиричное представление массового числа М в форме [х у) позволяет точно указать ограниченное число возможных брутто-фэрмул частиц с данной массой, а проблема идентификации исследуемого вещества сводится к выбору между структурами изобарных соединений. Решение этой задачи облегчается тем, что изобарные органические соединения разного состава и степени непредельности обычно значительно различаются по многим свойствам (в том числе и закономерностям фрагментации), так что для окончательного установления брутто-формулы могут оказаться полезными даже простейшие сведения о физических константах и качественном элементном составе. Весьма целесообразно использовать для этой цели рефрактометрические данные (см. гл. VII). Если пик молекулярного иона достаточно интенсивен и имеется возможность определения числа атомов углерода в молекуле ( г) по интенсивности изотопного пика 1М -Ь 11, то сопогтавлечие зна- [c.184]

    Дополнительную информацию о строении неизвестного вещества можно получить из масс незаряженных частиц, теряемых молекулярными ионами (характеристические разности). При этом следует учитывать, что большая часть органических соединений отщепляет при фрагментации алкильные радикалы и дает в спектрах ионы [М—Х1+, где X = СНз, С2Н5, С3Н7... Такие ионы не позволяют определять класс соединения, поэтому особое внимание при анализе разностей массовых чисел следует обратить на относительно редкие и поэтому наиболее информативные для установления класса вещества пики ионов ГМ—Х]+, где масса X не равна 15, 29, 43 и т. д., т. е. не принадлежит серии 1. В табл. ПХУП перечислены некоторые простейшие фрагменты (с массой до 50), теряемые молекулярными ионами, и указаны классы органических веществ, для которых они типичны. [c.185]

    В то же время пик [М—43] образуется только при отщеплении частиц, не содержащих азота (СзН, или СН3СО), так же как и пик [М—42] (СзНв или СН2СО). Сопоставляя состав фрагментов с массой 44 и 43, теряемых молекулярными ионами скорее всего в результате параллельных процессов фрагментации, можно оставить для дальнейшего рассмотрения лишь две возможные брутто-формулы  [c.190]

    Интенсивный молекулярный пик содержится в спектре только в том случае, если в результате электронного эффекта молекулярный нон стабилизирован. Так, в спектре ароматических соединений наблюдают большой молекулярный пнк, п то время как в спектрах соединений алифатического ряда интенсивность этого пика очень часто мала. Для алифатических углеводородов интенсивность молекулярного пика уменьшается от первичных к вторичным и третичным углеводородам такой последовательности благоприятствуют процессы фрагментации (см. ииже). В соответствии с увеличением стабильности молекулярные ионы можио приблизительно расположить в следующий ряд спирты<кислоты<амн-ны< сложные эфиры < простые эфиры < углеводороды с неразветвленион цепью<карбонильные соединения<алиииклические соединения<олефины <олефины с сопряженными связямн<ароматические соединения. [c.148]

    В масс-спектрах синтезированных триазинов присутствуют интенсивные пики молекулярных ионов. Основное направление распада 6-функционально замещенных 1,2,4-триазинов заключается в отщеплении заместителей в положении -6. Дальнейшее расщепление триазинового цикла происходит за счет элиминирования молекулы азота. Фрагментация оксо- и меркаптотриазинов происходит в двух направлениях, обусловленных наличием двух таутомерных форм - оксо- гидрокси и тиоксо-меркапто. [c.21]

    Закономерности фрагментации производных гомоадамантана под электронным ударом были использованы для интерпретации масс-спектров изомерных оксибисгомоадамантанов и получения из них углеводородов. Характер распада молекулярного иона этих соединений полностью соответствует приписываемым им структурам. [c.160]

    В масс-спектрах 4,5-дизамещенных ФД, как правило, имеется пик молекулярного иона [12, 14, 15, 17], а основное направление его фрагментации -выброс молекулы СО [12, 14, 17] с образованием ион радикала ацилкетена [КС0С(К )=С=0] . [c.366]

    Как показывают уравнения 9.4-3 и 9.4-4, фрагментация молекулярного иона может включать потерю радикала, в результате чего образуется четноэлектронный осколочный ион  [c.291]

    Ионизация определяемого вещества осуществляется либо путем химической ионизации с использованием растворителя, либо за счет термораспыления. В первом случае используются электроны с распылительного электрода или нити накала для ионизации молекул растворителя, что затем инициирует перенос заряда на определяемое вещество. Другой вариант основан на механизме ионного испарения из капель, в которые включен летучий растворитель. В зависимости от того, используется ли разрядный электрод, изменяется механизм ионизации, что сильно изменяет селективность. Ионное испарение обычно приводит к ионам [М-ЬН]" " для проб с высоким сродством к протону. Или же детектируются ионы [М4-КН4] , если в буфере присутствует, например в форме ацетата аммония. Если детектируют отрицательно заряженные ионы, обнаруживаются либо ионы [М+Н] , либо отрицательно заряженные кластерные ионы, образуемые молекулами определяемого вещества и растворителя или анионами буфера. Однако оба варианта ионизации являются мягкими, поэтому приводят лишь к ограниченной фрагментации. Тем не менее, для получения характеристичного спекара фрагментации в ТРС-ЖХ-МС-анализе часто используют двойные квадрупольные приборы. В отличие от одинарных квадрупольных приборов, МС/МС-приборы позволяют получать фрагментационный спектр молекулярных ионов, выделяемых первым квадру-полем (рис. 14.3-3). Ионы вводятся через отсекатель с маленьким отверстием, который достигает непосредственно ионизационной камеры. Это позволяет достигать высокого вакуума, требуемого для разделения ионов. [c.623]

    Мы обрабатывали соединения формулы I димеркаитоалкапами (п=2-3) в присутствии кислот Льюиса (ВРз.Е120, АсОН, 20°С). В масс-спектрах дитиаалкапов присутствовали интенсивные пики молекулярных ионов (Па - 449 (100%), ПЬ - 343(30%). Фрагментация соединений под действием электронного удара представлена па схеме 2. [c.22]


Смотреть страницы где упоминается термин Молекулярные ионы фрагментация: [c.322]    [c.63]    [c.264]    [c.264]    [c.176]    [c.146]    [c.149]    [c.70]    [c.466]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Фрагментация ионов



© 2025 chem21.info Реклама на сайте