Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы ионизации органических кислот и оснований

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]


    КОНСТАНТЫ ИОНИЗАЦИИ ОРГАНИЧЕСКИХ КИСЛОТ И ОСНОВАНИЙ [c.512]

    Можно не вводить поправку на ионизацию, если экстрагировать слабую кислоту из водного раствора, предварительно подкисленного неорганической кислотой. В кислой среде практически вся слабая кислота неионизирована (экстрагируемая форма). Равным образом при экстракции органического основания водный раствор подщелачивают. При экстракции из не очень разбавленного водного раствора кислот или оснований с константой ионизации Ю и меньше нет необходимости в подкислении или подщелачивании, так как такие электролиты и без того практически полностью неионизированы. [c.112]

    Книга содержит описание способов определения (потенциометрический, спектрофотометрический, кон-дуктометрический и др.) и расчетов констант ионизации преимущественно органических кислот и осно- ваний( Описана наиболее удобная аппаратура, приведены типичные кривые и таблицы и даны кон станты ионизации свыше 400 кислот и оснований. [c.2]

    Некоторое влияние на интервал превращения индикатора оказывает также растворитель. Титрование часто производят в среде, содержащей органический растворитель, например спирт, в присутствии которого изменяется константа ионизации индикатора. С увеличением концентрации спирта в растворе константа ионизации индикатора понижается следовательно, индикаторы-кислоты становятся более чувствительными к ионам водорода, а чувствительность индикаторов-оснований к этим ионам уменьшается, Органические растворители понижают также константы ионизации слабых кислот и оснований. Еаш известны интервалы превращения индикаторов и константы ионизации кислот и сено- [c.123]

    Влияние среды. Данные, приведенные в таблице на стр. 42—43, относятся к водным растворам. Если к водным растворам прибавляются органические растворители, как, например, этиловый спирт, метиловый спирт и ацетон, с более низкими диэлектрическими постоянными, чем вода, условия равновесия изменяются. Прибавление спирта к водному раствору понижает константу ионизации слабых кислот и оснований. Следовательно, кислотные индикаторы становятся более чувствительными к водородным ионам к присутствии органических растворителей, и их интервал перехода окраски будет смещен в сторону более высоких значений pH [см. уравнение (2)  [c.45]

    Определение констант ионизации летучих органических оснований [43, 44, 46, 47]. Основность летучего вещества В, как известно, может быть охарактеризована константой диссоциации сопряженной кислоты ВН+ [c.254]


    Подробное обсуждение значений констант ионизации на основании изменений энергии и энтропии в этом процессе более уместно проводить в книге, специально посвященной вопросам термодинамики, а не структурной органической химии. Однако и в настоящей книге нелишне остановиться на некоторых факторах, относящихся к этому вопросу. Так, установлено, что очень важную роль играет природа растворителя, чего и следовало ожидать, поскольку растворитель может быть основанием или акцептором протонов. Однако роль воды в кислотно-основных равновесиях не определяется исключительно ее основными свойствами. Вода является очень хорошим ионизирующим растворителем по двум другим причинам она обладает высокой диэлектрической проницаемостью (80) и довольно высокой поляризуемостью. Влияние первого из этих свойств приводит к тому, что при возникновении взаимодействия кислота — основание электростатическое протяжение между катионами и анионами, которое определяет возможность их обратной рекомбинации в кислоту и основание, снижается настолько, что ионам обеспечивается возможность независимого существования в течение более длительного времени. Высокая поляризуемость молекул воды приводит к тому, что участвующие в сольватации молекулы воды стабилизируют ионы, обеспечивая дисперсию их избыточного заряда. Поэтому, если воду заменить другим растворителем с меньшей сольватирующей способностью или менее основным, то величины Ка для данной кислоты в этих двух разных растворителях будут существенно отличаться. Так, показано, что степень ионизации уксусной кислоты в смеси метанол — вода уменьшается по мере роста содержания мета- [c.411]

    Электролитическая ионизация. Огеиень и константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества. Такие свойства называются коллтативными. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от концентрации раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо [c.152]

    Фенолы — слабые органические кислоты (константы ионизации 10-ю—10- 2), реагируют с сильными основаниями с образованием фенолятов. Летучесть фенолятов особенно в присутствии избытка щелочи весьма незначительна (при комнатной температуре феноляты и крезоляты не имеют даже запаха, свойственного фенольным соединениям). Поэтому действием щелочи летучие фенолы можно превратить в нелетучие соединения и удалить затем органический растворитель отдувкой, вакуумным испарением с (использованием ротационного испарителя или путем упаривания на водяной бане. При необходимости органический ра створитель отделяют от концентрата в приборе для перегонки. [c.86]

    Если определяют константу ргспределення слабой кислоты, то экстрагируют пз водного раствора, предварительно подкисленного минеральр.ой кислотой. В кислой среде практически все количество слабой кислоты находится в пеиопизированной, в той или иной степени экстрагируемой форме. Равным образом при экстракции органического основания водный раствор подщелачивают. При экстракции из чистого водного раствора кислот или оснований с константой ионизации 10 и меньше пет необходимости в подкисле-нии или подщелачивании, такие электролиты и без того практически полностью неионизированы. [c.51]

    Из формул (6) И (7) следует, что величины Rf слабых органических оснований и кислот зависят от pH водной фазы, от произведения кю и от константы ионизации вещества. [c.456]

    В соответствии со сказанным характер кривых поглощения и отгонки существенно зависит от растворимости и констант ионизации слабого основания и кислоты. Хорош ми поглотителями в принципе являются растворы солей таких малодиссоциирован-ных кислот, как фосфорной, лимонной, борной, капроновой, валериановой и др., растворы слабых неорганических оснований (основные соли алюминия, хрома, бериллия и др.) и органические основания (анилин, толуидин, диметиланилин, ксилидин, пиридин, этаноламин и др.). Некоторые из указанных реагентов образуют гетерогенные системы борная кислота, валериановая кислота, ксилидин и другие органические основания. [c.115]

    При ионизации органических молекул занимаемая ими на поверхности электрода площадь изменяется незначительно (не более чем в 2 раза), поэтому основное влияние на величину оказывает изменение адсорбируемости вещества при его ионизации. По-видимому, величины р для ионов намного меньше, чем ДЛЯ соответствующих неионизированных молекул, поэтому в случае адсорбированных кислот их константа диссоциации уменьшается, тогда как в случае оснований — возрастает. Значения потенциалов максимальной адсорбции для ионов и соответствующих недиссоциированных молекул значительно отличаются, различно и влияние потенциала электрода на величины р ионов и молекул, поэтому и значение может очень сильно изменяться нри изменении потенциала электрода. [c.100]


    Органический синтез. Выделение органических кислот и оснований, а также аминокислот из их солей, часто с одновременным отделением от других электролитов и неэлектролитов, имеет самые широкие перспективы. Ионообменный синтез может сочетаться с разделением ионов органических веществ за счет различия в константах ионизации соответствующих электролитов. [c.111]

    Приводимые в этой главе таблицы и поясняющий их текст призваны служить более или менее удовлетворительным введением в изучение процесса корреляции между константами ионизации веществ и их химическим строением. Мы приняли следующий порядок изложения материала органические кислоты, органические основания, неорганические соединения. При рассмотрении любой серии монофункциональных веществ сначала излагаются данные об алифатических соединениях, затем— об ароматических. Сведения о гетероциклических веществах помещены в конце соответствующей таблицы алифатических или ароматических соединений, в зависимости от того, имеют ли вещества гетеропарафиновое или гетероароматическое строение. [c.116]

    В области органического анализа перспективно определение функциональных групп в соединениях, а также раздельное определение изомеров в смеси. Разработка таких методов анализа предполагает изучение дифференцирующего действия различных органических растворителей на силу кислот, оснований и на степень диссоциации их солей и, в частности, определение констант ионизации этих соединений в дифференцирующих средах физико-химическими методами. [c.197]

    Об относительной силе кислот долгое время судили по косвенным данным. Для этого сравнивали молярную рефракцию растворов кислот, каталитическую активность кислот по отношению к некоторым органическим реакциям, например реакции разложения диазоуксусного эфира или инверсии тростникового сахара, устойчивость солей-индикаторов в растворах кислот, образование ацидосолей в смеси двух кислот [1]. При построении ряда кислот по убываюш,ей относительной силе на основании любого из этих свойств хлорная кислота занимает первое место. Однако действительная степень и константа ионизации хлорной кислоты в водном растворе в широком интервале концентраций, включая и безводную кислоту, была измерена лишь сравнительно недавно при помощи спектров ядерного магнитного резонанса (ЯМР) и несколько раньше при помощи спектров комбинационного рассеяния. [c.102]

    Сместить равновесие экстракции можно, изменив температуру или pH водного раствора. Поскольку в органические жидкости переходят преимущественно молекулярно растворенные вещества, а ионы вследствие гидратации остаются в водном растворе, оптимальным условием экстракции является pH, отвечающее полному подавлению электролитической диссоциации водного раствора, т. е. pH, равный (рКа—3) — для кислот или (рКа+3) —для оснований (рКа — отрицательный логарифм константы ионизации). [c.132]

    Значительные исправления в соответствии с новыми экспериментальными данными внесены в таблйцыг произведений растворимости, констант ионизации кислот и оснований, констант нестойкости комплексных соединений, нормальных окислительных потенциалов, растворимости неорганических соединений в органических растворителях. [c.7]

    Основания, которые являются слабыми в воде, например NH3, в уксусной кислоте оказываются сильными, так как ацетат аммония полностью ионизирован (СНзСОО"КН ). Наоборот, сильные кислоты (кислоты, проявляющие одинаковую силу в водном растворе) в растворах в уксусной кислоте оказываются совершенно различными по силе. Из-за малой диэлектрической проницаемости уксусной кислоты в ней трудно определить константу ионизации этих кислот. Однако при измерении электропроводности были установлены следующие относительные значения кислотности минеральных кислот по сравнению с азотной кислотой, сила которой принята за единицу HNO3 1, H I 9, H2SO4 30, НВг 160, H IO4 400. Раствором хлорной кислоты в уксусной кислоте можно титровать очень слабые (органические) основания, используя подходящий индикатор (кристаллический фиолетовый). [c.263]

    Применение электрохимических методов и принципов в органической химии на различных этапах ее развития оказывалось весьма плодотворным, хотя и, может быть, не всегда первостепенным для развития теоретических представлений и практики органической химии. Прежде всего, следует указать на кислотно-основные и окислительно-восстановительные процессы, константы равновесия которых определялись сначала при помощи кондуктометрической, а затем потенциометрической техники. Начиная с 80-х годов Х1Хв., вслед за пионерскими трудами Оствальда и Нернста, широкое применение нашли электрометрические определения констант ионизации (значения рЯа и органических кислот и оснований величины этих констант, сведенные в таблицы, впоследствии использовались для оценки взаимного влияния-атомов в сложных молекулах, для введения понятия об индуктивном и мезомерном эффектах, для создания корреляционного анализа л. с, э. и т. д. [c.135]

    Определение методом электропроводности констант диссоциации дифенилгуанидина, изомеров фенилендиамина и других оснований в среде метилэтилкетона и смешанного растворителя хлороформ — метилэтилкетон и методом потенциометрического титрования констант диссоциации ряда неорганических и органических кислот в среде метилового, этилового, н-пропилового, н-бутилового и изопропилового спиртов, а также констант ионизации триметилацилоксисиланов и некоторых других соединений показало, что по сравнению с данными, полученными для водных растворов, в метилэтилкетоне р/С этих соединений уменьшается на 2 единицы, а в смешанном растворителе на 3 единицы. Такое действие этих неводных растворителей связано с их меньшей диэлектрической проницаемостью. [c.428]

    Поскольку гидразин практически является монокислотным основанием, он напоминает скорее аммиак и амины, чем органические диамины. Однако гидразин является значительно более слабым основанием, чем аммиак, что можно видеть при сопоставлении соответствующих констант ионизации, а также теплот нейтрализации этих оснований кислотами в водном растворе (табл. 43). [c.161]

    В реакциях нейтрализации или протолиза применение органических растворителей может иметь большое практическое значе-яие. Константы ионизации анионных и нейтральных кислот или оснований значительно меньше в среде органического растворителя, чем в воде. Аммонийную соль, например, нельзя точно оттитровать в разбавленном водном растворе едкой щелочью, так как вблизи точки эквивалентности становится слишком значительной диссоциация NH4OH. Но выполняя титрование в среде, содержащей 90 или больше процентов этанола, можно, применяя подходящий индикатор, получить точные результаты. Введение органических растворителей, естественно, отражается и на константах ионизации большинства индикаторов, применяемых в методе нейтрализации. [c.16]

    Константу распределения слабой кислоты или сл<1 1ого основания определяют еще следующим способом. Водкые растворы этих электролитов разных начальных конце граций экстрагируют соответствующим органическим раств- ри-телем и тем или иным способом определяют равновесные концентрации в обеих фазах. Можно полагать, что pH зсех равновесных водных растворов практически одинаков. Полученные данные позволяют вычислить константу распределения, а также константу ионизации, если она неизвестна 32]. Рассмотрим сначала экстракцию слабой кислоты  [c.38]

    Чтобы установить сравнительную меру кислотности растворов сильных кислот или определить силу очень слабых оснований, Гаммет [43, 85] выражал кислотность через степень ионизации ряда индикаторов, являющихся слабыми органическими основаниями. Для установления шкалы кислотности он выбрал группу индикаторов, имеющих одинаковый зарядовый тип и близких по молекулярной структуре, а именно нитроанилины, м- и и-Нитроанилины, выбранные в качестве эталонных оснований, являются достаточно сильными, так что термодинамические константы диссоциации их сопряженных кислот ВН+ в воде могут быть измерены. Величиньл р/(а этих двух эталонных оснований составляют 2,50 и 0,99. Соотношение [В]/[ВН+] для этих индикаторов можно измерить вполне надежно в пределах 100-кратного изменения кислотности. Для /г-нитроанилина это соответствует как разбавленным водным растворам сильной кислоты, так и растворам, содержащим до 15% сильной кислоты. В более кислых растворах соотношение [В]/[ВН+] слишком мало и не может быть измерено с достаточной точностью Более слабое основание о-нитроанилин (р/Со = = —0,29) можно применить в том же интервале кислотности, что и л-нитроанилин, а также в растворах более сильных кислот и тоже в пределах 100-кратного изменения кислотности. Интервал кислотности 4-хлор-2-нитроанилина рКа = —1,03) перекрывает интервал о-нитроанилина, и его можно применять с растворами еще более сильных кислот. Выбраны 16 индикаторов из группы нитроанилинов, полностью соответствующие широкому интервалу pH, вплоть до кислотности, равной 100%-ной серной кислоте, и превосходящие эту кислотность. [c.108]

    По этой причине неионизированные формы слабых оснований и кислот, будучи липофиль-ными, диффундируют из почечных канальцев обратно в кровь, что обусловливает снижение их концентрации в моче до величин, соответствующих содержанию несвязанных их форм в плазме крови. Степень ионизации ЛС, являющихся слабыми кислотами и основаниями, определяется кислотностью мочи и объясняет зависимость их почечного клиренса от её pH. Слабые органические основания [константа ионизации (рКа) 7,5-10,01 лучше ионизируются, медленнее реабсорбируются и быстрее выводятся в кислой среде, а слабые кислоты (рКа 3,0-7,5) — в нейтральной или щелочной среде. [c.20]

    Мурога и др. [47] наблюдали, что для полиакриловой кислоты в водном растворе константы вицинального спин-спинового взаимодействия /ас и /ав по существу такие же, как для полиалкилакрилатов в органических растворителях. Так как при добавлении основания карбоксильные группы ионизуются, разница химических сдвигов -метиленовых протонов очень заметно уменьшается, но константы спин-спинового взаимодействия в пределах ошибки эксперимента остаются неизменными, причем обе равны 7,0 Гц. Таким образом, несмотря на растяжение цепи и сопровождающее ионизацию возрастание вязкости, преимущественной локальной конформацией остается спираль 3i. Растяжение, следовательно, является в основном результатом кулоновского отталкивания удаленных групп, а не локальных изменений заселенностей конформеров. Конечно, если бы можно было измерить константы спин-спинового взаимодействия с достаточно высокой разрешающей способностью, обязательно было бы отмечено некоторое изменение этих констант, но оно, очевидно, находится в настоящее время как раз в пределах ошибки эксперимента. [c.212]

    Поэтому положительности (ф) и отрицательности (0) Дерика, величины которых обратно пропорциональны логарифмам констант диссоциации кислот и оснований в воде, а также факторы, отражающие влияние расположения заместителя на константу диссоциации соединения, лишь уточнили характер уже рассмотренной ранее в общих чертах связи между строением органических электролитов и их ионизацией [328, стр. 1182]. Однако в отличие от ряда своих предшественников Дерик не пытался использовать введенные им величины 0 и ф для количественной корреляции констант скоростей или констант равновесия других реакций [24, стр. 17] и не пробовал на основе полученного экспериментального материала сделать более широкие обобщения о природе взаимосвязи свойств органической молекулы (целого) и составляющих ее атомов (составных частей) (сравнить с [164]). [c.100]


Смотреть страницы где упоминается термин Константы ионизации органических кислот и оснований: [c.26]    [c.408]    [c.22]    [c.9]    [c.287]    [c.287]    [c.172]    [c.152]    [c.55]    [c.52]    [c.29]    [c.581]    [c.167]    [c.174]    [c.340]    [c.340]    [c.20]   
Смотреть главы в:

Свойства органических соединений -> Константы ионизации органических кислот и оснований




ПОИСК





Смотрите так же термины и статьи:

Ионизация кислот

Ионизация кислот и оснований

Ионизация кислот и оснований константа

Ионизация оснований

Кислота органическая

Константа ионизации

Константа ионизации кислот

Константа кислоты

Константа кислоты основания

Константа основания

Константы ионизации органических кислот

Константы ионизации органических оснований

Органические основания

Основания и кислоты



© 2024 chem21.info Реклама на сайте