Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз высокомолекулярных соединений

    Гидролиз высокомолекулярных соединений [c.534]

    ГИДРОЛИЗ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ 541 [c.541]

    Обычно метановое брожение проходит в двух типичных для него фазах первая фаза — кислая, с преобладанием гидролиза высокомолекулярных соединений и образованием летучих жирных кислот вторая фаза — щелочная, при которой происходит разложение летучих кислот на СОг, СН4 и НгО. [c.189]


    ТЕОРЕТИЧЕСКИЕ СООБРАЖЕНИЯ О НЕПОЛНОМ ГИДРОЛИЗЕ ВЫСОКОМОЛЕКУЛЯРНОГО СОЕДИНЕНИЯ [c.166]

    Анаэробный процесс образования метана из различного рода органических материалов представляет собой сложный многоступенчатый процесс, на разных стадиях которого принимают участие микроорганизмы различной природы. Микробиологическое образование метана — широко распространенный, устойчиво протекающий в анаэробных условиях процесс, имеющий в настоящее время промышленное значение. Первый этап биодеградации часто связан с гидролизом высокомолекулярных соединений (полисахаридов, белков, жиров и т.д.) до соответствующих олиго- и мономеров, которые на последующих этапах конвертируются в органические кислоты и спирты, молекулярный водород и диоксид углерода. Затем органические кислоты и спирты превращаются в уксусную кислоту, водород и СО , из которых в дальнейшем образуется метан. [c.672]

    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    Изомеризация окиси пропилена в аллиловый спирт. Это первая стадия процесса получения глицерина. Дальнейшая переработка аллилового спирта включает либо стадию гидрохлорирования и гидролиза монохлоргидрина глицерина, либо эпоксидирование спирта в глицидол с последующей гидратацией его без выделения из реакционной массы. Аллиловый спирт может представить и самостоятельный технический интерес, поскольку его эфиры являются ценными мономерами для получения высокомолекулярных соединений. [c.96]

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]


    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    Высокомолекулярные соединения, такие, как полиэфиры и полиамиды, предварительно гидролизуют. Другие полимеры подвергают термическому разложению в пиролизере, соединенном с масс-спектрометром. [c.179]

    В отдельных случаях для растворения используют ферменты. Один из способов растворения высокомолекулярных соединений, например белков, — гидролиз в присутствии трипсина, папаи-на и других протеаз. [c.73]

    Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту  [c.97]

    В ряде случаев скорость гидролиза может быть уменьшена также в результате введения высокомолекулярных соединений или ПАВ. [c.644]

    В присутствии кислот или оснований тетраэтоксисилан постепенно гидролизуется, в результате чего образуются высокомолекулярные соединения со связью 51—О—51 (силоксаны)  [c.350]

    Основными микробными ферментами, осуществляющими гидролиз высокомолекулярных соединений, являются гидролазы, расщепляющие белки, различные полисахариды, нуклеиновые кислоты, некоторые липиды. Из ферментов, расщепляющих белки и продукты их распада, можно назвать различные типы протеиназ, пептидаз, интересные по своим свойствам субтилизин, кол-лагеназу и многие другие. Гидролиз полисахаридов производят целлюлаза, представляющая собой систему последовательно действующих ферментов (Сь Сд-целлюлазы и целлюбиаза) а-, р-и иногда у-амилазы, различными путями гидролизующие крахмалы хитиназа, расщепляющая хитин и включающая по крайней мере два фермента, первый — образующий из полимера дисахарид хитобиозу и второй — гидролизующий ее до стадии Ы-ацетил-глюкозамина гиалуронидаза, расщепляющая мукополисахариды и др. На нуклеиновые кислоты действуют дезоксирибонуклеазы и рибонуклеазы бактерий, в частности стрептококков. Количество известных ферментов микробов, способных гидролизовать и вообще разрушать высокомолекулярные вещества разных типов, очень велико и быстро возрастает. [c.116]

    Аминокислоты могут реагировать с сахарами за счет их альдегидных и гидроксильных групп. В результате получаются высокомолекулярные соединения с коллоидными свойствами. Эти свойства позволяют объяснить установленный Грегори и Ветхе-рилом факт, что белковые вещества животных исчезают бесследно при разрушении тела в естественных условиях, так как превращаются в газообразные и растворимые в воде продукты. Известно, что в организме животных не содержится сахаров, которые бы могли связать аминокислоты, образованные при гидролизе белков [И, с. 62]. [c.26]

    Продукты гидролиза нагревают в присутствии катализатора до образования высокомолекулярного соединения. Механизм образования полиорганосилоксанов полностью не установлен. Поедполагают, что протекает реакция поликонденсации, для возникновения которой требуется некоторое количество воды  [c.481]

    Образующееся соединение немедленно полимеризуется с образованием циклических продуктов и линейных высокомолекулярных соединений. Доказательством возможности образования полимеров по такому механизму служит возникновение при гидролизе алкил- или арилсилантриолов полимерных цепей, содержащих циклические звенья, а также результаты анализа продуктов деполимеризации полиорганосилоксанов, нагретых до 400° в этих продуктах найдены летучие низкомолекулярные трисил-оксаны типа (Н.,510),,. [c.481]

    Полисахариды. Эти углеводы во многом отличаются от моно- и дисахаридов — не имеют сладкого вкуса, в большинстве нерастворимы в воде, они представляют собой сложные высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов. Важнейшие представители полисахаридов — крахмал и целлюлоза (клетчатка). Их молекулы построены из звеньев -СбНюОб-, являющихся остатками шестичленных циклических форм молекул глюкозы, потерявших молекулу воды поэтому состав и крахмала, и целлюлозы выражается общей формулой (СеНюОа) . Различие же в свойствах этих полисахаридов обусловлено пространственной изомерией образующих их моно-сахаридных молекул крахмал построен из звеньев а-, а целлюлоза — /3-формы глюкозы. [c.582]


    Клетчатка и крахмал относятся к классу полисахаридов — высокомолекулярных соединений, у которых мономерными звеньями являются остатки моносахаридов. Оба упомянутых полисахарида при полной деструкции превращаются в глюкозу. Вопрос о причинах различия этих веществ, в конечном итоге составленных из одинаковых звеньев, давно уже занимал ученых. В процессе исследований прежде всего было установлено, что при осторожном гидролизе обоих веществ можно выделить промежуточные длсахариды целлобиозу из клетчатки, мальтозу из крахмала и гликогена. Названные дисахариды построены из двух молекул глюкозы, связанных по эфирному типу. Все различие между целлобиозой и мальтозой сводится к небольшой стереохимической тонкости в целло-биозе имеется Р-гликозидная связь, в мальтозе—а-гликозид-ная. [c.305]

    Нуклеиновые кислоты — высокомолекулярные соединения с молекулярными массами от 200 ООО до нескольких миллионов. При полном гидролизе нуклеиновых кислот образуются смесь азотсодержащих гетероциклических оснований (пиримидинов и пуринов), моносахарид пентоза (рибоза или дезоксирибоза) и фосфорная кис- лота  [c.348]

    Гидролиз и алкоголиз. Наиболее распространенным видом химической деструкции полимеров является гидролиз — расщепление химической связи с присоединением молекулы воды. Катализаторами процесса гидролиза служат водородные или гидроксильные ионы. Гидролиз некоторых высокомолекулярных соединений ускоряется в присутствии природных катализаторов — ферментов, избирательно действующих на некоторые связи. Склонность к гидролизу определяется природой функциональных групп и связей, входящих в состав полимера. При гидролизе боковых функциональных групп изменяется химический состав полимера при гидролизе связей, входящих в состав основной молекулярной цепи, происходит деструкция и уменьшается молекулярная масса полимера. Концевые группы вновь образующихся молекул по своей природе не отличаются от концевых групп исходного полимера. При невысокой степени деструкции до.ля пновь образующихся концевых групп настолько мала, что они не влияют на химический состав поли- [c.265]

    Своеобразие коагулирования многовалентными ионами связано с процессом гидролиза. Во-первых, в результате конденсации простых продуктов гидролиза возникают полиядерные гидроксидные соединения, которые обладают гораздо более сильной коагулирующей способностью, чем катионы А1 +, Ре +. Во-вторых, для катионов А13+ и Ре + характерно образование соединений не только с ионами гидроксила, но и с ионизованными группами гидрофильных органических веществ фосфатными, сульфатными, карбоксильными и др. В-третьих, предполагается, что с ростом pH среды от 4 до 7 увеличивается степень полимеризации гидроксокомплексов, и поэтому полиядерные формы соединений алюминия можно рассматривать как промежуточное звено между простыми ионами и полиэлектролитами. Отсюда следует, что отрицательно заряженные органические примеси могут связываться с продуктами гидролиза многовалентных ионов, и в этом состоит механизм снижения цветности. Кроме того, некоторые исследователи допускают существование флокуляции, вызванной полимерными комплексами (полиэлектролитами), наподобие флокуляции высокомолекулярными соединениями. В-четвертых, при pH = 5—7,5 преобладают нерастворимые продукты гидролиза, прежде всего золь А1(0Н)з, а содержание растворимых форм ничтожно. Исследования гидроокиси алюминия показали, что первоначально образуются аморфные шарики размером 0,2 мкм, переход которых в кристаллическую форму протекает крайне медленно но возможен дальнейший рост частиц, которые при pH = 4—8 имеют в основном размер 2 мкм при pH = 8,5—9,3 преобладают частицы с размером 0,01—0,05 мкм. Золи гидроокисей алюминия и железа в дальнейшем превращаются в микрохлопья. В гелях Ре(ОН)з первичные частицы имеют размер 10—30 мкм. [c.341]

    Стенки клеток и межклеточные вещества растительного сырья состоят из целлюлозы (клетчатки), гемицеллюлоз, гумми- и пектиновых веществ. Целлюлоза ири разваривании иод давлением 0,4— 0,5 МПа практически не изменяется. Гемицеллюлозы картофеля и зерна, состоящие нренмущественно из пентозанов, частично растворяются и частично гидролизуются до декстринов и менее высокомолекулярных соединений, вплоть до иентоз (арабинозы, ксилозы). [c.85]

    Гидролиз — расщепление при взаимоденствии с водой — наиболее распространенный вил химической деструкции полимеров. Катализаторами ги. лролиза являются водоро.аные илн гидроксильные ионы. Гидролиз некоторых высокомолекулярных соединений ускоряется в присутствии природных катализаторов — ферментов [c.194]

    Более сложным оказался вопрос о строении полимерной цепи в рибонуклеиновых кислотах. РНК также являются высокомолекулярными соединениями, цепь которых состоит из рибонуклеозидов. Полимер при гидролизе распадается на соответствующие мономеры — рибонуклеоти-ды и, следовательно, РНК являются, подобно белкам и полисахаридам, продуктами поликонденсации мономеров, происходящей с отщеплением иппн Молекулярный вес РНК ниже молекулярного веса ДНК и колеблется в значительных пределах, достигая 1 000 000. РНК, будучи кислотами, при титровании показывают присутствие только первичного кислотного гидроксила. Так как известно, что пирофосфатная связь в них также отсутствует, то единственным возможным типом построения полимерной цепи является тип  [c.248]

    При присоединении одного моносахарида к другому посредством гликозидной связи с формальным отщеплением 1 моль воды образуется соединение, называемое дисахаридом. Присоединение следующих молекул моносахарида дает три-, тетра-, пентасахариды и высшие сахариды вплоть до высокомолекулярных соединений— полисахаридов. Хотя не существует строгого определения олигосахаридов, обычно считают, что к ним относятся соединения, содержащие менее семи или восьми углеводных остатков. Наиболее известными и легкодоступными представителями олигосахаридов являются дисахариды. Среди них наибольшее распространение имеет сахароза (а-й-глюкопиранозил-р-й-фруктофуранозид) (1)—невосстанавливающий дисахарид, встречающийся во всех растениях [1]. Дисахарид лактоза (4-0-р-Д-галактопиранозил-й-глюкоза) (3) входит в состав молока млекопитающих 12]. Кроме них единственным природным олигосахаридом, доступным в больших количествах, является трегалоза (а-й-глюкопиранозил-а-/3-глюкопиранозид) (4) — невосстанавливающий дисахарид, содержащийся в значительном количестве в сухих дрожжах 3]. У насекомых трегалоза выполняет функцию резервного сахара, из которого при необходимости регенерируется глюкоза. Раффиноза (5), единственный легкодоступный природный трисахарид, содержится вместе с сахарозой в сахарной свекле. Некоторые олигосахариды довольно легко можно получать частичным гидролизом полисаха- [c.202]

    Для повыщения гидролитической стабильности парентеральных лекарственных средств в их состав дополнительно вводят вещества, обеспечивающие достижение значений pH среды, соответствующих области максимальной устойчивости препарата. Для предотвращения гидролитического разложения солей или омыления эфиров состав стабилизаторов подбирают в зависимости от природы соответствующей соли или эфира, добавляя кислотные или щелочные агенты или буферные системы, обеспечивающие поддержание необходимого значения pH. Скорость гидролиза может быть уменьщена также введением в состав препарата высокомолекулярных соединений или поверхностно-активных веществ. [c.346]

    Ласкориным с сотр. [58] синтезирован ряд карбоксилсодержащих катионитов путем сополимеризации метакриловой и акриловой кислот и их производных с диметакриловыми эфирами этиленгликолей и гексагидро-1,3,5-триакрилотриазином-1,3,5. Эти дпепы доступны, имеют низкую стоимость и легко сополи-меризуются с метакриловой и акриловой кислотами, образуя макросетчатые структуры. Хотя диметакриловые эфиры гликолей способны гидролизоваться (особенно в щелочных средах), их гидролиз в высокомолекулярных соединениях протекает крайне медленно. [c.46]

    Диметил-4-метилен-1,3-оксатиолан — интересный мономер, реагент и полупродукт. В перспективе он должен стать душевым, - так как получается кратчайшим путем из простейших неорганических соедипений, по существу из карбидов и сульфидов металлов. Он может найти широкое применение в органическом синтезе и х мии полимеров, в частности для получения окислй-тельно-восстановительных и хелатообразующих полимеров с р-расположением сульфгидрильных и гидроксильных групп. Например, сополимеризацией его с малеиновым ангидридом и последующим гидролизом сополимера можно получить следующие поли-функциональные высокомолекулярные соединения  [c.37]

    Разделение затрудняется, однако, тем обстоятельством, что с одной стороны, часть глюканов содержится в гемицеллюлозах в виде низкомолекулярных соединений и поэтому легко гидролизуется, в то время как, с другой стороны, часть ксила-нов и маннанов присутствует в виде высокомолекулярных соединений и поэтому гидролизуется с трудом. Это подтверждается данными целлюлозной промышленности в нормальной сульфитной целлюлозе содержится около 13% остаточных пентозанов и даже в наиболее чистой целлюлозе — до 4%. Как показано на рис. 13, смесь высокомолекулярных неглюканов расщепляется только при таких условиях, которые ведут к воздействию на массу целлюлозы. При более жестком пред-гидролизе остающаяся целлюлоза получается более чистой, однако уменьшается в количестве, так что в результате сначала выход кристаллической глюкозы быстро повышается до максимума, а затем вновь медленно падает. Экономически оптимальные условия процесса предгидролиза определяются, с одной стороны, распадом сахаров предгидролиза, а с другой- [c.35]

    Одним из основных принципов и одновременно главной особенностью этого метода, получившего наименование рижский метод гидролиза , являетсяГприменение механического воздействия, которое, как первоначально предполагалось, вызывается необходимостью разрушения клеточной структуры и равномерного распределения кислоты по всей массе материала [5, 45]. Однако анализ результатов экспериментальных и теоретических исследований с точки зрения общих положений и принципов механохимии высокомолекулярных соединений показал [54], что роль механического воздействия в данном процессе является значительно более важной. [c.200]

    На поверхности раздела двух фаз практически моментально, даже при комнатной температуре, возникает пленка полимера, после чего реакция протекает очень медленно. При этом в зависимости от растворимости мономеров рост макромолекулы может начинаться со стороны органической фазы (полиамиды) или со стороны водной фазы (полиэфиры) . Гидролиз обычно применяемых хлорангидридов, которые очень плохо растворимы в воде, почти исключен, так как скорость поликонденсации намного больше скорости диффузии хлорангидрида через поверхность, отделяющую растворитель от водной фазы. Наилучшие результаты дают растворители, растворяющие низкомолекулярный полимер, но не высокомолеку-лярый, если реакция начинается со стороны органической фазы. При этом цепи низкомолекулярного полимера растут до достижения достаточно большой степени полимеризации, после чего образовавшееся высокомолекулярное соединение выпадает в осадок . Если непрерывно удалять пленку, изолирующую хлорангидрид от второго мономера (рис. 18), реакция будет продолжаться до исчерпания мономера. Аналогично при взаимодействии одной из фаз, содержащей мелкодисперсные твердые, жидкие или газообразные вещества, со второй фазой можно [c.76]

    Представление П. Флори о сходстве реакций низкомолекулярных и высокомолекулярных соединений нашло экспериментальное подтверждение при изучении гидролиза лактамов и амидов, ацетилирования углеводов, инициирования радикальной полимеризации и т. д. Возможно, это сходство объясняется взаимной компенсацией противоположно действующих факторов (см. ниже). Однако по мере накопления новых экспериментальных данных и расширения круга исследованных полимерных объектов было установлено, что во многих случаях макромолекулы и их низкомолекулярные аналоги существенно отличаются по своей реакционной способности и что это обусловлено длинноцепочечной природой полимеров. [c.601]

    Эффект соседа может также резко ускорить реакцию высокомолекулярных соединений — анхимерное ускорение. Например, сополимер акриловой кислоты с /г-нитрофенилметакр илатом гидролизуется в миллион раз быстрее, чем модельное соединение, [c.602]

    Введение молекулы адамантана в состав высокомолекулярных соединений приводит к суш ественному повышению термостойкости, устойчивости к окислению, гидролизу, воздействию света и растворителей. Этими свойствами адамантансодержа-щие полимеры превосходят многие промышленные полимерные материалы. Полимеры устойчивы к действию минеральных и органических кислот. Весьма перспективным является использование сложных эфиров адамантансодержащих спиртов и алифатических кислот в качестве весьма термостойких синтетических смазочных масел для авиационных двигателей. При нагревании в течение 6 ч. при 400 °С разложение таких масел происходит на 21- [c.143]

    Адгезивами для древесины издавна служили высокомолекулярные органические соединения животного и растительного происхождения с активными полярными функциональными группами. В последнее время с этими адгезивами успешно конкурируют синтетические высокомолекулярные соединения. Однако клеи растительного и животного происхождения все еще находят широкое применение. Из этой группы адгезивов следует упомянуть прежде всего белковые клеи [62—74]. В группу белковых клеев животного происхождения входят костный, мездровый, рыбный, казеиновый, альбуминовый клеи. Костный и мездровый клеи называют также глютиновыми. Основой этих клеев является коллаген — белковое вещество группы склеропроТеинов ]61]. Коллаген состоит из проколлагена, колластромина, мукополи-сахаридов и некоторых сопутствующих белков — кератина, эластина и других [67]. Набухая в воде, коллаген гидролизуется, превращаясь в глютин  [c.255]


Смотреть страницы где упоминается термин Гидролиз высокомолекулярных соединений: [c.535]    [c.537]    [c.543]    [c.376]    [c.141]    [c.20]    [c.67]    [c.341]   
Смотреть главы в:

Катализ в органической химии -> Гидролиз высокомолекулярных соединений




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2025 chem21.info Реклама на сайте