Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация константа скорости

    Задача Рассчитать константу скорости реакции поликонденсации себациновой кислоты (A/q 202) и 2,5-толуилендиамина (Л/д = 122) (1 моль себациновой кислоты на 1 моль 2,5-толуилендиамина , если через 40 мин реакции при 260 °С концентрация карбоксильных rpvTin составляла N, = 1,7х X 10 экв/г. [c.268]

    Зависимость константы скорости от температуры процесса поликонденсации подчиняется уравнению Аррениуса (рнс. 86), Процессы поликонденсации носят ступенчатый характер. Рост цепи происходит постепенно в результате взаимодействия молекул мономеров с образовавшимся полимером. На определенных стадиях производства молекулы имеют линейную или разветвленную структуру и лишь в конечной стадии получения готовых изделий могут протекать реакции, в результате которых образуется трехмерная структура. Основные факторы, влияющие на скорость и направление реакции поликонденсации строение мономеров, в частности количество функциональных групп, их свойства и соотношение в реакционной смеси, тип катализатора и его активность, наличие примесей в мономере, а также строгое соблюдение технологического [режима реакции (температура, давление, степень перемешивания, продолжительность и т, п.). Примеси в процессе поликонденсации снижают молекулярную массу, образуют неактивные концевые группы и вызывают разветвление макромолекул. [c.199]


    Обычно при рассмотрении механизма поликонденсации принимают в соответствии с экспериментом, что реакционная способность функциональных групп не зависит от длины молекулярной цепи, которой она принадлежит и от вязкости реакционной среды, которая сильно возрастает при ноликонденсации. Принятие этих допущений позволяет при рассмотрении кинетики пользоваться единой константой скорости реакции конденсации и заменять концентрации всех молекул концентрациями функциональных групп. [c.33]

    Для нахождения кинетических параметров линейной поликонденсации в ходе реакции последовательно отбирают ряд проб реакционной смеси. Титрованием определяют содержание в них непрореагировавших. карбоксильных групп. Рассчитывают степень превращения и константу скорости реакции. Из температурной зависимости константы скорости оценивают энергию активации полиэтерификации. [c.47]

    В зависимости от способа проведения и строения исходных мономеров реакция поликонденсации может идти как равновесная и как необратимая. Необратимая поликонденсация обычно протекает с большой скоростью. Обратимая поликонденсация осуществляется, как правило, с малой скоростью. Так, из диаминов и дикарбоновых кислот образуются полиамиды. Процесс обратимой поликонденсации, как и обычная конденсация, характеризуется константой равновесия К и константами скорости прямой и обратной реакций. В момент равновесия скорость образования высокомолекулярного соединения равна скорости его деструкции. Если обе реакции второго порядка и если условно принять, что функциональные группы участвуют только в реакциях поликонденсации и не участвуют в побочных процессах, то фактическая скорость и образования продукта поликонденсации за промежуток временит будет равна [c.197]

    Соотношение констант скоростей реакций поликонденсации fep и циклизации fee определяет соотношение выходов продукта ноликонденсации и циклического мономера при постоянной температуре 7 г- [c.142]

    Процесс поликонденсации, как и обычная конденсация характеризуется величиной константы равновесия К и константами скорости реакции. Если обе реакции являются реакциями второго порядка (см. гл. V, стр. 109), тогда фактическая скорость и-с образования продукта поликонденсации за промежуток времени т будет равна  [c.539]

    Основные закономерности поликонденсации как ступенчатой реакции определяются наличием термодинамического равновесия между начальными и конечными продуктами реакции. По этому признаку различают равновесную (обратимую) и неравновесную (необратимую) поликонденсацию. Отличительным признаком обратимых процессов от необратимых является возможность протекания в определенных условиях обратных реакций полимера, например, с низкомолекулярным продуктом реакции, приводящих к распаду полимерных цепей. Поликонденсация называется равновесной, если в условиях процесса степень завершенности поликонденсации и средняя длина макромолекул лимитируются равновесными концентрациями реагентов и продуктов реакции. Это обычно характеризуется небольшой константой скорости (К = 10... 10 ). Если же константа скорости достаточно велика (К > 10 ), то степень завершенности поликонденсации и средняя молекулярная масса полимера лимитируются не термодинамическими, а кинетическими факторами, и такую поликонденсацию называют неравновесной. При необратимых процессах взаимодействия низкомолекулярных продуктов реакции с полимером не происходит. Примерами обратимой поликонденсации могут служить реакции гликолей или диаминов с дикарбоновыми кислотами, а необратимых - соответственно с дихлорангидридами кислот [c.43]


    Поликонденсация является межмолекулярной реакцией второго порядка. Константа скорости (/ "з) этого процесса описывается уравнением [c.46]

    Деструкция по закону случая. Обычно по закону случая протекает деструкция полимеров, полученных поликонденсацией или ступенчатой полимеризацией. Деструкция молекулы, состоящей из п мономерных звеньев, происходит в результате разрыва одной из п 1 равноценных связей с константой скорости к. [c.239]

    Поликонденсация может протекать также как неравновесный процесс в том случае, когда константа скорости обратной реакции исключительно мала и низкомолекулярный продукт реакции не может вызвать обратного течения процесса это имеет место при образовании феноло альдегидных, карбамидо-формальдегидных полимеров, а также полиамидов и полиэфиров из хлорангидридов дикарбоновых кислот и, соответственно, диаминов или дифенолов и др. (см. стр. 103). [c.6]

    Поэтому установление предельной толщины слоя, меньше которой реакция проходит в кинетической области, т. е. скорость ее определяется только скоростью реакции поликонденсации, имеет очень важное зачение. Было высказано предположение [49], что при толщине слоя расплава 0,5 мм исключается влияние диффузии на общую кинетику процесса, тогда как при использовании более толстых слоев наблюдается переход в диффузионную область. Эти выводы малочубедительны из-за недостаточно надежного определения порядка реакции и отсутствия данных для более тонких слоев. Процесс поликонденсации в гонких слоях полиэтилентерефталата был исследован Стевенсоном [50], Кэмпбеллом [51] и описан в ряде патентов [52]. Чефелин [53] использовал методику Маркеса поликонденсации в вакууме в запаянных вращающихся ампулах и динамометрический метод с применением весов Мак-Бена с кварцевой спиралью и показал, что только в пленке расплава толщиной 0,005—0,02 мм исключено влияние диффузии на скорость реакции и константа скорости возрастает при повышении степени полимеризации исходного полимера, концентрации катализатора и температуры. Он же привел данные [53] о том, что в области конверсии 95—98% при 280 °С и остаточном давлении 0,16 кПа (1,25 мм рт, ст.) выделение этиленгликоля протекает как реакция второго порядка с константой скорости К-= 1,30-10 г-мoль с" при концентрации ацетата сурьмы 0,092% (масс.). [c.69]

    Соотношение констант скоростей реакций поликонденсации кр и циклизации кс определяет соотношение выходов продукта поликонденсации и циклического мономера при постоянной температуре 7  [c.159]

    Эта реакция аналогична реакции поликонденсации с той лишь разницей, что вместо этиленгликоля выделяется дигликольтерефталат. Константа скорости, вычисленная из данных по скорости образования дигликольтерефталата в интервале температур 223—254 С, оказалась величиной того же порядка, что и найденная для реакции поликонденсации, но энергия активации, равная 129,8 кДж/моль (31 ккал/моль), оказалась значительно выше энергии активации прямой реакции, найденной равной 96,3 кДж/моль (23 ккал/моль). Был сделан вывод, что кинетика реакции обмена наиболее удовлетворительно описывается уравнениями для скорости реакций второго порядка. [c.65]

    Проведение реакции поликонденсации зависит от химического строения исходных веществ и получаемых продуктов, от их физических свойств, природы побочных продуктов и константы скорости реакции. Процесс поликонденсации возможен лишь в том случае, когда исходные вещества имеют не менее двух функциональных групп, способных участвовать в реакции. [c.285]

    Из этого краткого определения следует логический вывод, что техника проведения поликонденсации зависит от химического строения исходных реагентов и получаемых продуктов,. от их физических свойств (например, температуры кипения, растворимости и т. д.), от, прьроды выделяющихся побочных продуктов и, само собой разу ется, от константы скорости реакции. , [c.784]

    Система уравнений, описывающая множество возможных реакций между 1-мерами и /-мерами с различными константами скорости kij и соответствующими концентрациями Л1< и Mj, была бы весьма сложной. Однако кинетическая обработка процесса поликонденсации значительно упрощается, если предположить, что все функциональные группы реагируют идентично и с одинаковой скоростью независимо от молекулярной массы макромолекул, в состав которых они входят. Принцип равной реакционной способности применим как к процессам поликонденсации, так и к ступенчатой полимеризации. Это означает, что нет различия между реакционной способностью концевых групп мономера, димера, тримера и т. д., так что в течение всего времени скорость реакции не зависит от степени полимеризации. [c.189]


    Чалла нашел, что содержание в реакционной смеси мономера при достижении равновесия в 1,6 раза превышает значение, рассчитанное по уравнению Флори, а константа скорости реакции поликонденсации увеличивается по мере роста молекулярной массы. Константа скорости обратной реакции гликолиза при этом оставалась постоянной. На основании расчета Чалла сделал вывод, что отношение константы скорости конденсации молекул полимера между собой к константе скорости реакции взаимодействия мономерного дигликольтерефталата с полимерными молекулами равна 1,8. Отсюда было сделано предположение о неодинаковой реакционной способности однотипных функциональных концевых групп, по крайней мере мономера и полимерных молекул. Более поздние исследования подтвердили принцип одинаковой реакционной способности в реакции обмена сложноэфирных групп в молекулах с относительно высокой молекулярной массой. [c.66]

    Трехмерная поликонденсация отличается от линейной большей константой скорости прямой реакции. вследствие, главным образом, перехода системы в гель после начала реакции. Разветвленная структура полимера образуется при реакции бифункциональных и трифункциональных молекул друг с другом. Трифункциональная молекула дает начало разветвлению, цепи разветвляются одна за другой и в итоге образуется бесконечная сетка. Например, конденсация трехатомного спирта — глицерина и двухосновной фталевой кислоты. Чем выше функциональность мономеров, тем при меньшей степени завершенности реакции наступает гелеобразование. Вследствие образования малоподвижной разветвленной или сетчатой структур требования соблюдения равенства концентраций функциональных групп и удаления иизкомолекулярных продуктов поликоиденсации не являются такими жесткими, как при линейной поликонденсации. [c.28]

Рис. 86. Зависимость логарифма константы скорости поликонденсации гексаме-тилендиамина с себациновой кислотой от обратной температуры ( =100кДж/моль) Рис. 86. Зависимость <a href="/info/357940">логарифма константы скорости</a> поликонденсации гексаме-тилендиамина с <a href="/info/38149">себациновой кислотой</a> от <a href="/info/250391">обратной температуры</a> ( =100кДж/моль)
    Равновесной поликонденсацией называется такой процесс синтеза полимера, который характеризуется небольшими значениями констант скоростей и обратимым характером превраше-ний. Поликонденсация - многостадийный процесс, каждая ступень которого является элементарной реакцией взаимодействия функциональных групп. В качестве постулата принято считать, что реакционная способность концевых функциональных групп не изменяется при росте полимерной цепи. Процесс равновесной поликонденсации представляет собой сложную систему реакций обмена, синтеза и деструкции, которую называют по-ликонденсационным равновесием. В общем виде реакции поликонденсации могут быть представлены как реакции функциональных групп, например  [c.267]

    Для большинства реакций поликонденсации и ступенчатой полимеризации наблюдается аррениусова зависимость константы скорости от температуры  [c.77]

    Проверкой справедливости постулата могут явиться данные по общим кинетическим закономерностям процессов полимеризации и поликонденсации, поскольку прямое, измерение константы скорости элементарных реакций как функции длины цепи представляет трудную экспериментальную задачу. Оказалось, что теоретические выводы, ослованные на постулате Флори, удовлетворительно согласуются с экспериментальными данными по исследованию самых различных процессов. Из этих данных были вычислены константы скорости элементарных реакций. То обстоятельство, что константы скорости реакции роста цепи оказались инвариантными по отношению к способу инициирования, природе растворителя и т. д., являлось сильным аргументом в. пользу постулата Флори,. [c.10]

    Ховенкаып [32], используя данные Чалла [33, 34], исследовал зависимость скорости поликонденсации от содержания трехокиси сурьмы. Выведенное им уравнение зависимости константы скорости Кц реакции второго порядка от содержания катализатора и константы скорости некатали- [c.62]

    По данным Кабаяси (рис. 4.5 и 4.6), для поликонденсации с трехокисью сурьмы была определена температурная зависимость констант скорости реакции  [c.68]

    Для выяснения причины уменьшения значений к в данной реакции была изучена кинетика соответствующих модельных реакций (табл. 4.3 и 4.4). Сопоставление полученных результатов показывает, что изменение константы скорости полиэтерификации на начальных стадиях поликонденсации связано с уменьшением активности второй СОС1-группы дихлорангидрида терефталевой кислоты после вступления в реакцию первой ( 1 2 > 1) за счет действия эффекта замещения. Гидроксильные группы фенолфталеина обладают независимой активностью ( // 2 = 1). [c.53]

    Результаты кинетического исследования акцепторно-каталитической полиэтерификации дихлорангидрида терефталевой кислоты с фенолфталеином подтверждают этот вывод. После 50%-й конверсии мономеров наблюдается постоянство константы скорости поликонденсации. [c.55]

    Интересные результаты были получены при изучении влияния температуры на молекулярную массу полиарилатов, получаемых акцепторно-каталитической полиэтерификацией в гомогенной системе [161, 219]. Оказалось, что если в качестве исходных мономеров использовать высокореакционноспособные соединения и проводить процесс в присутствии сильного основания (например, поликонденсация дихлорангидрида терефталевой кислоты с дихлордианом в присутствии ТЭА в среде ДХЭ), то зависимость молекулярной массы полимера от температуры реакции имеет вид кривой с двумя максимумами, что, по-видимому, обусловлено поли-экстремальной зависимостью констант скорости роста полимерной цепи от температуры процесса. Переход к малоактивным исходным соединениям и малоосновным третичным аминам нивелирует эту зависимость. [c.90]

    На скорость поликонденсации дихлораигидридов дикарбоновых кислот с двухатомными фенолами, содержащими в орто-положении к гидроксильной группе заместители, оказывает влияние не только размер, но и химическая природа заместителя. Константы скорости поликонденсации дихлорангидрида терефталевой кислоты с 3,3 -диметил-, 3,3 -диизопропил-, 3,3 -дихлорзамещенными 4,4 -дигидро- [c.156]

    Показано, что содержание смолисто-масляной и асфальтеновой фракций в изотермических условиях со временем падает и в пеках идёт накопление карбенов н карбовдов. Изучение кинетики накопления кар-боидоЕ в интервале 260 320°С показало, что зависимость содержания карбоидов от времени линейна, увеличение темпертуры обработки привадит к некоторому росту карбоидов, что связано с ускорением реакций уплотнения и поликонденсации. Рассчитаны энергии активации и формальные константы скоростей. Изучение накопления фракций,нерастворимых в толуоле показало, что этот процесс идёт с ускорением. [c.68]

    Применение газовой хроматографии для оценки побочных обменных реакций, протекающих в процессе синтеза полиарилатов методом высокотемпературной поликонденсации из хлорархгидридов дикарбоновых кислот и бисфенолов, описано в работе Коршака и сотр. [66]. В связи с тем что синтез полиарилатов различного строения, но с одинаковыми молекулярными характеристиками (молекулярный вес, полидисперсность) затруднен, исследование влияния химической структуры бисфенольного компонента полиарилатов на обменные реакции было проведено на модельных соединениях. Переэтерификацию дибензоатов замещенных диоксидифенилметанов проводили фенолом или д-хлорбензойной кислотой. Степень конверсии определяли газо-хроматографическим методом с помощью калибровочных графиков по количеству вступившего в реакцию фенола или по количеству образовавшейся бензойной кислоты. Этим методом были определены константы скорости нереэтерификации для бисфенолов различного строения. Газо-хроматографический контроль стадии нереэтерификации и аминолиза в процессе синтеза полиуретанов был применен в работе [66а]. [c.106]

    Гель-хроматография олигомеров находит широкое применение в анализе сложных систем, образующихся в процессе получения смол путем поликонденсации и полиприсоединения. Большое внимание уделено изучению продуктов взаимодействия фенола с формальдегидом. Методом гель-хроматографии были проанализированы резолы — продукты, получающиеся при конденсации фенола с избытком формальдегида в присутствии щелочи [96]. Низкомолекулярные фракции, содержащие моно- и диметилолфенолы, были разделены на отдельные соединения и идентифицированы при помощи модельных соединений. Детектирование осуществляли на дифференциальном рефрактометре. Количественный анализ был затруднен, поскольку различные соединения, присутствующие в резолах, сильно различаются по показателям преломления. Для изучения влияния различных катализаторов, времени и температуры реакции на конечный состав резолов продукты реакции разделяли гель-хроматографически и исследовали методом ЯМР-спектроско-пии. Показано, что в процессе каталитического гидроксимети-лирования фенола в разбавленных водных растворах начальная скорость реакции пропорциональна концентрации едкого натра и формальдегида [142]. Путем интегрирования уравнений скорости реакции гидроксиметилирования фенола (2- и 4-метил-фенола) можно построить кинетические кривые и рассчитать оптимальные значения констант скоростей всех стадий этой реакции. [c.303]

    Модифицирующие к-ты не участвуют в реакциях присоединения на первой стадии. Они встуг ают то.чько в поликонденсацию с кислыми эфирами jt гликолями, не прореагировавшими на первой стадии. Поликонденсация подчиняется закономерностям реакций второго порядка. Эффективная константа скорости реакции при 200 "С (30—120) 10 г моль-сек) [2 — 7 г . жоль-.и н)], энергия активации 50—84 кдж моль (12 — 20 ккал моль). Для ускорения процесса можно применять катализаторы соляную к-ту, г-толуолсульфокислсту, кислотные иониты, ацетат натрия п др. [c.356]

    Известно, что равновесие этой системы сдвинуто влею (в сторону мономеров). Тогда небольшие количества полимерных цепей, которые всегда будут присутстюв зть в растюре в динамическом равновесии, должны иметь случайные последовательности, и априорные вероятности всех последовательностей одинаковы. Если условия постоянства равенства всех констант скоростей и концентраций не выдерживаются, то некоторые последовательности будут появляться чаще, и будет сущестювать определенное расп ределение априорных вероятностей. Однако, любая последовительностъ, юзникающая в результате обратимой поликонденсации, не будет и меть смысла. [c.141]


Смотреть страницы где упоминается термин Поликонденсация константа скорости: [c.42]    [c.198]    [c.200]    [c.269]    [c.163]    [c.56]    [c.785]    [c.21]    [c.156]    [c.785]    [c.185]    [c.539]    [c.98]   
Общая химическая технология (1970) -- [ c.543 , c.546 ]

Основы химии полимеров (1974) -- [ c.49 , c.63 , c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Константа скорости

Поликонденсация скорость



© 2025 chem21.info Реклама на сайте