Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические свойства кобальта

    Механизм электроосаждения металлов группы железа. Катодный процесс. Никель, кобальт и железо близки по электрохимическим свойствам. Катодное осаждение и анодное растворение сопровождаются значительной поляризацией. Скорость катодного осаждения этих металлов лимитирует стадия разряда ионов. [c.133]

    Электрохимические свойства кобальта [c.394]


    Металлы этой группы железо, кобальт и никель имеют много общего не только по физическим и химическим свойствам, но и по электрохимическому поведению. Они обладают повышенной реакционной способностью и легко пассивируются во многих средах, вследствие чего стационарные потенциалы их существенно отличаются от равновесных, рассчитанных на основании термодинамических данных. Осаждение на катоде и растворение на аноде этих металлов происходит с значительным торможением, особенно при комнатной температуре (рис. ХИ-13 и ХИ-14). Электролитические осадки металлов группы железа всегда отличаются очень мелкозернистой структурой, легко полируются и в зависимости от условий электролиза могут быть и мягкими и очень твердыми. [c.404]

    Из-за близости электрохимических свойств кобальта и никеля условия соосаждения частиц с обоими металлами должны быть близкими. Так, были [c.109]

    Осаждение кобальта и железа. Теоретические основы осаждения кобальта и железа аналогичны рассмотренным для никеля, так как электрохимические свойства этих металлов сходны между собой. [c.560]

    По электрохимическим свойствам кобальт очень близок к никелю и железу. Их стандартные потенциалы приведены 8 табл. 5. [c.394]

    Химическим способом можно наносить. такие металлы, как золото, палладий, серебро, медь, никель, кобальт, олово, хром. Восстановление ионов этих металлов происходит за счет химической реакции и электрохимических свойств покрываемого металла в данном растворе  [c.69]

    Заслуживает внимания и то обстоятельство, что шероховатость, помимо отмеченного влияния на истинную поверхность металла (см. раздел 1.2), может в определенных условиях изменять электрохимические свойства металла. Так, в перхлорат-ных растворах порядок реакции ионизации кобальта по ионам Н+ для шлифованной и полированной поверхностей при прочих равных условиях был равен соответственно —2 и —4 [152]. [c.121]

    Органические реагенты применяют в полярографии также и в тех случаях, когда комплекс металла обладает некоторыми электрохимическими свойствами, отличающимися от свойств иона металла и свободного лиганда. Например, комплекс диметилглиоксима с кобальтом (II) катализирует выделение водорода на капельном ртутном электроде в отсутствие буфера при pH 6 [449]. Кобальт(II) не обладает этим свойством и хотя протони-рованпая форма диметилглиоксима, несущая положительный заряд, катализирует выделение водорода, в растворах при pH концентрация протонированного диметилглиоксима настолько мала, что он действует только в присутствии буфера. В незабу-ференных растворах диметилглиоксима каталитическая волна водорода не появляется [100]. Поэтому каталитическую волну водорода в случае комплекса диметилглиоксима с кобальтом (И) можно использовать для количественного определения кобальта. Конечно, точность определения зависит от воспроизводимости каталитической волны. Известно, что наклон и величина каталитических волн в значительной мере зависят от состава раствора (ионная сила, природа буфера, pH, температура и т. д.). Воспроизводимость, даже в оптимальных условиях, не лучше 10%. Однако метод важен в практическом отношении вследствие своей специфичности, несмотря на его сравнительно низкую точность. Так, микрограммовые количества кобальта можно определить посредством каталитической волны водорода в присутствии стократного избытка никеля и меди и даже еще больших количеств ионов других металлов [100]. Метод в некоторой степени избирателен благодаря избирательности диметилглиоксима в реакциях с ионами различных металлов. Избирательность увеличивается вследствие того, что комплексы диметилглиоксима выпадают в осадок из водных сред и, значит, не мешают проведению аналитического определения. Метод специфичен, так как из растворимых в воде комплексов переходных металлов с диметилглиоксимом только комплекс кобальта (И) катализирует выделение водорода. [c.91]


    Вследствие близости электрохимических свойств никеля и кобальта представляется возможным соосаждать эти металлы на катоде из растворов простых солей с образованием соответствующих сплавов в слоях значительной толщины. [c.154]

    При растворении анодов, которые являются многокомпонентными сплавами, поведение металлов-примесей в зависимости от их электрохимической активности и химических свойств их соединений различно. Такие металлы, как цинк, железо, никель, кобальт, равновесные потенциалы которых намного отрицательнее равновесного потенциала меди, при условиях электролиза переходят в раствор, но не осаждаются на катоде. Накопление солей этих металлов в электролите, однако, при- [c.122]

    По другой точке зрения происхождение металлического перенапряжения связано с процессом выделения водорода. Разряд водородных ионов является потенциально конкурирующей катодной реакцией при электролизе любых водных растворов, в том числе и растворов, содержащих соли металлов. Если на катоде наряду с металлом происходит также образование водорода, то последний может влиять и на кинетику электрохимического выделения металла, и на свойства его катодных осадков. Известно, что электролитические осадки железа, никеля и кобальта всегда содержат заметное количество водорода. Включения водорода рассматриваются как одна из возможных причин искажения кристаллической решетки осадков этих металлов, появления в них внутренних натяжений, хрупкости и т. п. В меньших количествах водород присутствует в осадках меди и цинка. Его практически не удается обнаружить [c.438]

    Электроосаждение кобальта и никеля. Принято считать, что металлы группы железа но электрохимическим свойствам существенно отличаются от остальных металлов. Поэтому исследование перенапряжения при осаждении и растворении этих металлов представляет особый интерес. В последнее время у нас в лаборатории 3. А. Соловьевой и О. А. Абраровым [32] изучалась катодная и анодная поляризация кобальта и никеля. Ими было показано, что с повышением температуры электролита наблюдается уменьшение в одинаковой степени как катодной, так и анодпой поляризации. При изучении поляризации этих металлов было обнаружено новое явление, заключающееся в том, что в определенном, сравнительно узком интервале pH раствора 2,9—3,1, скорость электрохимической реакции резко увеличивается (рис. 7). Дополнительные опыты показали, что в области pH, где происходит облегчение осаждения, также увеличивается и скорость растворения металлов (рис. 8, а). В области же низких pH затрудняются как разряд, так и ионизация металлов (рис. 8, б). Таким образом установлено, что условия электролиза, способствующие разряду ионов металла группы железа, также ускоряют ионизацию атомов металлов. [c.400]

    По другой точке зрения происхождение металлического перенапряжения связано с процессом выделения водорода. Разряд водородных ионов является потенциально конкурирующей катодной реакцией при электролизе любых водных растворов, в том числе и растворов, содержащих соли металлов. Если на катоде наряду с металлом происходит также образование водорода, то последний может влиять и на кинетику электрохимического выделения металла, и на свойства его катодных осадков. Известно, что электролитические осадки железа, никеля и кобальта всегда содержат заметное количество водорода. Включения водорода можно рассматривать как одну из возможных причин искажения кристаллической решетки осадков этих металлов, появления в них внутренних натяжений, хрупкости и т. п. В меньших количествах водород присутствует в осадках меди и цинка. Его практически не удается обнаружить в электролитически осажденных кадмии или свинце. Из этого следует, что металлическое перенапряжение увеличивается параллельно с количеством водорода, включенного в осадок металла, т. е. водород, по-видимому, затрудняет процесс катодного выделения металла. Предполагалось, что водород выступает здесь в роли отрицательного катализатора, тормозя разряд за счет создания поверхностной пленки или образования гидридов металлов. [c.439]

    ЭЛЕКТРОХИМИЧЕСКОЕ И ПОЛУПРОВОДНИКОВЫЕ СВОЙСТВА ПЛЕНОЧНЫХ АНОДОВ НА ОСНОВЕ ЗАКИСИ - ОКИСИ КОБАЛЬТА [c.18]

    В книге излагаются теоретические основы процессов получения комбинированных (композиционных) электрохимических покрытий, которые состоят из металла и оксидов, боридов и других включений.. Приведены формулы для расчета состава суспензий, типовые рецептуры и описаны свойства комбинированных покрытий на основе цинка, кадмия, олова, свинца, хрома, кобальта, железа, никеля, меди, серебра и золота. [c.2]

    Содержание в сплаве металлов, способных к автокаталитиче-скому восстановлению, может изменяться в интервале от О до 100 %. Примером таких систем являются сплавы никеля с кобальтом. Довольно значительная доля металла [ 50 % (мол.)] может содержаться в покрытии и в том случае, когда сам металл не имеет каталитических свойств по отношению к данной реакции восстановления и не является каталитическим ядом (ингибитором), но может быть сравнительно легко восстановлен. Нанример, он может быть осажден на поверхность простейшим путем — электрохимически, если электрохимический потенциал поверхности во время восстановления основного металла имеет достаточное отрицательное значение. Примерами таких сплавов, содержащих каталитически инертные металлы (Сд, РЬ, Ре), могут быть сплавы Си —Са, Си —РЬ, N1 —Ке — Р, N1 —Ре-В. [c.59]


    Металлические покрытия были получены разложением ацетилацетоната кобальта в сухом водороде в качестве газа-носителя при атмосферном давлении. Температура испарителя 140—150° С, температура подложки 325 — 340 С, температура паровой фазы 150 — 170" С и скорость газового потока 1,2 — 2,8 л/мин [41, 522]. Эти условия осаждения являются оптимальными, так как приводят к получению тонкой металлической пленки, имеющей магнитные свойства монолитного кобальта. Однако их следует рассматривать оптимальными лишь при использовании данной конструкции установки. За 8—10 мин. осаждения на стеклянной подложке была выращена пленка толщиной 0,6 мкм. Авторы отмечают, что ими получены также пленки толщиной 1,47 мкм. Адгезия пленок па стекле была плохой из-за различия в коэффициентах термического расширения кобальта и стекла. Пленки кобальта не обладали очевидной магнитной или механической анизотропностью в отличие от пленок, полученных вакуумным напылением или электрохимическим осаждением, которые обычно являются анизотропными. Присутствие некоторого количества водорода при осаждении является необходимым для получения качественных блестящих покрытий из ацетилацетоната кобальта. Хотя обычно разложение проводят при нормальном давлении, осаждение в вакууме при давлении ниже 1 мм рт. ст. имеет преимущества вследствие уменьшения возможности температурных колебаний и уменьшения тенденции образования порошковых покрытий, обусловленных разложением соединений в объеме. [c.288]

    Для удовлетворения указанных требований к объемным свойствам маслорастворимых ингибиторов выбирают те вещества, которые способны к поляризации системы. Это — микрокальцит (доломит), порошки металлов или их оксидов, дисульфид молибдена, графит, нитрит натрия (сегнетоэлектрик). Особенно сильно поляризуют ПИНС (и другие смазочные материалы) ферромагнитные материалы — мелкодисперсные частицы железа, никеля или кобальта. Получение тонких, модифицированных дисперсий наполнителей обеспечивается разными технологическими приемами. Используют струйные мельницы (в том числе во встречных потоках), коллоидные мельницы разных модификаций, эффективные магнитные реакторы-диспергаторы с вихревым слоем ферромагнитных частиц (АВС-100, АВС-150) ультразвуковые и магнитострикционные диспергаторы, дезинтеграторы, получившие значительное распространение в последнее время [117—122]. Тонкие дисперсии порошков металлов получают также электроискровым и электрохимическими методами 118], дисперсии карбонатов металлов — методом карбонатации 17, 18]. Для модификации поверхности наполнителей используют самые разнообразные гомогенизаторы — отечественные ультразвуковые типа АГС-6, ГАРТ-Пр, зарубежные типа Фирма и Корума и пр. [c.160]

    Отмечавшееся в работе различие магнитных свойств электролитических осадков, полученных из свежеприготовленной и длительно работавшей ванн, связано, по-видимому, с постепенным окислением кобальта в аммиачной среде до трехвалентного состояния и образованием в растворе комплексов нового типа. Зависимость электрохимических характеристик процесса выделения кобальта от времени работы ванны была подробно исследована в работе А. И. Заяц [c.65]

    Кобальт образует малорастворимые соединения с диэтилдитио-карбамат-ионами, причем растворимость соединений кобальта(II) выше растворимости соединений кобальта(III). Это создает благоприятные условия для концентрирования на электроде окисленной формы элемента. Диэтилдитиокарбамат натрия (ДДТК) как реагент, используемый в методах экстракции, осаждения амперометрического титро вания , достаточно хорошо изучен. Он образует малорастворимые соединения с ионами многих металлов и не является избирательным и чувствительным. Эти недостатки в определенной степени устраняются, если использовать ДДТК как реагент-осадитель в электрохимических реакциях. Избирательность определения в этом случае повышается за счет индивидуальных электрохимических свойств определяемого элемента, а высокая чувствительность является следствием концентрирования продукта реакции на поверхности электрода. [c.111]

    Примеси ионов металлов в электролите также существенно влияют на ход катодного процесса. Медь и мышьяк легко осаждаются из никелевого электрвлита и загрязняют катодный осадок. Железо и цинк, хол и более электрветрицательны, чем никель, однако легко дают с никелем сплавы и потому саждаются вместе с ним. Очень вреден цинк в электролите. Он дает серые всадки на катоде. Кобальт по своим электрохимическим свойствам близок к никелю и всегда осаждается вместе с ним из электролита. Очистка электролита от кобальта необходима для того, чтобы извлечь этот металл как значительно более дорогой, чем никель. [c.233]

    Сходство элементов, расположенных в вертикальных направлениях, по их физическим и химическим свойствам столь же велико, как и элементов в горизонтальных рядах [1]. Однако срав-зепие основных электрохимических свойств этих элементов покапывает, что железо, кобальт и никель более сходны между собой, чем с элементами, стоящими под ними. Поэтому они будут рассмотрены отдельно, как металлы группы железа. Остальные элементы объединяются под общим названием платиновые металлы. [c.89]

    Особый интерес представляют способы адсорбционного концентрирования, связанные с применением электродов с модифицированной поверхностью. Заметим, что придание поверхности электрода специфических свойств путем соответствующей обработки (нанесение полимерной пленки, пришивка функциональных групп или ферментов и т.п.) существенно повышает селективность определений методом ИВА. Модифицирование электродной поверхности зачастую обеспечивает избирательное определение соединений с близкими окислительно-восстановительными свойствами либо электрохимически инертных на обычных электродах, когда прямое детектирование требует высоких потенциалов. Так, нанесение на поверхность графитового электрода порфириновых комплексов кобальта облегчает восстановление кислородсодержащих органических соединений. Аналогичные эффекты наблюдаются при модифицировании электродной поверхности сорбентами, фенантролиновыми и дипиридильными комплексами кобальта и железа, макроциклами, К4-комплексами, которые необратимо адсорбируются на углеродных материалах. Такие электроды проявляют высокую селективность к определяемым веществам и имеют низкие пределы обнаружения. [c.434]

    Имеющегося опытного материала, однако, еще недостаточно для того, чтобы сделать окончательное заключение в пользу той или иной схемы процесса разряда водорода, катализируемого веществами с сульфгидрильными группами . Поэтому в литературе продолжается обсуждение механизма образования каталитических волн белка, возникающих в присутствии солей кобальта (а также и никеля), и их свойств. О ряде таких новых взглядов на механизм катализа рассматриваемых систем сообщает Б. А. Кузнецов в одной из своих обзорных статей [И, с. 293]. В частности, одной из причин образования двуступенчатой волны некоторые исследователи считают существование в пленке адсорбированного белка гидрофобной и гидрофильной микрообластей, мозаично расположенных на поверхности электрода, что и обусловливает различные каталитические эффекты в неодинаковых микросредах. В пользу существования двух различных микрообластей в пленке сорбированного белка Б. А. Кузнецов и Г. П. Шумакович приводят ряд экспериментальных доказательств, на основании которых можно считать, что первая волна связана с электрохимической реакцией SH-групп, расположенных в гидрофобных областях пленки, а вторая связана с SH-группами, расположенными в гидрофильных областях пленки. Из этих данных делается также вывод о возможности определять соотношение гидрофобных и гидрофильных групп в белковых макромолекулах и относительное их расположение в глобуле, так как обычно внутренние SH-группы находятся в гидрофобном окружении, а внешние — в гидрофильном. [c.241]

    Известно, что в качестве связующих используют восстановленные формы кремнемолибденовой и кремневольфрамовой кислот в зависимости от природы восстановителя — цинка, железа, кобальта, меди, свинца. Одновременно ведут гетерофоретическое осаждение гетерополикислот и электрохимическое выделение коллоидных металлов и получают композиционные материалы или покрытия на основе неорганических полимеров — металлополи-меров, рабочая температура которых до 1000°С. Такие материалы обладают интересными электрическими, каталитическими и защитными свойствами. [c.107]

    На основе имеющегося материала но каталитическим токам водорода можно сделать вывод о том, что механизм процесса каталитического выделения водорода в растворах комплексных соединений кобальта и никеля с различными лигандами в основных чертах аналогичен. Основным условием является способность комплекса к протолитическому взаимодействию (протонодонорные или протоноакценторные свойства). Роль ионов кобальта или никеля состоит, с одной стороны, в усилении этой способности, с другой стороны, связана с особенностями их строения и электрохимического восстановления (возможность стабилизации низших валентных состояний, что особенно существенно для проявления каталитического эффекта в щелочных растворах в сильно отрицательной области потенциалов). [c.282]

    Электрохимические и каталитические свойства анода определяет покрывающий основу активный слой. Это сложная композиция разных по природе соединений — высокоэлектропроводных и электрокаталитически активных оксидов металлов платиновой группы, кобальта, никеля, железа, марганца и других металлов и электрохимически инертных, но коррозионностойких оксидов металла подложки, являющихся полупроводниками rt-типа с широкой запрещенной зоной. Активности таких композиций способствует образование оксидами одной кристаллохимической системы — смешанных кристаллов, структур, шпинели и перовскитов. Такая композиция оксидов обладает необходимой для анода комбинацией элек-трокаталитических, коррозионных и электрофизических свойств. [c.30]

    Исследование свойств шпинели N 0204 как электродов-катализдторов для топливных элементов показали, что ее электропроводность и электрохимическая активность выше, чем смеси оксидов никеля и кобальта. При анодной поляризации смеси простых оксидов на рентгенограмме появляются линии шпинельной структуры N100204 в рентгенограмме N 0204 линии становятся более интенсивными вследствие упорядочивания структуры. [c.35]

    По данным этого автора, электрохимическая коррозия стали и сцепление между металлом и грунтовой эмалью возможно не только в присутствии закиси кобальта и закиси никеля в последней, но также и при регулировании состава, структуры и свойств металла и грунта. Например, прочное сцепление между грунтовой эмалью, не содержащей указанных окислов, и металлом достигается на титанистой и хромоникелевой сталях. По литературным данным, стали, легированные цирконом, ниобием 1 ли ванадием, можно также покрывать эмалями без сцепляющих окислов. Это объясняется структурными особенностями таких сталеД. [c.107]

    Запишите реакции, которые происходят при появлении ржавчины. Почему никель и кобальт менее подвёржены электрохимической коррозии Какова связь этих свойств с электронными структурами  [c.304]

    Из полученных к настояшему времени совместным осаждением на катоде сплавов [8 ] наиболее интересным с точки зрения изучения зависимости магнитных свойств от электрохимических условий получения является сплав кобальт — вольфрам. Один из компонентов сплава — кобальт был выбран в качестве ферромагнит-58 [c.58]

    Исходя из имеющихся литературных данных и накопленных экспериментальных материалов в области электроосаждения сплавов было предпринято исследование в целях разработки технологии гальванопластического получения изделий различной формы из никелькобальтовых сплавов. Электрохимические (равновесные) потенциалы никеля и кобальта достаточно близки, так же как и их электронное строение и физико-химические свойства. Так, по данным Глестона [2], при температуре 15° потенциал выделения кобальта равен минус 0,56 в, а потенциал выделения никеля — минус 0,57 в. Катодная поляризация кобальта несколько меньше катодной поляризации никеля. Это дает основание рассчитывать на возможность электроосаждения никелькобальтовых сплавов заданного состава путем изменения концентрации солей никеля и кобальта в электролите, [c.142]


Библиография для Электрохимические свойства кобальта: [c.150]   
Смотреть страницы где упоминается термин Электрохимические свойства кобальта: [c.23]    [c.166]    [c.73]    [c.797]    [c.18]    [c.3]    [c.57]   
Смотреть главы в:

Электролиз в гидрометаллургии -> Электрохимические свойства кобальта




ПОИСК





Смотрите так же термины и статьи:

Кобальт, свойства



© 2025 chem21.info Реклама на сайте