Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения Алифатические углеводороды

    Трудно бывает решить, является ли то или другое химическое вещ,ество нефтехимическим продуктом, поскольку, как уже отмечалось выше, любое органическое соединение можно синтезировать, исходя из метана. Кроме того, возможность получения бензола, толуола, нафталина и других соединений из нефти означает, что все синтетические вещества ароматического ряда, в том числе красители, лекарственные и взрывчатые вещества и т. п., можно рассматривать как продукты нефтяного происхождения. К выбору объектов для описания приходилось подходить очень продуманно, чтобы не увеличить чрезмерно объем книги. Из трех основных типов органических соединений — алифатических, ароматических и гетероциклических — в химии производных нефти рассматриваются главным образом алифатические соединения. Производство ароматических углеводородов из нефти обсуждается в книге еще довольно подробно, но вопросы дальнейшей их химической переработки ограничиваются только последними достижениями в этой области. Аналогичным образом описывается производство полупродуктов для получения высокополимеров из сырья нефтяного происхождения, но процессы полимеризации опускаются. Вопросы химии и технологии нефтеперерабатывающей промышленности, которая занимается главным образом производством топлив и смазочных масел из сырой нефти, освещены лишь в той степени, в какой они имеют отношение к химической переработке нефти. В книге не упоминается о производстве сажи, базирующемся почти исключительно на нефтяном сырье, но не приводящем к получению синтетических органических продуктов. [c.12]


    Обычные неводные органические растворители относятся к молекулярным жидкостям и в зависимости от их химического строения принадлежат к одному из следующих классов органических соединений алифатические и ароматические углеводороды и их галоген- и нитропроизводные, спирты, карбоновые кислоты, сложные эфиры карбоновых кислот, простые эфиры, кетоны, альдегиды, амины, нитрилы, незамещенные и замещенные амиды, сульфоксиды и сульфоны (см. приложение, табл. АЛ). Классификация растворителей в соответствии с их химическим строением позволяет сделать некоторые выводы качественного характера, в общем случае сводящиеся к старому правилу подобное растворяется в подобном . Обычно соединение легко растворяется в растворителе, имеющем такие же или [c.87]

    Процессы -распада атомов углерода-14 в многократно меченных органических соединениях (алифатические и ароматические углеводороды, жирные кислоты) используются для получения аминов и аминокислот, меченных радиоактивными изотопами углерода или водорода. [c.78]

    Многочисленные попытки установить количественную корреляцию между оптическим вращением и структурой органических соединений в конце концов позволили Маркеру (1936) составить последовательность перенумерованных заместителей при асимметрическом атоме углерода и сформулировать для соединений СЙК К"В " правило если атом водорода находится в вершине тетраэдра, удаленной от наблюдателя, а три других заместителя в плоскости, обращенной к наблюдателю то моделям, в которых рост порядковых номеров групп В, К, К" идет по часовой стрелке, отвечает левое вращение, и наоборот. Позднее (1959) Брюстер для распределения заместителей в такой ряд использовал данные по их поляризуемости на первом месте стоят заместители с большей поляризуемостью. Таким путем Брюстеру удалось в хорошем соответствии с опытными данными рассчитать угол вращения для многих органических соединений алифатических и алициклических углеводородов и их производных, терпенов и других молекул с двойной связью в цикле. [c.205]

    Войткевич С. А., ЖФХ, 38, 1666 (1964). Поверхностное натяжение и давление пара жидких органических соединений. Алифатические амины, нитрилы, нитросоединения и галогенпроизводные ароматических углеводородов. [c.680]

    Априорное ранжирование применялось нами на первом этапе решения задачи выбора условий синтеза кислородсодержащих органических соединений (алифатических альдегидов и кислот) из газовой фазы (смесь водорода или углеводородов с СО, СОг или Н2О) в электрических разрядах. Для каждого типа разряда в опросные анкеты было включено по 19 факторов. Обработка данных априорного ранжирования показала, что в число наиболее значимых факторов попадают факторы, характеризующие исходную газовую смесь, давление и ток [10]. [c.222]


    В исследованиях, проведенных Н. А. Бах с сотр. [21—24] по действию-ионизирующих излучений на окисление молекулярным кислородом большого числа органических соединений (алифатические и ароматические углеводороды, спирты, кетоны, кислоты), было обнаружено образование перекисных соединений различного типа и продуктов их разложения. Только в одном из исследованных случаев (окисление этилового спирта) авторы допускают наличие цепного механизма. К тому же выводу (отсутствие цепей) приходит Б. М. Михайлов [25], исследовавший окисление метана кислородом под действием потока быстрых электронов. [c.94]

    В табл. 1 приведены 219 реакций окисления углеводородов до кислородсодержащих органических соединений алифатического ряда. Для всех этих реакций получены полные термодинамические характеристики логарифмы констант равновесия, тепловые эффекты, изменения свободной энергии при постоянном давлении, изменения связанной энергии и энтропии реакций, стандартные величины которых приведены в данной таблице, а при разных температурах в пределах от 298,15 до 1000 или 1500°К -в последующих основных таблицах. При этом во многих случаях рассчитаны также степени превращения исходного вещества и равновесные составы газовой смеси в зависимости от температуры. [c.7]

    Парафины не нитруются, не сульфируются в тех условиях, когда с ароматическими углеводородами эти реакции проходят гладко. Химическая переработка алифатических углеводородов обычно обходится дороже, чем переработка большинства ароматических соединений, производные которых легко кристаллизуются, и с ними можно ставить опыты, пользуясь далее очень малыми количествами вещества. Поэтому исследования в области органических красителей и лекарственных веществ приобрели в XIX веке колоссальный размах. Все эти обстоятельства, возможно, были причиной того, что ббльшая часть органиков в конце XIX века занималась химией ароматических углеводородов. [c.530]

    Очень близкие по своей физической сущности идеи высказывались и раньше. Так, Абрамзон и Славин [30] показали, что меж-молекулярные связи между органическими соединениями и растворителями с симметричными силовыми полями обладают свойством аддитивности по входящим в молекулу группам. На этом основана шкала межмолекулярных связей между молекулами органических соединений, разработанная авторами [30]. Изучая взаимодействие алифатических спиртов и углеводородов, Абрамзон и Славин показали [31], что свободная энергия растворения любых алифатических углеводородов нормального строения в данном спирте, отнесенная к одной группе СН2, одинакова. [c.93]

    Ароматические углеводороды представляют собой бесцветные жидкости с характерным запахом, применяются в качестве растворителей для перекристаллизации, извлечения (экстракции), проведения реакций. Обладают более высокой (по сравнению с алифатическими углеводородами) растворяющей способностью по отношению ко многим классам органических соединений. Некоторые свойства ароматических углеводородов приведены в табл. 3. [c.55]

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]

    В тех случаях, когда давление технологического лара на установке недостаточно, применяют конденсат, который после пароперегревателя вводят в поток сырья. Место ввода турбу-лизатора определяется главным образом химическим составом сырья, поступающего на нагрев, и его реакционной способностью. Наименьшей термической прочностью, как было показано выше, обладают углеводороды алифатического строения, к которым в первую очередь следует отнести парафины нормального и изостроения, затем длинные алифатические цепочки в молекулах нафтеновых и ароматических органических соединений сложного гибридного строения. [c.98]


    Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и Н2) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от С2 и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.161]

    Очевидно, что наибольшее значение работы адсорбции для каждого соединения независимо от типа полярной группы будет соответствовать переходу в органическую фазу всей углеводородной цепи. Показано [38], что в системе алифатический углеводород — вода экспери ментальная и рассчитанная по уравнению (9) величина W для органических кислот и спиртов нормального ряда, совпадают. При расчете принимали, что вся углеводородная цепь находится в органической фазе, а полярная группа — в водной. [c.430]

    В нефти и ее фракциях представлены все основные типы углеводородов в различных соотношениях. В ее остаточных фракциях преобладают высокомолекулярные органические соединения. Следовательно, в первую очередь термическому распаду будут подвергаться высокомолекулярные углеводороды и их производные, в структуре которых имеются ординарные алифатические связи. При этом реакции распада более вероятны, чем реакции дегидрирования. [c.158]

    В алифатических органических соединениях длина связей С—С равна / 1,54 А, а валентные углы между связями С—С составляют 109,5° углеводороды ряда метана имеют структуру зигзагообразной [c.116]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]

    Самое простое стабильное органическое соединение — метан (СН4), простейший гидрид углерода. Ввиду практически неограниченных возможностей образования цепей из атомов углерода существует огромное число гидридов углерода. Соединения, состоящие только из углерода и водорода, называются углеводородами. По типу цепей из атомов углерода в молекулах углеводороды подразделяются ка ациклические, или алифатические (с открытой цепью), и циклические (с замкнутой цепью). Циклические углеводороды делятся на ароматические, характеризующиеся особым упорядочением связей в своих молекулах (разд. 3.5 и 3.6), и алициклические, не обладающие таким упорядочением. [c.13]

    Окисление органических веществ ускоряется и охватывает почти все органические соединения, если в качестве катализатора вводят сульфат серебра. Большинство органических веществ при этом окисляется на 95—100% алифатические углеводороды, спирты и кислоты с неразветвленной цепью атомов углерода окисляются на 80—95%. Незначительное число соединений (к ним относятся бензол, толуол и другие ароматические углеводороды) не окисляются и в присутствии катализатора. [c.189]

    I. Липофильные соединения (растворимые в органических соединениях), алифатические, ароматические, полигалогенированные +++ (+)++ Применяется в основном сорбент I, разделение соединений с различными группами. Дешевые сорбенты. При анализы ароматических углеводородов отдается предпочтение АЬОз [c.397]

    Наряду с анализом питьевой воды ХМС метод широко при меняется и при определении органических микропримесей в реках, озерах и различных образцах промышленных вод В образцах воды из реки Томагава Ривер (Япония) с по мощью ХМС были идентифицированы различные органические соединения (алифатические и ароматические углеводороды, жирные кислоты, фталаты и другие) [363] В промышленных водах идентифицированы загрязнения, возникшие в резуль тате вымывания из полимерных труб пластификаторов и других компонентов полимерных материалов [364] [c.151]

    Как показывает опыт, биохимическому окислению легко поддаются органические соединения алифатического ряда (сложные эфиры, кислоты) легко окисляются также бензойная кислота, этиловый и амиловый спирты, гликоли, хлоргйдриды, ацетон, глицерин, анилин и ряд других веществ. При длительной адаптации микроорганизмов достигается распад даже таких устойчивых соединений, как толуол, ксилол, углеводороды нефти, хлорзамеш енные углеводороды и др. Однако окисление некоторых из органических веществ происходит настолько медленно, что содержащие такие вещества сточные воды нецелесообразно подвергать биологической очистке. Наиболее неблагоприятное влияние на ход [c.569]

    Р, Р -Дипропионит-риловый эфир Углеводороды и кислородсодержащие органические соединения ароматические углеводороды от алифатических 70 [c.56]

    В какой-то степени с этой идеей Маркера перекликается более поздняя расчетная схема Брустера [82, который для последовательного распределения заместителей в ряд использовал данные по их поляризуемости на первом месте стоят заместители с большей поляризуемостью. Правда, для расчета молекул, в которых асимметрический атом является частью цепи (циклической или нециклической), способной участвовать в различных конформациях, Брустер вводит дополнительные поправки. С помощью своей таким образом усложненной схемы ему удается в хорошем соответствии с опытом рассчитать вращение многих органических соединений алифатических и алициклических углеводородов и их производных, терпенов и других молекул с этиленовой связью в цикле. [c.88]

    Исследования последних лет приводят к выводу, что состав сточных вод, прошедших БХО, в значительной мере одинаков для различных объектов. В результате БХО полностью разрушаются низкомолекулярные и хорошо растворимые органические соединения алифатические спирты и кетоны, кислоты и углеводороды, т. е. именно те компоненты, которые плохо сорбируются на АУ. При этом происходит некоторая унификация состава сточных вод [94, 95]. Органические примеси в воде после БХО— это, в основном, продукты жизнедеятельности активного ила (биопленки), а они сходны. Конечно, в воде остаются продукты неполного окисления консервативных веществ и вообще неокисляемые примеси, но это — специфика промышленных стоков. Городские сточные воды после БХО очень мало отличаются друг от адуга. [c.83]

    Посторонними компоненталш клеточных стенок древесины являются многие органические соединения алифатические и ароматические углеводороды, терпены, алифатические и ароматические кислоты и их соли, спирты, фенолы, альдегиды, кетоны и хиноны, сложные и простые эфиры. Для одних видов древесины характерно присутствие заметных количеств эфирных и жирных масел, смоляных кислот и стеринов другие содержат таниды и красящие вещества. Встречаются виды древесины, содержащие значительное число растворимых в воде полисахаридов есть и такие виды древесины, для которых характерно присутствие циклитолов. Все виды древесины содержат очень малые количества протеинов, источником которых является высохшая протоплазма. Природа протеинов мало исследована. Для некоторых видов древесины характерно присутствие таких физиологически активных продуктов, как алкалоиды, которые содержат азот. Минеральные компоненты всех видов древесины, по-видимому, распределяются между экстрактивными веществами и клеточной стенкой. Ради удобства это минеральное вещество (зола) будет рассмотрено в главе XVI. [c.457]

    Алифатические углеводороды до недавнего времени считались инертными. Однако еще в прошлом веке Коновалов лакаэал возможность получения нитропарафинов прямым нитрованием углеводородов. Позднее отечественные ученые широко развили работы Коновалова, и в настоящее время благодаря плодотворным исследованиям наших ученых реализовано промышленное производство нитропарафинов. Хлорирование, окисление и нитрование парафиновьщ углеводородов с получением соответствующих полезных органических соединений в настоящее время осуществлено в широких промышленных масштабах. [c.5]

    Однако из органических веш еств, рассеянных в горных породах, удалось выделить небольшие количества продуктов гидролиза спиртового характера детальный анализ указал на наличие среди этих продуктов соединений с алифатическими структурами, идентичными наиболее распространенным скелетам алифатических углеводородов и карбоновых кислот нефти [165, 668]. В частности, из сланца Грин Ривер выделен и полностью идентифицирован ряд ациклических насыщ,енных спиртов С з — С20 изопреноидного строения, содержащих ОН-группу только на конце или в положении 2-основной цепи, в том числе, например, соединения (ЬХХ— ЬХХП) [165]. С помощью клатратообразования с мочевиной показано и присутствие в образце спиртов с линейной алкановой цепью. [c.113]

    Известно, что в нефти и ее фракциях представлены все основные виды структур органических соединений, но в различных соотношениях. В ее остаточных фракциях преобладают высокомолекулярные органические соединения. Следовательно, в пеп-. вую очередь термическому распаду при коксовании будут ппгт-вергаться высокомолекулярные углеводороды и их ппоизводные. в структуре которых имеются ординарные алифатические связи. [c.39]

    Указанные выше основные классы органических соединений, в свою очередь, подразделяются иа более дробные классы. Так, алифатические соединения подразделяются на карбоцепн/ие, у которых цепи образованы только углеродными атомами, и гетероцеп-ные, у которых в состав цепей кроме углеродных входят атомы других многовалентных элементов — кислорода, серы, азота, фосфора, кремния. Карбоциклические соединения подразделяются на алициклические, скелетом которых являются замрснутые циклы нз разного числа (начиная с трех) углеродных атомов, и ароматические, в основе которых лежит особая циклическая группировка нз шести углеродных атомов,— так называемое бензольное кольио. Углеводороды подразделяются на следующие группы алифатические предельные, называемые также алканами, нли парафинами общая формула С На +2  [c.142]

    Среди выпускаемых промышленностью серусодержащих органических продуктов большая часть приходится на долю сульфопроизводнЫх ароматических и алифатических углеводородов. Тиолы, сульфоксиды, серусодержащие гетероциклические соединения вырабатываются в значительно меньших количествах. [c.431]

    Наиболее важным открытием в области химии нефти и органической геохимии за последние два десятилетия, безусловно, явилось обнаружение в нефтях, углях, сланцах и рассеянном органическом веществе большого числа изопреноидных алифатических углеводородов. Оказалось, что вся толща осадочных отложений буквально пропитана соединениями, имеющими изопреноидный тип строения, в то время как раньше было обнаружено наличие большого числа лишь алифатических соединений с неразветвленной цепью. Эти два основных строительных блока — перазветвленная алифатическая цепь и изонреноидная единица — составляют основную массу как биологического исходного вещества, так и углеводородов каусто-биолитов. Трудно подсчитать, какие из этих блоков в большей степени участвовали в образовании нефтяных углеводородов. Одно только ясно, что ассортимент изопреноидных соединений неизмеримо выше и число соединений изопреноидного типа строения, обнаруживаемое в нефтях, растет ежегодно. Строение этих соединений весьма сложно и своеобразно. Поэтому изопреноидным углеводородам и будет уделено основное внимание в дальнейших главах этой монографии. [c.59]

    Считалось, что дегидроциклизации подвергаются лишь те алифатические углеводороды, которые содержат в нормальной цепи не менее 6 атомов углерода. Впоследствии работами Е. Герингтона и Е. Рейдила [28] было, однако, установлено, что дегндроциклизации подвергаются и изомерные гептаны и октаны, имеющие в основной иепи 5 атомов углерода. Над катализатором АиОз/Сг. Оз при 475° они дают значительные выходы ароматических углеводородов. На этом основании можно сде/ ать вывод, что механизм дегидроциклизации очень сложен и сопряжен с изомеризациями, ведущими к лревращению органических соединений в более термодинамически устойчивые ароматические циклы  [c.275]

    Многочисленные реакции циклизации органических соединений, главным образом кислородсодержащих, известны давно. К этим реакциям относятся превращения алифатических соединений в циклические в результате конденсации двух или более молекул (цик--юдегидратация), циклизации в результате изомеризации, циклизации полиенов в изоциклические системы и т. д. Однако указанные реакции не имеют ничего общего с дегидроцик-лизациями. Дегидроциклизация не должна ограничиваться лишь превращением алифатических углеводородов в ароматические, а бесспорно имеет более общее значение. Этот вопрос, однако, совершенно не освещен в литературе. Имеются лишь указания, что при пропускании над Сг,Оз ири 425—450 первичных спиртов с числом атомов углерода, равным 6 и более, в небо.ль лих количествах (до 2" ) получаются фенолы. [c.296]

    В процессе карбонизации вследствие протекания параллельных, последовательных и параллельно-последовательных реакций (расщепление, гидрирование, дегидрирование, изомеризация, алкилирование, деалкили-рование, полимеризация, поликонденсация и т.д.) происходят изменения состава, молекулярной структуры и ММР нефтяных систем в направлении накопления полициклических углеводородов и гетероатомных органических соединений с ароматичностью, возрастающей по мере увеличения глубины превращения исходного материала. Источником накопления ароматических молекулярных структур прежде всего являются ароматические структуры исходного материала, а затем уже продукты химических превращений алифатических и ациклических молекулярных структур. Это подтверждается результатами исследования состава и молекулярной структуры дистиллятных и остаточных продуктов термического крекинга [41...43,45], коксования [34...37,40...45,60,63,64], пиролиза [79...84], каталитического крекинга [43,45,64] и других процессов [84] деструктивной пере- [c.18]

    Курс теории строения органических соединений отличается от систематического курса органической химии особым подходом к одному и тому же в своей сущности объекту — органической молекуле. Систематический курс излагается по классам соединений и может быть построен двумя способами первый кладет в основу структуру органического радикала и последовательно рассматривает алифатические, ароматические, гетероциклические ряды с соответствующими функциональными группами второй способ базируется на введении и последующем превращении функциональных групп в молекуле, что приводит к иному расположению материала углеводороды, спирты, альдегиды, кислоты, оксиальдегиды, оксикислоты и т. д. В обоих случаях в систематическом курсе отдается предпочтение описанию химических явлений, многообразию свойств конкретных соединений. Теоретический курс должен подходить к объекту с иной стороны, рассматривать предмет исторически, дeлfгь упор на сущность внутренней природы описываемых явлений. Для теоретического курса наиболее важным является выяснение основных понятий науки, которые, как известно, не неизменны, а текучи, подвижны, исторически обусловлены достигнутым уровнем знаний. [c.3]

    Органическая химия подразделяется на химию алифатических соединений (цепных соединений) и химию ароматических соединений (бензола и родственных ему соединений). Пртстейшие органические соединения-углеводороды-состоят из элементов углерода и водорода. [c.304]


Смотреть страницы где упоминается термин Органические соединения Алифатические углеводороды: [c.65]    [c.192]    [c.55]    [c.371]    [c.72]    [c.273]    [c.295]    [c.355]    [c.448]    [c.285]   
Смотреть главы в:

Новый справочник химика и технолога Радиоактивные вещества -> Органические соединения Алифатические углеводороды




ПОИСК





Смотрите так же термины и статьи:

Алифатические соединения

Органические алифатические

Углеводороды алифатические



© 2025 chem21.info Реклама на сайте