Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость величины электродных потенциалов от концентрации (активности)

    Потенциометрический метод анализа основан на измерении электродного потенциала и нахождении зависимости между его величиной н концентрацией, точнее, активностью потенциалопределяющего компонента в растворе. [c.102]

    Потенциометрия представляет собой метод определения концентраций веществ, а также различных физико-химических величин, основанный на измерении потенциалов электродов. Измерение электродных потенциалов и нахождение зависимости между ними и концентрацией (активностью) определяемых компонентов позволяет установить не только концентрацию (активность) ионов, но и ряд других характеристик константы диссоциации слабых электролитов и константы устойчивости комплексных соединений, произведения растворимости малорастворимых осадков, стандартные и формальные электродные потенциалы, окислительно-вос-становительные потенциалы, стехиометрические коэффициенты в химических реакциях, число электронов, участвующих в потенциа-лопределяющей стадии и т.д. По величине потенциала индикаторного электрода можно оценить также глубину протекания и направление окислительно-восстановительных реакций между реагирующими веществами. [c.171]


    Зависимость величины электродного потенциала от концентрации (активности) вещества в электролите, участвующем в электрохимической реакции, может быть установлена методами термодинамики. На электроде Me+jMe с равновесным потенциалом ф протекает электрохимическая реакция  [c.544]

    Если пластинку из металла погруз ть в раствор его соли, то на границе раздела фаз возникает двойной электрический слой. Образовавшаяся пограничная разность потенциалов получила название электродного потенциала. Математическая зависимость между величиной скачка потенциала на границе соприкосновения металла и раствора и концентрацией (точнее, активностью) ионов этого металла в растворе выражается следующим уравнением  [c.120]

    Осмотическая теория Нернста не в состоянии раскрыть физической сущности процессов, приводящих к появлению скачка потенциала на границе металл, — раствор, так как она основана на представлениях Аррениуса об электролитической диссоциации. Главный недостаток теории Аррениуса заключается в отожествлении свойств растворов электролитов со свойствами идеальных газовых систем, т. е. в игнорировании взаимодействия ионов между собой и с молекулами растворителя. Тот же недостаток присущ и теории Нернста. Развитие теории электродного потенциала повторяло ход развития теории растворов электролитов. Недостатки этой теории, так же как и ее успехи, отражались и в теории электродных потенциалов. Так, введение понятий о коэ( ициенте активности (как величине, отражающей межионное взаимодействие) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста правильную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Менделеев, и, в особенности, учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков), были важными вехами в развитии теории растворов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродом и раствором. [c.219]

    Покажем, как определить зависимость величины электродного потенциала Е от концентрации ионов в растворе, на примере цинкового электрода в растворе, в котором активность ионов цинка равна а+. Так как электродные потенциалы мол<но рассматривать как частный случай э. д. с. гальванических цепей, то к ним при- менимы соотношения, выведенные в 174 для э. д. с. [c.425]


    На основании электрокапиллярных кривых ртути в растворах камфоры Стромбергом и сотр. была определена зависимость величины адсорбции от концентрации камфоры и потенциала электрода. Эти данные позволили учесть изменение влияния пленки поверхностно-активного вещества на электродный процесс при изменении потенциала, а также объяснить, почему торможение электрохимической реакции начинает постепенно уменьшаться еще до наступления потенциалов десорбции. На последнее явление указал М. А. Лошкарев [395] еще в 1950 г. [c.86]

    В качестве измерителя свободного хлора (сигнализатора отклонения от его заданной концентрации по величине э. д. с.) использован прибор типа СЦ-1М1. Однако его датчик был снабжен электродной парой вольфрам-платина. В качестве платинового использован платинированный электрод типа ЭТПЛ. Электрод из вольфрама изготовлен в лаборатории автоматизации ВНИИ Водгео. Он представляет собой вольфрамовый стержень, вделанный в корпус бывшего в употреблении мембранного электрода 3M- N-02. Возможность измерения концентрации активного хлора потенциометрическим методом при помощи электродной системы вольфрам-платина обоснована п. 4 данной главы. Характеристика электродной пары вольфрам — ЭТПЛ (зависимость потенциала от концентрации ОСЬ) в диапазоне малых концентраций активного хлора близка к линейной. [c.105]

    Наряду с общим скачком потенциала на границе металл — электролит gLM, входящим как зависящее от концентрации слагаемое в величину электродного потенциала elm, существует также электрокинетический или -потенциал, не совпадающий с общим скачком потенциала. Обычно -потенциал по своей абсолютной величине меньше lm или ет.м-потенциала и его зависимость от состава раствора более сложна. С увеличением концентрации электролита -потенциал в большинстве случаев (если только в растворе нет поверхностно-активных ионов) уменьшается и стремится к нулю. При изменении концентрации раствора знак -потенциала может измениться на обратный, хотя знак е-потенциала остается тем же самым. Такое изменение знака -потенциала и соответствующая ему перезарядка поверхности металла наблюдаются в присутствии поверхностно-активных и поливалентных ионов. [c.265]

    Изменение потенциала, активности и концентрации веществ в процессе титрования. В методе потенциометрической индикации к.т.т. для оценки ожидаемой величины скачка потенциала и составления теоретической кривой титрования нет необходимости вести расчет исходя из активностей потенциалопределяющих веществ. Для правильного представления хода кривой титрования вполне достаточно подставить в уравнение Нернста концентрации реагирующих веществ. Действительно, задача потенциометрического метода титрования заключается в прослеживании изменения электродного потенциала с изменением концентрации титруемого вещества в процессе прибавления титранта равномерными небольшими порциями (обычно по 0,1 мл, а иногда даже каплями в зависимости от величины [c.61]

    Потенциометрия как электрохимический метод исследования и анализа заключается в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалопределяюшего компонента в растворе. Используя эту зависимость, можно установить не только активность ионов, но и ряд характеристик изучаемых равновесных химических, биологических и других систем. С другой стороны, проследив во время химической реакции за изменением электродного потенциала, можно судить об изменении концентрации реагирующих веществ в растворе. Таким приемом, например, пользуются в производстве при непрерывном технологическом контроле химических процессов и при количественном определении веществ. В последнем случае имеется в виду широко используемый в аналитической химии метод потенциометрической индикации конечной точки титрования (к.т.т.). [c.19]

    Последний, как известно, представляет собой частный случай равновесного электродного потенциала, который для выбранного электрода может принимать, в зависимости от концентрации потенциалопределяющих ионов, различные значения. В то же время равновесный потенциал 8, измеренный при активностях участников электродной реакции, равных единице, следует считать уже характерной константой, связанной с природой электрода его обозначают как 80. Частному значению потенциала незаряженной поверхности металла, определяемому уравнением (497) и являющемуся характерной константой, следует также дать свое название и присвоить специальный символ. Наиболее целесообразно для величины потенциала, определяемой уравнением (496), сохранить название потенциал незаряженной поверхности металла и обозначить ее 85=0. Для величины потенциала незаряженной поверхности, определяемой уравнением (497), следует ввести обозначение v8g=o (или 8]у) и называть ее нулевой точкой металла .  [c.261]

    Очевидно, что чем выше концентрация соли в растворе, тем меньшей должна быть величина скачка потенциала на границе металл — раствор. Таким образом, она зависит от концентрации раствора. Кроме того, эта величина зависит от температуры и ряда других факторов. Но прежде всего она определяется природой металла. Поэтому для сравнения электродных потенциалов необходимо выбрать некоторые стандартные условия. Обычно сравнение производят при стандартной температуре 25"С (298 К), давлении 1,013-Ю Па и в растворе с активностью одноименного иона, равной единице (в 1М растворе). Абсолютное значение электродного потенциала измерить невозможно, поскольку введение любых измерительных зондов неизбежно приводит к появлению новой контактной разности потенциалов. В связи с этим измеряют разность потенциалов между данным электродом и некоторым электродом сравнения, потенциал которого условно принимают равным нулю. В качестве стандартного электрода сравнения используют так называемый стандартный водородный электрод . Электрод изготовляют из губчатой платины с сильно развитой поверхностью (платиновая чернь) и погружают в раствор кислоты с активностью ионов водорода, равной 1 моль/л. Через раствор пропускают газообразный водород под давлением 1,013Па, который адсорбируется платиной . Электродные потенциалы, измеренные по отношению к водородному электроду в стандартных условиях, называются стап-дартными электродными потепциалами. В зависимости от величины и знака [c.175]


    Ионселективные электроды [59—61], работая подобно водородному электроду, позволяют измерять активности ионов. В настоящее время они имеются только для некоторых тяжелых металлов. Обычно электроды не обладают полной избирательностью по отношению к данному иону, так что другие ионы могут мешать. Влияние среды можно уменьшить, добавляя инертную соль, что выравнивает ионную силу в разных пробах. Электроды с логарифмической зависимостью величины потенциала точны и чувствительны в большом интервале концентраций. Это свойство делает чувствительные к химическим веществам электродные системы наиболее пригодными для автоматического контроля, хотя недостаточная их избирательность может привести к большим трудностям. Выпускаются электроды, селективные по отнощению к Аз, С(1, Си, Н , 2п. Постоянно разрабатываются новые электроды такого типа [62, 63]. [c.550]

    Разность потенциалов двойного слоя принято называть потенциалом электрода. Очевидно, что в зависимости от концентрации (активности) ионов в обкладке двойного слоя будет изменяться потенциал электрода. Формула, определяющая величину равновесного электродного потенциала при любой активности ионов металла в электролите, предложена В. Нернстом  [c.21]

    Был поставлен ряд опытов с целью прямого измерения электродных потенциалов перекиси водорода и выяснения точных реакций, определяющих эти потенциалы [100]. В значрпельиой мере эти исследования были посвящепы изучению влияния природы электрода и обработки его поверхности на потенциал, который он принимает в растворе перекиси водорода. Изучалось также влияние изменения концентрации перекиси водорода и водородных ионов, а также присутствия добавок. Пожалуй, наиболее цепная работа в этой области принадлежит Борнеману [101]. Этот автор исходил из гипотезы, что наиболее положительный потенциал по отношению к кислородному электроду [т. е. реакции (47)], который может быть измерен в перекиси водорода и который подчиняется надлежащей зависимости от концентрации, ближе всего подходит к значению потенциала системы перекись водорода—кислород [т. е. реакции (46)]. Наиболее подходящим электродом оказалась платина, причем был разработан способ химической и электролитической обработки, которая за счет изменения каталитической активности поверхности сообщала ей наиболее положительный и воспроизводимый статический потенциал в разбавленных растворах перекиси водорода (однонормальных по кислоте). Результаты этой работы при экстраполировании к одномолярной перекиси водорода дают потенциал—0,69 в. Борнеман вывел из этой величины и значения — 0,63 е, определенного раньше для потенциала образования перекиси водорода на электроде, насыщенном кислородом, среднее значение Е = —0,66 0,03 в для потенциала системы перекись водорода — кислород. Суммирование с реакцией (47) дает — 1,80 в для потенциала системы вода — перекись водорода. Учитывая экспериментальные трудности, получение такого результата можно считать значительным достижением. [c.217]

    Зависимость энергии активации от потенциала диффузионной части двойного слоя указывает на связь скорости электродного процесса не только со смещением потенциала металла от равновесного значения, но и со строением двойного электрического слоя. Величина в существенной мере определяется концентрацией раствора и наличием в нем поверхностно-активных веществ, способных адсорбироваться на электроде. При достаточно большой концентрации раствора и соответственно малой величине размытой части двойного слоя значение потенциала 1151 может быть принято равным нулю. В этом случае при замене потенциала ф величиной Афэ выражение для скорости электродного процесса (например, анодного окисления) приобретает вид [c.18]

    Зависимость величины собственного электродного потенциала от концентрации соответствующих катионов в электролите может быть найдена из известного положения о том, что термодинамически обратимая работа элемента при постоянстве давления и температуры равняется разности изобарных изотермических потенциалов системы. В этом случае значение потенциала электрода Ф при условии, что активность его металла равна единице (для р = 1 кгс/см и Г = 298 К), рассчитывается следующим образом  [c.11]

    Следует отметить два существенных преимущества описанного выше метода исследования кинетики электродных процессов по сравнению с методом поляризационных измерений. Во-первых, поскольку концентрация НВЧ, и, следовательно, положение и форма кривой ф—1п[М+] однозначно определяются потенциалом электрода и не зависят от величины истинной поверхности электрода, то зависимость концентрации НВЧ от потенциала поляризации дает важную информацию в тех случаях, когда обычные поляризационные кривые искажены вследствие изменения величины поверхности, например, из-за ее растравливания. Искажающее влияние, так же, как и при поляризационных измерениях, в этом случае оказывает только омическое падение потенциала. Во-вторых, если проводить измерение концентрации НВЧ, например, по диффузионному предельному току окисления НВЧ на индифферентном индикаторном электроде, то по зависимости концентрации НВЧ от тока поляризации можно изучать электродный процесс при очень высоких плотностях тока, когда обычные поляризационные измерения неизбежно искажаются омическим падением потенциала. Необходимо только, чтобы при этом не происходило изменения активности самого электрода и его истинной поверхности, не менялась концентрация ионов устойчивой валентности в растворе и не наступала пассивация электрода. Поскольку при поляризационных измерениях в общем случае необходимо учитывать одновременно как омическое падение потенциала, так и изменение истинной величины поверхности, то возможность частичного устранения влияния этих искажений при использовании описанного выше метода существенно повышает точность измерений. [c.81]

    Потенциометрическим методом измеряется ЭДС в зависимости от величины pF — обратного десятичного логарифма активной концентрации фторид-ионов. Функция фторидного электрода (статическая характеристика) подчиняется уравнению Нернста в широком интервале концентрации 10 - 0,5-10" М (1900 - 0,095 мг/л). Прямая зависимость концентрации фтора от ЭДС на электродах имеет вид, показанный на рис. Vn.3. Динамические свойства электродной пары в большей степени зависят от интенсивности диффузии вещества из раствора к электроду. При перемещивании магнитной мешалкой в колбе эти свойства характеризуются следующими данными, полученными Г. В. Михайловой. При внезапном повышении концентрации фтор-ионов на 0,1 — 2000 мг/л стабилизация потенциала на электродах на 90% происходит за 5 - 10 с, [c.129]

    Уравнение (4.40) было выведено с учетом уравнения Нернста (4.7), которое применимо, если не нарушено равновесие стадии разряда — ионизации. Поэтому для доказательства диффузионной природы тока важным критерием является вытекающая из уравнения (4.40) линейная зависимость Е от 1п((/й — /)//] с тангенсом угла наклона ЯТ/пЕ. По тангенсу угла наклона можно определить число участвующих в реакции электронов п. Для электродных процессов, скорость которых лимитируется диффузионной стадией, потенциал полуволны не зависит от концентрации электрохимически активного вещества, и получается одна и та же величина Е / анодного и [c.229]

    Потенциометрия — электрохимический метод анализа, заключающийся в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалоопределяющего компонента в растворе. Потенциал всякого электрода можно измерить только по отношению к какому-либо постоянному потенциалу другого электрода. [c.360]

    Количественная зависимость между концентрацией (активностью) компонентов обратимой окислительно-восстановителыюи ред-окс системы и величино электродного потенциала выражается з равпс ииел (см. книг а 1, гл. II, 4 и 6)  [c.32]


Смотреть страницы где упоминается термин Зависимость величины электродных потенциалов от концентрации (активности): [c.12]    [c.323]    [c.21]    [c.216]    [c.7]   
Смотреть главы в:

Основы аналитической химии -> Зависимость величины электродных потенциалов от концентрации (активности)




ПОИСК





Смотрите так же термины и статьи:

Зависимость активности от

Концентрация активная

Потенциал электродный потенциал

Электродный потенциал



© 2025 chem21.info Реклама на сайте