Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение в видимой области спектра

    В наиболее распространенном варианте (в УФ и видимой областях спектра, 200—800 нм) электронная спектроскопия применяется для обнаружения и определения основных структурных типов ароматических ядер, для выявления наличия и протяженности цепей полисопряжения, решения других задач, связанных с проявлениями и свойствами хромофорных и ауксохромных групп. [c.26]


    В фотометрическом анализе используют поглощение электромагнитного излучения в УФ-, видимой и ИК-областях спектра. Наибольшее распространение получили фотометрические методы анализа, основанные на поглощении в видимой области спектра, т. е. в интервале длин волн 400—780 нм. Это объясняется возможностью получения множества интенсивно окрашенных органических и неорганических соединений, пригодных для их фотометрического определения в видимой области спектра с помощью достаточно несложных и относительно недорогих приборов. [c.53]

    В качестве объектов для исследования выбраны электронные спектры соединений ряда тиолов, ненасыщенных циклических соединений и соединений, содержащих несколько сульфидных Фупп, определенные в УФ и видимой области спектра [c.124]

    Тепловое излучение, как и любой другой вид электромагнитного излучения, занимает определенную четко выраженную область в единой шкале спектра электромагнитных колебаний. Передача тепла излучением может происходить как в видимой, так и в инфракрасной областях спектра. Видимая область спектра простирается от 0,40 до 0,76 мк, а инфракрасная - от 0,76 до 1000 мк. [c.10]

    ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ФУЛЛЕРЕНОВ С60 И С70 В ИНФРАКРАСНОЙ, УЛЬТРАФИОЛЕТОВОЙ И ВИДИМОЙ ОБЛАСТЯХ СПЕКТРА [c.14]

    Спектры поглощения определяемых компонентов наклады-ваются друг на друга на протяжении всей видимой области спектра. В этом случае нельзя выбрать никаких участков видимой области спектра, где можно было бы пренебречь светопоглощением одного из компонентов. Поэтому количественное определение компонентов проводят при помощи спектрофотометров, так как этот анализ с фотоколориметрами практически осуществить невозможно. [c.199]

    Недостаточная монохроматичность поглощаемого светового потока обычно вызывает отрицательные отклонения от закона Бэра. Чем шире интервал длин волн поглощаемого света, тем меньше область концентраций, где соблюдается этот основной закон светопоглощения. Для увеличения чувствительности и точности фотометрического определения нужно выделять из всей видимой области спектра определенные длины волн. Для этого на пути светового потока перед поглощающим раствором помещают избирательный светофильтр. [c.375]

    Наибольшая линейная дисперсия приборов ИСП-28 и ИСП-30 (при Я = 2000 А дисперсия составляет 3,5 А/мм, а при 3600— 25,0 А/мм) не обеспечивает решения многих аналитических задач в ближней и видимой инфракрасной области, где дисперсия кварцевого стекла резко уменьшается. Поэтому при определении элементов, основные линии которых Находятся в этой области спектра, заботу следует проводить на спектрографах со стеклянной оптикой. < числу таких приборов относится трехпризменный спектрограф ИСП-51, работающий в видимой области спектра (3700- 9800 А) (рис. 22). Конструкция спектрографа разборная — призменная часть, коллиматорная труба и камерная труба. [c.50]


    В спектре водорода обнаружен ряд линий, которые располагаются с определенными интервалами. Каждая линия соответствует определенной частоте излучения. В линейчатом спектре различаются группы линий — в видимой области, в ультрафиолетовой (с более высокой частотой) и в инфракрасной. В каждой группе наблюдается постепенное уменьшение интервалов между линиями с увеличением частоты. Линии видимой области спектра (рис. 3.5) были обнаружены первыми. Они называются серией Бальмера, [c.52]

    Определение в видимой области спектра [c.262]

    Определения проводят в видимой области спектра при одной длине волны, при которой поглощают все анализируемые изомеры. Средой для титрования служат безводная уксусная кислота, ее смесь с ацетоном или метилэтилкетоном (1 4). В качестве титранта применяют [c.461]

    Фотоэлектрический стилометр ФЭС-1. Для эмиссионного анализа в видимой области спектра промышленность выпускает фотоэлектрический прибор, рассчитанный на последовательное определение различных элементов в одном образце. Таким образом, этот прибор вполне аналогичен визуальному стилометру, но в нем применена фотоэлектрическая регистрация. [c.147]

    Для соединений, которые имеют полосы в ультрафиолетовой или видимой областях спектра, удобно использовать их в качестве аналитических. Но это удается сделать сравнительно редко, главным образом при открытии определенных примесей, так как поглощение в этих областях спектра мало специфично и его трудно использовать для открытия одного из соединений в присутствии других, близких по строению и химическим свойствам. Но если основные вещества в анализируемой пробе не поглощают в видимой и ультрафиолетовой областях вообще или по крайней мере в тех местах, где лежат полосы поглощения открываемых веществ, то эти полосы всегда удобно использовать в качестве аналитических. [c.328]

    В учебном пособии рассмотрены теоретические основы методов спектрофотометрии в современном аспекте и показаны возможности применения УФ и видимой областей спектра в этих методах. Должное внимание уделено вопросам точности спектрофотометрических методов. На большом числе примеров показана селективность спектрофотометрических методов. Для определения одного какого-либо элемента рекомендовано несколько методов, что дает возможность выбора в зависимости от природы анализируемого объекта и требуемой чувствительности. Для оценки величины поглощения рекомендуется использовать объективный способ, т. е. проводить измерения иа различных приборах с той или другой степенью монохроматичности потока излучения. [c.3]

    Избирательное поглощение в определенной области спектра связано с наличием в молекуле определенных групп атомов. Они содержат одну или несколько кратных связей или неподеленные пары электронов. Такие группы, определяющие окраску веществ, если поглощение происходит в видимой области спектра, называют хромофорами. В табл. 3 приведены некоторые хромофоры и указаны длины волн, соответствующие положению характерных для них максимумов поглощения. Присутствие той же группы атомов в молекуле, иногда принадлежащей к совсем другому классу соединений, сопровождается появлением того же, характерного для нее поглощения, лишь в некоторой мере искаженного иным окружением этой группы. Иногда в молекуле рядом с хромофором находится активная группа атомов, которая сама по себе не определяет поглощения, но может усиливать интенсивность поглощения, смещать максимум поглощения в длинноволновую область спектра. Такие группы (— N1 2, — Ы(СНз)2> — ОН, [c.11]

    В качестве индикатора может быть использован ион такого металла, который дает менее устойчивое комплексное соединение, чем определяемый элемент причем комплексное соединение элемента, играющего роль индикатора с титрантом, должно иметь поглощение в видимой области спектра. Так, определение тория комплексоном можно проводить в присутствии соли меди [2]. [c.61]

Таблица 20.5. Длины волн X атомных спектральных линий в видимой области спектра, рекомендуемые при открытии или определении некоторых элементов методом пламенной фотометрии (с использованием спектрофотометров со стеклянной оптикой и пламени ацетон + воздух) Таблица 20.5. <a href="/info/2957">Длины волн</a> X <a href="/info/18530">атомных спектральных</a> линий в <a href="/info/382081">видимой области спектра</a>, рекомендуемые при открытии или <a href="/info/1679608">определении некоторых элементов методом</a> <a href="/info/5508">пламенной фотометрии</a> (с <a href="/info/477060">использованием спектрофотометров</a> со стеклянной оптикой и пламени ацетон + воздух)
    В фотометрическом анализе рекомендуется производить измерения в спектральной области, для которой обеспечиваются наибольшая точность и чувствительность количественных определений. Если свет поглощает только раствор анализируемого окрашенного соединения, а все другие компоненты не поглощают в видимой области спектра, то оптическую плотность измеряют в максимуме светопоглощения исследуемого соединения ( акс)- Мольный коэффициент поглощения при наибольший. Это позволяет обеспечить наибольшую чувст- [c.470]


    Нами изучалась возможность определения азота по молекулярным полосам циана, образующегося в результате реакции азота и углерода при температуре дуги. Молекулярный спектр циана имеет достаточное число полос, низкий потенциал ионизации — 3,2 ЭВ в ультрафиолетовой и видимой области спектра, что позволяет получить высокую чувствительность, применять более распространенные типы фотопластинок и расширить диапазон определяемых концентраций, за счет использования различных циановых полос. Подобраны условия создания контролируемой атмосферы вокруг разряда, способы очистки графитовых электродов от азота, изучен характер выгорания азота из различных коксов. [c.134]

    При прохождении белого света (содержащего излучения всех длин волн видимой области спектра) через какое-либо вещество световое излучение с определенной длиной волны может быть поглощено этим веществом. Спектр солнечного света показан на рис. 19.6. Он состоит из непрерывного спектра исходного белого света, излучаемого раскаленными газами Солнца, на который накладываются темные линии, получающиеся в результате поглощения определенных длин волн атомами более холодных слоев атмосферы Солнца. На рисунке видно, что желтые линии натрия, которые всегда наблюдаются в виде ярких линий в спектре испускания натрия, в солнечном спектре появляются в виде черных линий. [c.565]

    Содержание смол можно определить по окраске топлива. Для этой цели используют прибор ФЭК-М, который предназначен для определения оптической плотности в видимой области спектра. Можно прямо связать оптическую плотность в видимой области с содержанием смол в топливе, о было экспериментально проверено. К свежеполученному обессмоленному топливу ТС-1 добавили предварительно выделенные адсорбционным путем смолистые вещества в количестве 2, 4, 8, 12, 20, 26, 36, 56 мг/100 мл и затем измерили оптическую плотность на фотоколориметре ФЭК-М с синим фильтром. Эталоном служило исходное топливо. Результаты представлены на рис. 104. Между оптической плотностью и содержанием смолистых веществ в топливе существует линейная зависимость. [c.311]

    Спектры в ультрафиолетовой и видимой области спектра в основном получают, измеряя интенсивность поглощенного монохроматического излучения, прошедшего через кювету с образцом, и сканируя определенную область длин волн. Рабочий диапазон длин волн находится в интервале от 190 до 400 нм (УФ-область) и от 400 до 780 нм (видимая область). [c.148]

    Оптико-спектроскопические методы, используемые в промышленном контроле, могут быть разделены на две основные группы электронная спектроскопия (спектроскопия в ультрафиолетовой и видимой областях спектра) и колебательная спектроскопия (спектроскопия в инфракрасной, ближней инфракрасной (ВИК) областях спектра, а также рамановская спектроскопия). В УФ и видимой областях спектра поглощение обусловлено переходами между атомными или молекулярными электронными энергетическими уровнями. Переходы между электронными энергетическими уровнями могут происходить только в том случае, если энергия падающего фотона соответствует разности энергий соответствующих уровней. Эти энергетические уровни для ближней ультрафиолетовой и видимой областей имеются в изолированных атомах, отдельных неорганических ионах, органических соединениях, содержащих сопряженные двойные связи, и большом числе разнообразных молекулярных веществ. Поглощение в ультрафиолетовой и видимой областях очень сильное, поэтому возможно определение концентраций на уровне нескольких частей на миллион. Однако полосы поглощения обычно очень широкие по сравнению с [c.656]

    Определение свойств углеводородных систем по спектрам поглощения. Для исследования свойств углеводородных систем предложено использовать спектры поглощения в УФ и видимой областях спектра. Получены линейные соотношения между удельным коэффициентом поглощения и молекулярными массами асфальтенов различных нефтей, найдены линейные корреляции между коэффициентами поглощения и выходом углерода из нефтяных остатков, а также с нагарообразующей способностью бензинов и масел. В дальнейшем это направление поиска взаимосвязи свойств и коэффициентов поглощения получило новое развитие, сформулирован и теоретически обоснован принцип квазилинейной связи коэффициента поглощения с физико-химическими характеристиками углеводородных систем (принцип спектр-свойство )  [c.49]

    Несколько определеннее объясняется люминесценция нефтей в ближней ультрафиолетовой области. Работы по изучению люминесценции нефтей в ультрафиолетовой области стали появляться лишь в последнее время [111, 112], Было показано, что наиболее коротковолновое излучение нефти и ее низкокипящих фракций вызывается бензолом и его гомологами. Конденсированные бициклические ароматические углеводороды (нафталин и его метилзамещенные гомологи) вызывают фл оресценцию в несколько более длинноволновой области. Флуоресценция конденсированных трициклнческнх ароматических соединений (антрацен, фенантрен и их гомологи) уже расположена на границе ультрафиолетовой и видимой областей спектра. [c.484]

    Однако визуальное наблюдение люминесценции имеет ряд существенных недостатков. Прежде всего при наблюдении люминесценции сказывается в большей или меньшей степени субъективность восприятия общей картины, обусловленная наблюдательностью, острото зрения и цветочувствительностью или тонкостью дифференциации цветов в видимой области спектра у наблюдателя. Объективность картины люминесценции, которая отражает определенные реальные связи в сложной молекуле, еще больше искажается нри попытках описать словами или выразить в виде цветных зарисовок это сложное явление. Зарисовки картины люминесцентного свечения, не говоря уже о том, что для их выполнения требуются определенные художественные способности и квалификация, а также значительная затрата времени и кропотливого труда, как правило, лишь отдаленно напоминают истинную картину свечения. Они получаются более красивыми , чем реально наблюдаемое свечение не выдерживаются такие важные показатели люминесценции, как яркость или интенсивность свечения основных полос и их ширина, а переходы от одной цветовой полосы свечения к другой вместо постепенной, неясной, расплывчатой становятся отчетливыми, резкими. [c.487]

    Мекалова H,B. Методы количественного определения фуллеренов С60 и С70 в инфракрасной, ультрафиолетовой и видимой областях спектра // Мировое сообщество проблемы и пути решения Сб, науч. ст. - Уфа Изд-во УГНТУ, 1998. -№ 1,-С. 109-129. [c.56]

    Для увеличения чувствительности и воспроизводимости фО тометрического определения используют поглощение лучей, которые максимально поглощаются фотометрируемым окрашенным раствором. Для того чтобы из всей видимой области спектра выделить лучи определенных длин воли при фотоколориметрических определениях на пути световых потоков перед поглощающими растворами помещают избирательные поглотители света, называемые светофильтрами. Светофильтры пропускают лучи лишь в определенном интервале длин волн с полушириной пропускания акс макс практичсски полностью поглощают лучи других длин волн (рис. 4.5), [c.183]

    Фотометрические методы определения концентрации растворов основаны на сравнении поглощения или пропускания света стандартными и исследуемыми растворами. Степень поглощения света фотометрируемым раствором измеряют с помошью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать аликвотную часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определяемым ионом окрашенное соединение. Если добавляемый реагент и все остальные компоненты раствора сравнения бесцветны и, следовательно, не поглощают лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду. [c.204]

    Спектрофотометрпческие определения производят на спектрофотометрах, работающих в узкой области оптимального светопоглощения, а это значительно увеличивает точность определения веществ. Спектрофотометрия применима как для анализа одного вещества, так и для анализа систем, содержащих несколько поглощающих компонентов. Спектрофотометры разных марок позволяют работать не только с окрашенными растворами, которые поглощают свет в видимой области спектра (400—760 нм), но и с бесцветными, которые поглощают излучение в ультрафиолетовой (200—400 нм) или ближней инфракрасной (760—1100 нм) областях. Спектрофото-метрию широко применяют при анализ комбинированных лекарственных препаратов и субстанций. [c.140]

    Комплексное соединение никеля с а-фурилдиоксимом менее устойчиво оно разрушается при удалении избытка реагента щелочью, поэтому в ультрафиолетовой области проводить измерение поглощения а-фурилдиоксимата никеля невозможно. Тем не менее указанный реагент является ценным для фотометрического определения никеля, так как имеется возможность проводить измерение оптической плотности в видимой области спектра, X 438 нм, е = 1,9 10, реагент в этой об- [c.187]

    Конфигурация в данном случае была определена на основании того факта, что один из изомеров — а именно цис-шо-мер, легче дает с гидразином циклический продукт — дифе-нилпиридазин III. Определенные выводы можно сделать и на основании различной окраски обоих изомеров транс-форма интенсивно-желтого цвета, в то время как г ис-форма бесцветна. Объясняется это тем, что молекула гранс-формы плоская, с ненарушенным сопряжением между карбонильными группами, этиленовой связью и ароматическими ядрами рассредоточение подвижных п-электронов по. сопряженной системе уменьшает энергию их возбуждения, что и приводит к появлению поглощения в видимой области спектра. В цис-форме фенильные ядра не могут расположиться в одной плоскости из-за пространственных препятствий. Неплоское строение вызывает частичное нарушение сопряжения, в результате этого поглощение сдвигается в ультрафиолетовую область спектра и видимая окраска исчезает. [c.177]

    Детектирование по флуоресценции применяют в биологии, медицине, форма-кологии, при анализе пищевых продуктов и контроле загрязнения окружающей среды. Флуоресцентными свойствами, т.е. способностью излучать свет (в видимой области спектра) под действием ультрафиолетового излучения, обладают многие биологически-активные вещества лекарства, витамины, стероиды. Красители, соединения с сопряженными связями, в том числе полиядерные ароматические углеводороды, также можно определять с помощью флуориметрического удетектора, при этом чувствительность определения велика. [c.155]

    В рефрактометрических Ж. а. измеряют показатель преломления (коэф. рефракции) жидкости в видимой области спектра. Области применения анализ многокомпонентных смесей (напр., определение концентрации соли в морской воде предел обнаружения до 5-10" мг/мл) контроль качества пром. продукции (напр., измерение жирности молока и сливочного масла в пищ. произ-вах) и др. Действие поляризационных Ж. а. основано на измерении угла вращения плоскости поляризации монохроматич. света, прошедшего через р-ры оптически активных в-в. Области применения сахариметрия (напр., определение глюкозы), анализ масел (напр., эфирных), к-т (напр., винной), водных р-ров спиртов (напр., борнеола) предел обнаружения 2-10" % (см. также Хироптические методы). [c.150]

    В зависимости от длительности импульса и временного разрешения различают установки микро-, нано- и пикосекундного диапазонов. В типичной установке микросекунд-ного диапазона пучок зондирующего света от непрерывного источника (обычно ксеноновой лампы) пропускают через ячейку с в-вом под действием импульса ионизирующего излучения в в-ве возникают короткоживущие частицы, вследствие чего изменяется интенсивность светового потока. Измененный световой поток фокусируется на щель монохроматора, к-рый выделяет поток определенной длины волны, преобразуемый фотоприемником (фотоумножителем-для УФ и видимой областей спектра или фотодиодом для ИК области) в электрнч. сигнал, регистрируемый осциллографом. Таким образом получают кривую изменения оптич. плотности во времени. Оптич. спектр поглощения строится путем снятия неск. кривых при разл. длинах волн. При работе с радиоактивными или легко разлагающимися в-вами обычно применяют электронно-оптич. преобразователи, позволяющие получать спектр (или часть спектра) короткоживущей частицы, а также сведения о кинетике р-ции этой частицы при действии на в-во одного импульса. [c.219]

    С. о.-единств, метод получения количеств, оптич. характеристик в-в, для к-рых по тем или иным причинам (вследствие очень сильного поглощения, невозможности получить тонкие слои и т. п.) не м. б. получены спектры пропускания. Все физ. тела, к-рые сами не излучают в видимой области спектра, могут наблюдаться вследствие характерного для них спектра отражения. С. о. применяют для определения оптич. постоянных в-в, для нсследовагая тонких пленок, в частности в оптич. пром-сти и микроэлектронике. [c.396]


Смотреть страницы где упоминается термин Определение в видимой области спектра: [c.16]    [c.135]    [c.14]    [c.194]    [c.125]    [c.174]    [c.16]    [c.140]    [c.569]    [c.95]    [c.162]    [c.204]   
Смотреть главы в:

Основы аналитической химии -> Определение в видимой области спектра

Основы аналитической химии Кн 3 Издание 2 -> Определение в видимой области спектра




ПОИСК





Смотрите так же термины и статьи:

Видимая область

Видимость

область спектра



© 2024 chem21.info Реклама на сайте