Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

За пределами совершенной системы

    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]


    Согласно второму закону термодинамики в системах могут протекать только те процессы, которые сопровождаются увеличением термодинамической функции — энтропии 5, а пределом совершения процесса является достижение максимального значения для данных условий. Энтропия связана с вероятностью состояния системы соотношением 1п гю, где да — число возможных комбинаций взаимного расположения частиц с определенным запасом энергии к — постоянная Больцмана (отношение универсальной газовой постоянной к постоянной Авогадро). Размерность энтропии Дж/ (моль-К). Изменение энтропии Д5 реакции можно вычислить по разности между энтропией продуктов реакции и энтропией исходных веществ  [c.32]

    За пределами совершенной системы [c.432]

    При переходе системы из данного начального состояния 1 в данное конечное состояние 2 количество работы, совершенной системой, может быть различным в зависимости от условий проведения процесса. Газ, расширяясь от объема У до объема /г. может совершать при этом работу. Но он может расшириться в тех же пределах и без совершения работы, если непосредственно соединить его с пустым сосудом соответствующего объема. Электричество, переходя от тела с большим потенциалом, может совершить работу. Но можно использовать ток и для других целей (например, дЛя электрического освещения) или просто замкнуть накоротко. В этих случаях переход электричества совсем не совершает работы. Возможны, конечно, и различные промежуточные случаи. Так же. и в химических реакциях. Опуская цинковую пластинку в раствор медного купороса, мы можем наблюдать, как она быстро покрывается слоем меди вследствие вытеснения меди цинком [c.147]

    Мы утверждаем, что неравновесная термодинамика конструктивна, поскольку образует самосогласованную, логичную и компактную форму организации и систематизации информации. Построение систематических корреляций по разнородным данным позволяет выявить единообразие между разными на первый взгляд системами. Часто оказывается, что формализм, развитый при анализе одной системы, непосредственно применим к совершенно другой системе. Так, например, обстоит дело, когда мы рассматриваем случай поддержания градиента электрохимического потенциала на эпителиальной мембране и изометрического напряжения в мышце. Кроме того, в пределах данной системы термодинамический подход позволяет выявить связи между различными явлениями, которые с других точек зрения отнюдь не очевидны. Например, расхождения между коэффициентом проницаемости для изотопной -метки и для суммарного потока дают количественную меру аномальности отношения потоков. При других способах рассмотрения связь [c.7]


    Таким образом, при расчете колонны, для определенности задачи некоторым числом параметров, в данном случае двумя, необходимо задаться, и тогда может быть рассчитана вся установка при режиме ее работы, отвечающем совокупности девяти, положенных в основу расчета параметров. Принятие восьмого и девятого условий для определения задачи расчета может быть с математической точки зрения, совершенно произвольным и независимым, однако, с точки зрения условий равновесного существования системы, этот произвол ограничен вполне ясными пределами, как, например, в случае использования степеней свободы в приложении правила фаз. [c.94]

    Физический смысл локального усреднения переменных для точки в пределах области, содержащей достаточно большое количество точек, но малой но сравнению со всей системой, совершенно ясен. Однако, мы предлагаем использовать путь локального усреднения как математическую операцию, в связи с чем необходима более четкая формулировка. [c.76]

    Нижний предел интегрирования имеет смысл минимального расстояния между центрами молекул и по порядку величины равен диаметру молекулы. При разделении фаз мы создаем две новые поверхности, и в связи с совершенной при этом работой /(/2го свободная энергия системы, отнесенная к 1 см зазора, возрастает на 2о (а — удельная свободная поверхностная энергия). Следовательно, [c.179]

    А. А. Трапезниковым с сотр. с помощью новых методов измерения и приборов проведены многочисленные исследования реологических свойств концентрированных растворов полимеров преимущественно в неполярных растворителях. При этом определяли не только напряжение сдвига, но и обратимую деформацию и исследования проводили не только в стационарном потоке, но и в предстационарной стадии деформации. Эти исследования показали, что для многих систем можно наблюдать свойства, присущие как типичным пластическим системам, так и жидкостям, не подчиняющимся закону Ньютона и вязкость которых при истечении определяется ориентацией молекул. Для объяснения сложного комплекса свойств подобных систем необходимо отказаться от привычного представления о том, что ниже предела текучести невозможно течение. Совершенно очевидно, что если в принципе необратимая релаксация возможна при любых малых напряжениях сдвига, то и течение возможно при таких же малых напряжениях. Вопрос заключается только в продолжительности измерения и чувствительности регистрирующих приборов. В связи с этим было предложено новое понятие о пределе текучести как отражающем не появление течения, а изменение скорости течения, связанное со структурными изменениями в системе. [c.463]

    Коллоидные растворы представляют собой ультрамикрогетерогенные системы обычно типа Т — Ж, т. е. твердое тело, раздробленное в жидкости. Размер коллоидных частиц лежит в пределах —100 нм, и именно в связи с такой высокой степенью дисперсности гетерогенность коллоидных растворов нельзя обнаружить с помощью обычного микроскопа. В связи с гетерогенностью коллоидные растворы рассеивают свет. Если наблюдать коллоидные растворы в проходящем свете, то они кажутся совершенно прозрачными. Но при боковом освещении они оставляют на пути прохождения пучка света на темном фоне световой след. Световые лучи рассеиваются коллоидным раствором во всех направлениях, и в частности попадают в [c.383]

    В некоторой области состава по мере того как исходный гомогенный раствор никотина и воды нагревался и достигал некоторой температуры, происходило его расслоение на две различные жидкие фазы, находящиеся в равновесии друг с другом. При дальнейшем увеличении температуры соотношение между жидкими фазами постепенно изменялось до тех пор, пока температура достигала предела, после которого одна из фаз совершенно исчезала и система вновь [c.103]

    Как уже указывалось, нефтепродукты, содержащие непредельные углеводороды, недостаточно химически стабильны. Этим и объясняется нормирование предельно допустимых сравнительно невысоких йодных чисел для многих авиабензинов, их компонентов (алкилбензол, технический изооктан), а также для дизельных топлив. Во всех этих продуктах йодное число нормируется в пределах 10—20 3 иода на 100 з продукта. Так как топлива для реактивной авиации в условиях полета могут нагреваться в баках самолета и в топливоподающей системе до 150° С и даже выше, то требования к их химической стабильности еще выше, чем к карбюраторным топливам. Поэтому йодное число топлив Т-1, Т-2, ТС-1 и Т-5 не должно превышать 2—3,5 г иода на 100 2 продукта. Совершенно недопустима примесь непредельных углеводородов к бензину-растворителю для резиновой промышленности. Для этого продукта йодное число должно быть не более 0,1. [c.155]

    Взаимодействие системы с окружающей средой может проходить как обратимо (идеальный процесс), так и необратимо (реальный процесс) В первом случае будет получена работа, равная эксергии (по определению). Если процесс остановлен до наступления равновесия системы и среды, то полученная работа будет равна убыли эксергии системы. В реальном процессе работа будет меньше, чем убыль эксергии (в пределе работа может быть равна нулю). Это означает, что часть эксергии не превратится в работу, а исчезнет в результате необратимости. В этом состоит одно из существенных отличий эксергии от энергии. Эксергия подчиняется закону сохранения только в обратимых процессах во всех остальных случаях (реальные системы) она может частично или полностью исчезать, теряться в результате диссипации энергии в необратимых процессах. Естественно, что чем меньше при прочих равных условиях эта потеря эксергии, тем процесс термодинамически совершеннее. [c.189]


    В сосуд загружают 52 г (1,0 моль) 95%-ного цианистого натрия, 100 МА воды и 00 мл ацетонитрила образуется двухфазная жидкая система. Сосуд закрепляют в металлической клетке-аппарата для взбалтывания, сосуд эвакуируют и наполняют хлортрифторэтиленом до давления 0,68 ат. Этот процесс повторяют дважды, чтобы полностью вытеснить воздух из системы. Под конец давление в сосуде повышают до 2,7 ат и оставляют вентиль открытым, чтобы поддерживать это давление (примечание 1). Термопару устанавливают на место и начинают взбалтывание. Температура равномерно повышается, через 10—15 мин она достигает 75° и повышается все быстрее. Ее поддерживают в пределах 75—80° путем охлаждения или путем уменьшения скорости подачи хлортрифторэтилена. Внимание Тщательное регулирование температуры реакции совершенно необходимо. Если [c.179]

    Однако по мере деформации полимера цепные молекулы выпрямляются и становятся тем самым более жесткими. Действительно, выпрямление связано с уменьшением числа конфигураций, которые может осуществить цепь. В пределе совершенно прямая цепь может существовать только в одной конфигурации и будет поэтому совершенно жестка. Следовательно, по мере течения полимера цепи его будут становиться жестче и вязкость будет расти даже у таких полимеров с гибкими цепями, как нолиизобутилеп [3]. В случае же полимеров с жесткими цепями, как, например, целлюлоза, эти эффекты долнчпы быть особенно велики вплоть до полной потери эластических свойств. В этом случае можно будет говорить о своеобразном переходе полимера в стеклообразное состояние из-за увеличения жесткости цени, вызванного внешними силами. Этот эффект может привести к тому, что после снятия напряжения ориентированное волокно почти не будет сокращаться, так как периоды релаксации чрезвычайно возрастут вследствие выпрямления и увеличения жесткости цепи. Этому будет соответствовать и энергетическая картина если пе в смысле существенного изменения внутренней энергии системы, то в смысле перераспределения связей относительно оси волокна, повышающего внутреннее сопротивление стремлению целлюлозных ценей или их участков вернуться в исходное равновесное состояние. [c.270]

    В поисках доказательств абиогенного синтеза нефти некоторые исследователи обращались к промышленным процессам получения синтетических топлив (типа синтеза Фишера — Тропша). Однако по мере углубления знаний о составе нефти отчетливо выявились глубокие различия в составе природных и синтетических углеводородных смесей. Последние практически не содержат широко представленных в нефтях сложнопостроенных углеводородных молекул, насыщенных структурных аналогов компонентов живого вещества — жирных кислот, терпенов, сте-ролов и т. д. Ряд аргументов сторонников минерального происхождения нефти основан на термодинамических расчетах. Э. Б. Чекалюк попытался определить температуру нефтеобра-зования по соотношениям между некоторыми изомерными углеводородами, допуская, что высокотемпературный синтез приводит к образованию термодинамически равновесных смесей. Рассчитанная таким образом температура нефтеобразования составила 450—900 °С, что соответствует температуре глубинной зоны 100—160 км в пределах верхней мантии Земли. Однако для тех же нефтей расчет по другим изомерным парам дает другие значения температуры (от —100 до 20 000°С), совершенно нереальные в условиях земной коры и мантии. В настоящее время доказано, что изомерные углеводороды нефтей являются неравновесными системами. С другой стороны, расчеты термодинамических свойств углеводородов в области очень высоких давлений (десятки тысяч паскалей) весьма условны из-за необходимости прибегать к сверхдальним экстраполяциям. [c.40]

    Более совершенна система регулирования аэрации, изображен на рис Л. Система осуществляет регулирование по двум параметрам количеству поступающих сточных вод и концентрации растворенного кислорода в иловой смеси аэротенка-смесителя []83. Сигналы от соответствующих измерителей поступают на вычислительное устройство. Причем сигнал от расходомера сточной воды поступает непрерывно и суммируется, а сигнал от измерителя концентраций растворенного кислорода - периодически с заранее заданным интервалом. Вычислительное устройство запоминает предыдущее аначение концентрации и при получении последующего значения определяет приращение. По количеству сточных вод и приращению концентрации растворенного кислорода вычислительное устройство определяет количество органических загрязнений, поступаюдах в течение заданного интервала (2-5 мин), и изменяет расход аэрирующего воздуха. Производительность первой по ходу воздуха турбовоздуходувки рассчитана на пода чу 50-75 потребного воздуха и не изменяется. Вторая турбовоздухо дувка снабжена регулируемым электродвигателем, который позволяет изменять общий расход воздуха в пределах 40-100 , а давление в зре-делах 15 . [c.14]

    Таким образом, в указанных пределах совершенно не было эвтектического понижения температур плавления СаО при введении весьма значительных количеств SiOa- Это также подтверждало, что здесь вероятно происходят ликвациопные явления. Дальнейшие более точные опыты показали, что, действительно, при закалке стекол из указанной области, от температур выше 1698°, можно получать препараты, представляющие собой механическую смесь стеклянных капель, обладающих различным светопреломлением. Одни капли имели показатель светопреломления равный 1,46, другие—1,52. Получаемые, таким образом, неоднородные жидкости, фиксировавшиеся в виде смеси капель силикатного стекла различного светопреломления, а стало быть и различного состава, возникали в результате явлений ликвации в системе. Две ликвирующие жидкости не разделялись здесь на два слоя (подобно тому, как это происходит в системах шлак-(-металл или масло 4-вода), потому что составы с очень высоким содержанием SiO2 обладают весьма значительной вязкостью. Путем серии последовательных закалок и микроскопического изучения пре- [c.267]

    Таким образом, естественный отбор начинается с неизбежностью, и вопрос состоит в том, как быстро будет возрастать кинетическое совершенство в эволюционирующей системе. Нужны не оценки вероятности возникновения данной формы (данной последовательности нуклеотидов) молекулы ДНК, а оценки скорости процесса эволюции, выяснение того, достаточно ли прошедшего времени для достижения данной величины биологического прогресса [264]. Естественный отбор полезных флуктуаций в открытой термодинамической системе с матричным воспроизведением направляет процесс эволюции в сторону, противоположную предписаниям термодинамики закрытых систем. Термодинамика отнюдь не нарушается процесс эволюции окупается сопряженными экзэргоническими процессами. Но направление эволюции определяется кинетическими, а не термодинамическими факторами. Мало того, не просто осуществляется процесс эволюции в направлении все менее термодинамически вероятных форм. Сам процесс отбора идет со все большей (до некоторого предела) скоростью — система не просто удаляется от термодинамического равновесия, а удаляется от него все дальше и с возрастающей ч коростью, так как в естественном отборе побеждают более совершенные формы, возникающие быстрее, раньше других. В этом отличие эволюционирующей системы от неэволюционирующей термодинамической системы, где в соответствии с теоремой При-тожина, скорость удаления от равновесия, скорость приращения энтропии минимальна. Естественный отбор, процесс эволюции в tилy давления отбора заставляет объекты эволюции с предельно возможной скоростью удаляться от положения термоди- [c.21]

    Р е щ е н и е. Построим диаграмму зависимости давления от состава системы при температуре 313 К (рис. 21). На оси абсцисс отложим молярную долю дихлорэтана в %. На осях Ьрдинат отложим давления паров чистого дихлорэтана с.н. с1, и чистого бензола Я2.н,-Затем соединим прямой точки Рс.н, и Яс.н.с , и проведем прямые линии, соединяющие начала координат с точками Рс.н.с , и Я ,н,. Эти линии показывают зависимость общего давления и парциальных давлений насыщенного с к4с1 пара над бинарной системой от состава при условии подчинения раствора закону Рауля. Нанесем на этот график точки, соответствующие экспериментальным значениям парциальных давлений компонентов, и суммы парциальных давлений. Из графика видно, что в пределах ошибок опыта раствор можно считать подчиняющимся закону Рауля, или совершенным раствором. По графику находим, что при давлении Р = 2,267" 10 Па кипеть будет раствор с молярной долей [c.210]

    Высшие ароматические углеводороды из нефтяных фракций представлены различными циклическими системами. Их можно выделить из более или менее узких нефтяных фракций при помощи хроматографических методов. После пропускания раствора масел или самих масел через силикагель все углеводороды, содержащие ароматические ядра, поглощаются и затем могут быть выделены вытеснением растворителями. Если пользоваться в качестве вытесняющей жидкости легким бензином, не содержащим ароматических углеводородов, и собирать последовательные порции ароматических углеводородов, можно, удалив легкий бензин, убедиться в том, что свойства выделенных ароматических углеводородов последовательно изменяются. Сперва идет фракция, называемая легкими ароматическими углеводородами, обладающая удельным весом от 0,87 до 0,89 и показателем преломления от 1,485 до 1,498. Следующая фракция — средних ароматических углеводородов — имеет удельный вес от 0,89 до 0,96 и показатель преломления от 1,500 до 1,540. Наконец, последней извлекается фракция удельного веса 0,97 до 1,03, с показателем преломления от 1,55 до 1,59. Эти пределы колеблются в зависимости от сорта нефти и температуры кипения исследуемой фракции и приведены здесь только в качестве иллюстрации. Очевидно, что ароматические углеводороды имеют совершенно различную структуру и переменное содержание боковых цепей метановой или нолиметиленовой природы. [c.117]

    При интегрировании по переменной г верхний предел, который, вообще говоря, определяется размерами сосуда, заменяется на бесконечность. Такая замена для макроскопической системы практически не изменяет величины интег-грала, так как потенциал парного взаимодействия быстро убывает с расстоянием. Аналогичные рассуждения см. в гл. XI, 4 при выводе формулы (XI.37). При оо формулы были бы совершенно строгими. [c.374]

    Исторически первые коммерческие спектрометры в начале 50-х годов были снабжены электромагнитами с напряженностью поля 1,0 Т и генератором радиочастоты на 40 МГц для наблюдения ЯМР Н. Позже стали доступными приборы с рабочей частотой 60 МГц (Во= 1,4 Т), и к середине 60-х годов стандартным исследовательским спектрометром ЯМР стал прибор с рабочей частотой 100 МГц и напряженностью поля 2,3 Т. Этим был достигнут предел для традиционных электромагнитов, поскольку невозможно получить более высокую степень намагниченности с обычными ферромагнитными материалами. Для получения более мощных магнитных полей следовало применить совершенно новый принцип, что и привело к разработке Магнитов со сверхпроводяш,ими соленоидами. При этом используется свойство некоторых металлов, таких, как ниобий и цирконий, и сплавов полностью терять электрическое сопротивление при 4 К, т. е. при температуре жидкого гелия. Это дает возможность значительно повысить силу тока в таких системах. [c.301]

    Это замечание Гиббса относится и к формуле (5), а также и к правилам Неймана и Юнга, как мы далее покажем. Интересно заметить, что нижний предел применимости (4) по размерам Гиббс не ограничивает ни молекулярными размерами, ни наличием в капле вещества со свойствами большой фазы, хотя во всех других случаях, когда речь идет об очень малых фазах, такая оговорка делается. По-видимому, Гиббс имел в виду не особенности малых фаз в этом смысле, а то, что в трехфазной системе необходимо учитывать и линейные параметры, отсутствующие в системе из двух фаз. В этом смысле идея о линейной термодинамике, сопряженной с дву- и трехмерной, в системе из трех фаз развивается подробно Гиббсом в примечании [1, стр. 288] Мы можем отметить здесь, что в теории равновесия и устойчивости можно достигнуть более близкого приближения, если в наших общих уравнениях специально принять во внимание линии, по которым пересекаются поверхности разрыва. Эти линии можно было бы трактовать по способу, совершенно аналогичному тому, которым мы трактовали поверхности разрыва. Мы могли бы ввести понятия о линейной плотности энергии, энтропии и отдельных веществ, которые присутствуют около этой линии, а также и определенное линейное натяжение . [c.278]

    При расчетах потенциальных поверхностей надо еще иметь в виду, что, в принципе, отсутствуют математические способы, которые дали бы возможность провести пусть грубый, но быстрый обзор значительной части потенциальной поверхности Все реальные расчеты выполняются численно точка за точкой Поэтому каждый раз можно судить о свойствах поверхности лшпь в небольшой области в окрестности данной точки Получить достаточно полное представление о форме поверхности даже в пределах одной потенциальной ямы, особенно когда она имеет более или менее сложную форму, как правило, не удается из-за громадного объема вычислений Поэтому на практике ограничиваются лишь определением формы потенциальных кривых вдоль определенных сечений многомерной поверхности (см рис 4 3) Распространенным, например, является построение потенциальных кривых для внутренних вращений в молекулах и характеристик параболических потенциалов (силовых постоянных), которыми можно довольно хорошо аппроксимировать потенциальные поверхности в окрестности того или иного минимума Сам минимум определяется итерационным путем с помощью пошагового спуска от некоторого начального положения системы на многомерной потенциальной поверхиости Такая математическая процедура всегда приведет к одному из минимумов, но совершенно не позволяет ответить на вопрос о том, имеется ли где-нибудь рядом другой м1шимум и каков он Для решения этого вопроса (и то не со стопроцентной вероятностью) надо многократно проделывать процедуру спуска к минимуму, начиная с разных стартовых точек Если процесс всегда сходится к одной точке, то возникает значительная доля уверенности в существовании только одного минимума в широком диапазоне вариаций геометрических параметров [c.162]


Смотреть страницы где упоминается термин За пределами совершенной системы: [c.364]    [c.253]    [c.278]    [c.278]    [c.155]    [c.176]    [c.85]    [c.200]    [c.31]    [c.331]    [c.276]    [c.61]    [c.99]    [c.10]    [c.215]    [c.331]    [c.23]    [c.210]    [c.259]    [c.396]    [c.286]    [c.38]   
Смотреть главы в:

Симметрия глазами химика -> За пределами совершенной системы




ПОИСК







© 2025 chem21.info Реклама на сайте