Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы, образованные тремя жидкостями

    Результаты наблюдений Льюиса [64] за появлением спонтанной турбулентности, проведенные капельным методом, представлены в табл. 1-11. Шервуд [931 делал визуальные наблюдения над почти 40 разными системами из несмешивающихся жидкостей. Опыты производились в трубках, в которые вводились водная и органическая фазы с растворенными тремя веществами, реагирующими между собой. Почти для всех систем наблюдалось три основных явления I) волны и колебания пограничной поверхности 2) прозрачные струи и мелкие капли, покидающие поверхность контакта 3) непрозрачные струи спонтанно образующейся эмульсии. В некоторых случаях капельки жидкости отделяются от поверхности контакта и двигаются вниз в водной фазе, а затем возвращаются, всплывая вверх. Эти явления констатировал Шервуд в системах, в которых растворение происходит чисто физическим путем, однако они происходят чаще в случае экзотермических реакций. Активность зависит от концентрации и чаще всего появляется при переходе из органической фазы в водную, реже при противоположном направлении, что согласуется с наблюдениями других авторов. На рис. 1-31 дана картина слоев у поверхности контакта для изобу- [c.60]


    При объяснении устойчивости реальной пены с точки зрения Гиббса следует иметь в виду особое строение этой системы. Именно благодаря своеобразной структуре пены эффект Гиббса вызывает значительные затруднения в стекании жидкости в пленках пены, что очень сильно сказывается на устойчивости всей системы. Каркас пены, как было показано, состоит из приблизительно плоских жидких пленок, являющихся стенками отдельных ячеек. Там, где сходятся три пленки, образуются ребра пузырька, в которых жидкость имеет сильно вогнутую поверхность. По законам капиллярности в этих местах жидкость имеет пониженное давление, что вызывает отсасывание ее из плоских частей каркаса пены в вогнутые. В результате этого в пленках пены возникает течение жидкости к ребрам. Это течение способствует самопроизвольному утоньшению пленок пены. Однако такое течение жидкости может происходить лишь внутри пленки, на поверхности оно невозможно из-за эффекта Гиббса. В самом деле, при течении жидкости от центральной части пленки к ребрам должно было бы увеличиться поверхностное натяжение в центральных частях пленки и в результате этого на поверхности ее тотчас возник бы противоток жидкости, направленный от ребер к центру, из-за чего течение прекратилось бы. Таким образом, стекание жидкости происходит так, как если бы поверхность пленки была неподвижной, т. е. жидкость как бы протекает по плоскому капилляру. Очевидно, стекание по такому капилляру происходит тем медленнее, чем тоньше пленка. [c.391]

    В развитии теории можно выделить три основных направления. Одно из них принимает в качестве стандартной системы смесь твердых сфер. Второй подход (теория конформных растворов) исследует смеси веществ с потенциалом взаимодействия одной и той же функциональной формы (т.. е. смеси веществ, подчиняющихся принципу соответственных состояний) и связывает свойства раствора со свойствами некоторой чистой жидкости, принятой за стандартную. Наконец, в теории возмущений разрабатываются методы учета несферичности молекул при выборе в качестве стандартной системы из сферических частиц, а также учета полярности молекул (стандартная система образована неполярными молекулами). [c.405]


    На рис. 16 изображена наиболее часто встречающаяся система такого типа. При температуре ti компоненты Л и В — ограниченно растворимые жидкости, а С — твердое вещество. Растворимость последнего в чистых Л и В обозначена соответственно точками D ц Е. Линия DE является кривой растворимости вещества С в смесях компонентов Л и В. Например, тройная смесь F образует насыщенный раствор G и кристаллы вещества С. Кривая JPH ограничивает область существования двух жидких фаз, как в системах типа I. Между двумя областями существования гетерогенной системы лежит область, где имеется лишь одна жидкая фаза. При более низкой температуре 2 взаимная растворимость уменьшается, и области гетерогенности увеличиваются. При еще более низкой температуре /3 би-нодальная кривая пересекает кривую растворимости твердого вещества. Любая тройная смесь, лежащая внутри треугольника KL, образует три фазы одну твердую — С и два насыщенных жидких раствора К и L. Примером служит система ани-лин(.4) —изооктан(В) —нафталин(С ). [c.38]

    Если система содержит, не считая растворителя, три компонента с различными подвижностями, то образуются три границы всей жидкости надо сообщить скорость, равную по величине, но обратную по направлению скорости средней границы. Наиболее быстро движущейся компонент уходит вперед, а скорость наиболее медленного компонента будет отрицательной по сравнению со скоростью средней границы через некоторое время одно колено секции С будет содержать в чистом виде первый компонент, а другое — второй компонент. Для приведения жидкости в движение применяются различные способы. Один из них состоит в постепенном (с помощью часового механизма) вынимании из одного электродного сосуда грузика, который свободно входит в сосуд, другой способ заключается в том, что один из электродных сосудов, например левый на рис, 128, держат закрытым и заполняют его буферным раствором с желаемой скоростью при помощи шприца, который [c.719]

    В некоторых случаях три жидкости могут дать три пары ограниченно растворимых компонентов. Таковы, например, вода, эфир и янтарнокислый нитрил. В этом случае изотерма может иметь вид, показанный на рис. 128,а и 128,6, где видны три области двухфазных гетерогенных смесей. При изменении температуры (чаще всего при понижении) эти области могут расширяться в сторону центральной части треугольника и перекрыть друг друга, как это видно на рис. 128,6. Здесь гомогенные растворы образуются только при составах систем, отвечающих точкам светлых, незаштрихованных участков. Участки, обозначенные Хх, Хг и Хд, ограничивают области существования двух фаз — более легкого и более тяжелого слоев. Наконец система, состав которой отвечает точкам в зачерненном треугольнике [c.327]

    Большинство диаграмм равновесия жидкость — жидкость в трехфазных системах содержит только одну двухфазную область, либо вырезанную с одной стороны треугольника, либо образующую полосу, пересекающую две стороны треугольника. Однако могут встречаться две или даже три отдельные бинодальные кривые, опирающиеся на различные стороны треугольника. Такие примеры упоминаются обычно как типичные во многих учебниках физической химии, хотя экспериментальных данных о системах с тремя отдельными бинодальными кривыми не опубликовано. Классическим примером наличия двух таких кривых является система вода — этанол — нитрил янтарной кислоты [32]. [c.176]

    Двухкомпонентные системы из жидкостей, неограниченно растворимых друг в друге, в свою очередь можно подразделить на три подгруппы а) идеальные растворы, т. е. растворы, описываемые законом Рауля б) растворы, отклоняющиеся от закона Рауля, но не образующие азеотропных смесей в) растворы, значительно отклоняющиеся от закона Рауля (образующие азеотропные смеси). Понятие об азеотропных смесях см. 6 данной главы. [c.250]

    Если два вещества смешать друг с другом в определенных пропорциях и смесь нагреть до высокой температуры, то в подавляющем большинстве случаев образуется совершенно однородная жидкость, представляющая собой раствор одного компонента в другом. Некоторые системы дадут два жидких слоя взаимно насыщенных растворов, и только немногие будут совершенно нерастворимы друг в друге ни при каких условиях. Это относится к таким веществам, которые не разлагаются до температуры плавления. Если такой раствор или сплав охладить, то при некоторой температуре он начинает кристаллизоваться, так как растворимость веществ с понижением температуры, как правило, уменьшается. Природа и количество выпадающего вещества обусловливается природой и количественными соотношениями компонентов в растворе. Как и при всякой кристаллизации, здесь будет выделяться теплота кристаллизации, которая влияет на скорость охлаждения сплава. В некоторых случаях охлаждение может полностью прекратиться и температура смеси в течение некоторого времени будет оставаться постоянной. Таким образом, охлаждая определенный раствор, достигают неравномерного падения температуры в зависимости от происходящих в сплаве процессов. Если наносить на оси ординат температуру, а на оси абсцисс — время, то будут получаться кривые, иллюстрирующие процесс охлаждения. Вид этих кривых будет в высокой степени характерен как для чистых веществ, так и для их смесей различных концентраций. В процессе кристаллизации в зависимости от состава смеси могут выпадать твердые чистые компоненты, или твердые растворы. Кривые, выражающие зависимость температуры кристаллизации и плавления от состава данной системы, называются диаграммами плавкости. Эти диаграммы подразделяются на три типа в зависимости от того, какая фаза выделяется из раствора. К первому типу относятся системы, при кристаллизации которых из жидких растворов выделяются чистые твердые компоненты, так называемые неизоморфные смеси. Второй тип представляют системы, при кристаллизации которых из жидких растворов выделяются твердые растворы с неограниченной областью взаимной растворимости, так называемые изоморфные смеси. Третий тип системы, при кристаллизации которых из жидких растворов выделяются твердые растворы, характеризуются определенными областями взаимной растворимости. [c.227]


    Таким образом, кривые пара и жидкости разделяют диаграмму на три участка, соответствующие различным фазовым состояниям системы раствор — пар. В верхней части диаграммы расположена область жидкости между кривыми жидкости и пара лежит двухфазная область совместного существования жидкости и насыщенного пара нижняя часть диаграммы относится к пару. [c.191]

    Эмульсией называется дисперсная система, состоящая из двух (или нескольких). жидких фаз [19]. Условие образования дисперсной системы — практически полная или частичная нерастворимость вещества дисперсной фазы в среде. Отсюда следует, что вещества, образующие различные фазы, должны сильно различаться по своей полярности. Практический интерес и наибольшее распространение получили эмульсии, в которых одна из фаз — вода. В этих случаях вторую фазу представляет неполярная или малополярная жидкость, называемая в общем случае маслом (например бензол, хлороформ, керосин, растительные, минеральные масла и т, п. ). В соответствии с этим существует два основных типа эмульсий — дисперсии масла в воде (М/В) и дисперсии воды в масле (В/М). Эмульсии первого типа называют прямыми, а второго — обратными. В зависимости от концентрации дисперсной фазы са, эмульсии подразделяют на три класса разбавленные (с не превышает 0,1%) концентрированные (сй<74%) и высококонцентрированные эмульсии, по структуре близкие к пенам (Сс1 > 74%). Граница между двумя последними классами определяется тем, что частицы дисперсной фазы сохраняют сферическую форму до объемной доли, соответствующей плотнейшей гексагональной упаковке шаров (74%). Поэтому увеличение Сй, характерное для высококонцентрированных эмульсий, неизбежно [c.285]

    Система из этих шести размерных параметров позволяет образовать три безразмерных комплекса, характеризующих процесс обтекания капли или пузыря жидкостью. Это критерий Рейнольдса Ке=ио эРс/А1с, критерий Вебера, характеризующий отношение сил инерции и поверхностного натяжения, We=P iдвижения жидкости внутри капли или пузыря. Таким образом, функциональную зависимость, сйязывающую безразмерную силу сопротивления с указанными выше [c.39]

    На сторону АВ проектируются уже не две двойные эвтектики, а одна эвтектика и перитектика и. В системе образуется только одна тройная эвтектика Е. Точка О не является эвтектической, так как температуры по линии СЕ падают по направлению к Е (температурный максимум расположен в точке пересечения соединительной прямой АтВп—С и продолжения линии СЕ), и в точке С сходятся лишь две стрелки. Но поскольку в точке О находятся в равновесии с жидкостью три кристаллические фазы, поля кристаллизации которых примыкают к ней, т. е. фазы А, С и АтВп, то эта точка, так же как и Е, будет инвариантной. Она носит название точки двойного подъема (если в эту точку на поверхности ликвидуса поставить наблюдателя, то он увидит две поднимающиеся и одну опу скающуюся пограничные кривые). Как и эвтектика, точка двойно го подъема относится к так называемым тройным точкам системы, где в равновесии сосуществуют три твердые фазы. [c.78]

    При взаимодействии полимеров с жидкостями могут образоваться три типа систем жидкость раств04)л,е1ся д полимере с обра ванием однородной гомоге нной системы жидкосУь распределяется в полимере в виде изолированных капель жидкость распределяется в полимере в виде отдельных, соединенных друг с другом полостей, образующих систему заполненных жидкостью капилляров. [c.168]

    III.1,а) — тройной точке, графически изображающей нонвариантное равновесие трехфазной системы твердая фаза—жидкость—пар. Эти три фазы могут находиться в равновесии при вполне определенных значениях температуры и давления, нанример для воды равных + 0,0098° 4,579 мм рт. ст. Кривые моновариантных равновесий, сходящиеся в тройной точке, расположены таким образом, что каждая из этих кривых за тройной точкой обязательно проходит между двумя другими кривыми. На рис. 1П.1, б показано пунктиром BosMOHiHoe расположение продолжения этих кривых для веществ типа [c.34]

    На каждой ступени анализа Чепмена — Энскога получается соответствуюш ая система уравнений законов сохранения. Например, как будет показано, решение низшего порядка не содержит тепловых потоков и напряжений. Если эту функцию подставить в уравнение Больцмана и образовать три первых момента, то вследствие структуры получаемые в результате макроскопические уравнения будут содержать только гг, и и Г. Это уравнения Эйлера. Они описывают газ, который не содержит ни тепловых потоков, ни напряжений идеальная жидкость). Такое свойство присуш е состоянию жидкости, близкому к равновесию. Чтобы описать состояния, более удаленные от равновесного, где суш е-ствуют напряжения и тепловые потоки, необходимо использовать следующие члены разложения . Например,уже содержит Q [c.274]

    Установка Юнга. Установка системы Юнга состоит из трех колонн основной и двух дополнительных. Отделег ие от спирта воды производится в основной колонне, куда непрерывно подаются содержащий воду спирт и бензол. Обезвоженный спирт стекает из нижней части колонны, а пары, содержащие все три продукта, отводятся через дефлегматор и холодильник. По охлаждении жидкость разделяется на два слоя, нз которых верхний, содержащий главным образом бензол, отводится обратно в основную колонну, а нижний, содержащий все три жидкости, поступает в дополнительные колонны. В первой дополнительной колонне бензол отделяется в виде паров и по охлаждении направляется обратно в основную ojroннy. Вытекающая из нижней части колонны смесь спирта и воды поступает во вторую дополнительную колонну, где происходит разделение этой смеси, причем спирт выходит из колонны в виде паров и отводится в основную колонну, н вода стекает из нижней части колонны. [c.122]

    Ткань с тележки проходит через натяжную раму (бремзу), два ролика и тканенаправитель и поступает в стальную коробку, где, огибая три ролика, обрабатывается раствором химических материалов. Выйдя из коробки, ткань проходит отжимное устройство с двойной системой рычагов, а затем направляется в воздушный зрельник. Из зрельника ткань поступает на промывку в промывной девятиящичный аппарат, где промывается в растворе мыла, а затем — горячей и холодной водой. В каждой коробке ткань образует три петли, подвергаясь ударному обрызгиванию с помощью бил, которых во всех коробках, кроме первой, имеется по два назначение бил — усилить промывку ткани. Во всех коробках, за исключением девятой, у дна размещены дырчатые паровые трубы для нагрева жидкости паром. Для спуска раствора и наполнения коробок имеются приточные и сточные трубы. [c.233]

    Связь между межфазным натяжением и взаимной растворимостью двух жидких фаз изучали Бартелл и Донехью [381, которые показали, что правило Антонова применимо только к одному типу систем, состоящих из воды и органической жидкости, а именно к тем, на поверхности раздела которых не образуется линз или они образуются с очень малым- углом. Многочисленные исследования были проведены также с системами, содержащими три и более жидкие фазы [39]. [c.284]

    К настоящему времени известны также исследования более сложных систем с твердым ядром отталкивания. Основная цель, которая при этом может быть поставлена, это исследование влияния несиммет-рии. Например, в работе [40] метод МК применен для получения уравнения состояния системы, состоящей из твердых гомоядерных гантелей. Использование Л РГ-ансамбля при малом числе частиц в условиях рас-х лоения фаз, видимо, наиболее удобно. Кроме найденного фазового перехода жидкость—твердое тело оказалось, что полученные точки ч< для уравнения состояния в области твердого тела образуют три.семей- ства. Использованная в этой работе теория свободного объема позво-] ляет интерпретировать эти группы точек как некоторые полиморфные модификации кристалла, связанные с различной ориентацией молекул. [c.17]

    Множитель JDi2 в уравнении (105) представляет собой относительно небольшую разность между двумя большими количествами, так что его невозможно точно вычислить по экспериментальным значениям энергий испарения. Однако значение полученное из теплот смешения, можно применить для расчета теплот смешения при других концентрациях. Если А, В и С—три жидкости, образующие три бинарные системы, для которых эта теория верна, то -f Dg - [c.161]

    Растворы частично смешивающихся жидкостей. Частично растворимыми называются системы из двух или нескольких жидкостей, взаимно растворяющихся в пределах некоторых интервалов концентраций, зависящих от температуры, а вне этих пределов образующих два или больше несмешивающйхся слоя. Взаимная растворимость компонентов системы является функцией температуры и, как показали классические исследования В. Ф. Алексеева, может увеличиваться для одних систем с новы- шением температуры, для других — с ее понижением. Наиболее распространенным случаем является увеличение взаимной растворимости компонентов при повышении температуры (например, системы фенол — вода или фурфурол — вода). Примером жидкостей, у которых при повышении температуры взаимная растворимость понижается, могут служить системы эфир — вода или три-этиламин — вода. [c.39]

    Гетерогенной называется система, состоящая из частей, обладающих различными физическими и, возможно, различными химическими свойствами, причем эти части отделены друг от друга ограничивающими поверхностями. Наиример, если в дегидраторе находятся нефть и вода илп в ректификационной колонне х меются нефтепродукты в виде жидкости и иаров, то такие системы называются гетерогенными. Подобную же систему образуют лед, вода и пар в этой системе три части, каждая из них, являясь гомогенной, может быть механи-ческп отделена от других. [c.134]

    Ранним утром 4 января 1966 г. примерно в 6 ч 40 мин оператор нефтеперерабатывающего завода в Фейзене, что близ Лиона, попытался провести ежедневную технологическую операцию - спустить воду, скопившуюся в сферическом резервуаре с пропаном вместимостью 1200 м . Предполагается, что резервуар был заполнен на три четверти и, следовательно, содержал 450 т пропана. Температура воздуха была О °С, и представляется вполне возможным, что в системе спуска воды из резервуара, схема которой представлена на рис. 9.4, образовалась пробка из льда или гидрата пропана. Оператор открыл оба крана полностью, и неожиданно из них хлынул поток жидкости. В этот момент единственный ключ (ручка), надетый на нижний кран, упал на землю, а поднять его было уже невозможно. Образовалось облако паров пропана. Ветра почти не было, поэтому облако стало распространяться во всех направлениях. Воспламенение облака произошло примерно в 7 ч 15 мин, т. е. через 35 мин после начала утечки, оно было вызвано проезжавшей невдалеке автомашиной. [c.201]

    II. Жидкости, ограниченно взаимно растворимые. Двухкомпонентные системы ан.члин — вода, метиловый спирт — гексан и др. Трехкомпонептные системы вода—эфир — нитрил янтарной кислоты бензол — бромоформ — муравьиная кислота вода — ацетон — ксилол и др. Прп этом трехкомпоиентные системы могут образовать два или три равновесных жидких слоя. [c.99]

    Для построения диаграммы взаимной растворимости в трехком-понентной системе к какой-либо исходной бинарной смеси приливают из бюретки по каплям (как при титровании) третий компонент. В общем случае необходимы три серии опытов, в которых исходными служат поочередно все три бинарные смеси, образующие тройную систему. Появление второй фазы (расслоение) обнаруживают по помутнению смеси. Если расслоение существует только в ограниченной области концентраций, приливание третьей жидкости продолжают до гомогенизации смеси (исчезновение мути).Зная состав исходной бинарной смеси и количество добавленного третьего компонента, рассчитывают состав тройной смеси к началу расслоения. [c.118]

    Системы с образованием химических соединений, плавящихся конгруэнтно. Плавление называется конгруэнтным (от латинского слова сопйгиёп11з — совпадающий), если состав жидкости совпадает с составом твердого химического соединения, из которого жидкость образовалась. Диаграмма плавкости двух компонентов, образующих одно химическое соединение, плавящееся конгруэнтно, приведена на рис. 142. Эта диаграмма является как бы сочетанием двух диаграмм плавкости с одной эвтектикой. Так как в рассматриваемой системе М —РЬ образуется одно химическое соединение, то из расплава могут кристаллизоваться три твердые фазы компонент А(Мр), компонент В(РЬ) и химическое соединение PbMg2. Прибавление магния или свинца к химическому соединению приводит к понижению температуры начала кристаллизации из расплава химического соединения. В связи с этим линия ликвидуса Е СЕ химического соединения, плавящегося конгруэнтно, имеет максимум (фигуративная точка С), отвечающий температуре плавления химического соединения. Температурный максимум на кривой плавкости называется дистектикой (от греч. слова с1151ек11к — трудно плавящийся). Положение этого максимума строго соответствует составу образующегося соединения. Система, изображенная на диаграмме точкой С, инвариантна (С = 1—2 -Ь 1 = [c.405]

    АЕСВ представляет собой линию ликвидуса. Ветвь АЕ — линия кристаллизации компонента М ветвь ЕС — линия кристаллизации химического соединения плавящегося инконгру-знтно ветвь ВС — линия кристаллизации компонента N. Прямые GEL и D — линии солидуса (от латинского solidus — твердьи ). Фазовые превращения, протекающие по линиям АЕ и ВС, аналогичны превращениям в системе d — Bi (см. рис. 8, а). Превращения, происходящие на линии D, требуют пояснения. Если охлаждать жидкость, обозначенную точкой г, то в точке р начнется кристаллизация компонента N. При дальнейшем охлаждении кристаллизация N продол>кается по кривой ВС до пересечения с кривой ЕС. В точке С находятся в равновесии три фазы жидкая, твердые фазы M N , и N. Число степеней свободы в этой точке равно нулю. Если отнимать далее от этой системы теплоту, то будет происходить кристаллизация соединения M N , которое образуется за счет взаимодействия жидкой фазы, отвечающей точке С, и кристаллов N, на которые распалась система при нагревании в точке С. Процесс образования и кристаллизации происходит при постоянной температуре до полного исчезновения твердой фазы N. Далее, если охлаждать систему, происходит кристаллизация M N по кривой СЕ. В точке Е кристаллизуется эвтектика M,N, + М. [c.120]

    Так как для однокомпонентной системы К=, то Ф = 3. Из этого следует, что ни одно индивидуальное вещество не может образовать системы из более чем трех равновесных фаз и что существует только одно сочетание значений температуры и давления, при котором три фазы однокомпонентной системы— кристалл, жидкость и газ — могут находиться в равновесии. Условие равновесия трех фаз системы характеризуется так называемой тройной точкой. [c.20]

    Рассмотрим двухкомпонентные системы, когда на кривой охлаждения имеется одна горизонтальная остановка. Из правила фаз следует, что если при постоянном давлении в системе из двух компонентов в равновесии находятся три фазы, то система не имеет ни одной степени свободы. Таким образом, горизонтальный участок на кривой охлаждения двухкомпонентной системы указывает на то, что при температурной остановке в равновесии находятся три фазы (две твердые и одна жидкая). Если кристаллизующаяся твердая фаза (твердый раствор, чистый компонент или определенное соединение) отличается по составу от существующей с ней жидкости, то при охлаждении жидкой фазы от начальной температуры в точке а до температуры начала кристаллизаци в точке Ь (кривая 3) кривая охлаждения плавно идет вниз. В момент появления твердой фазы, вследствие выделения теплоты кристаллизации, скорость охлаждения уменьшается. Поэтому на кривой охлаждения в точке Ь появляется излом, отвечающий температуре начала кристаллизации. При этом число степеней свободы уменьшается на единицу, система из дивариантной становится моновариантной. Если на протяжении всего процесса кристаллизации в равновесии с жидкой фазой находится только одна твердая фаза, то затвердевание заканчивается при температуре в точке с. Наблюдаемый при этой температуре второй излом на кривой охлаждения отвечает полному исчезновению жидкой фазы и, следовательно, приобретению одной степени свободы, система из моновариантной становится дивариантной. Однако если в конце кристаллизации появляется еще одна твердая фаза, кроме той, которая выделилась первично, то система теряет еще одну степень свободы и затвердевание заканчивается инвариантным равновесием, которому отвечает горизонтальный участок се (кривая 4). По окончании затвердевания система, состоящая из двух твердых фаз, имеет одну степень свободы, охлаждение ее идет по плавной кривой и заканчивается при температуре в точке й. [c.226]

    Таким образом, горизонтальная остановка на кривой охлаждения двухкомпонентной системы указывает на то, что при этой температуре в равновесии находятся три фазы. Кроме того, если обе сосуществующие фазы двухкомпонентной системы, например жидкость и выпадающие из нее кристаллы, имеют один и тот же состав, то такая система ведет себя как инвариантная температуры начала и конца кристаллизации совпадают, что выражается горизонтальным участком на кривой охлаждения. [c.134]

    При 0,0075 С вода образует однокомпонеитную трехфазную систему, состоящую из ее паров, жидкой воды и льда. Подобное равновесие в системе характеризуется так называемой тройной точкой диаграммы состояния, показывающей, в каком фазовом состоянии находится вещество в зависимости от давления и температуры. Для построения диаграммы состояния вещества используют пр>Гмо-угольную систему координат, откладывая по оси абсцисс абсолютную температуру, а по оси ординат давление. Найденные значения темггературы и давления являются координатами точки, местоположение которой на диаграмме показывает фазовое состояние вещества при данных условиях. Как видно из схематической диаграммы состояния воды, приведенной на рис. 56, вся ее площадь разделена на три зоны, отвечающие трем фазовым состояниям. Зоны отделены друг от друга тремя линиями, точки на которых соответствуют существованию воды в двух состояниях, в двух фазах, находящихся между собой в равновесии лед = пар (кривая ОА), лед жидкость (кривая ОВ). жидкость5= пар (кривая ОС). Переходу воды в переохлажденное состояние соответствует кривая ОО, являющаяся продолжением кривой ОС за точку О — точку замерзания воды. [c.216]

    Таким образом, имеем три тройные точк и, соответствующие трехфазным инвариантным системам. Точка А сера ромбическая — сера моноклиническая — пар точка В сера ромбическая— сера моноклиническая — жидкость точка С сера моноклиническая— жидкость — пар. [c.120]

    Кроме описанного выше простейшего случая равновесия между твердым веществом и его насыщенным паром, усуществуют случаи, являющиеся более сложными ввиду химических реакций, протекающих между твердым телом и газом при этом образуется одно или несколько соединений. Так, например, водяной пар образует с некоторыми твердыми веществами характерные соединения, называемые гидратами, которые сравнительно легко разлагаются при нагревании. Как вытекает из правила фаз, эта система моновариантна, и следовательно, каждой температуре соответствует определенное давление пара, называемое упругостью разложения, подобно тому, как это имеет место для случаев испарения жидкости или при возгонке твердого тела. Сульфат двухвалентной меди, например, образует с водой три гидрата  [c.44]


Смотреть страницы где упоминается термин Системы, образованные тремя жидкостями: [c.60]    [c.94]    [c.213]    [c.219]    [c.17]    [c.90]    [c.134]    [c.405]    [c.283]    [c.120]    [c.182]   
Смотреть главы в:

Физическая химия -> Системы, образованные тремя жидкостями




ПОИСК





Смотрите так же термины и статьи:

Системы газ жидкость

Системы жидкость жидкость

Триал



© 2024 chem21.info Реклама на сайте