Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение хлористого и бромистого водорода

    Фтористый, хлористый, бромистый, иодистый водород. Их физические свойства. Растворимость этих газов в воде. Водные растворы как кислоты. Электролитические свойства галогеноводородов. Сравнительная сила кислот. Соляная и плавиковая кислоты. Соли галогеноводородных кислот. Растворимые и нерастворимые галогениды. Восстановительные свойства отрицательно заряженных ионов галогенов. Способы получения галогеноводородных соединений. [c.304]


    Нетрудно заметить, что этот синтез глюкозидов по Э. Фишеру совершенно аналогичен получению ацеталей из простых альдегидов. Более широкую область применения имеет, однако, способ получения глюкозидов из тетраацетил-1-хлорглюкозы или тетраацетил-1-бромглю-козы. Эти два важных производных виноградного сахара могут быть получены из глюкозы при действии хлористым или, соответственно, бромистым ацетилом или путем обработки пентаацетилглюкозы раствором бромистого водорода в ледяной уксусной кислоте  [c.421]

    Сам по себе хлористый водород образует хлоргидрин [119], а хлористый водород с хлористым цинком [116], бромистый водород с серной кислотой [117], хлорокись фосфора с серной кислотой [120] и иодистый калий с фосфорной кислотой [111] —соответствующие дигалогенпроизводные. При действии на циклический эфир хлорангидрида в присутствии хлористого цинка получают хлорзамещен-ные сложные эфиры [121], Этот метод иногда используют для получения дигалогенпроизводных [1181. Выходы дигалогенпроизводных. [c.389]

    Этот метод синтеза находит лишь ограниченное применение при получении сложных эфиров. Бромистый водород в спиртовом растворе дает бромзамещенный сложный эфир [120, 121], а хлористый водород приводит к образованию оксиэфира [122]. Вместо галогеноводорода применяют и другие галогенпроизводные, например пятибромистый фосфор [120] и тионилхлорид [123]. Наиболее детально изучена, по-видимому, реакция р-пропиолактона [c.297]

    При бромировании этого соединения в присутствии бромистого водорода бром встает прежде всего в положение 2, а потом только в положение 4, в результате чего получается дибромироизводное (XLI). Последнее обрабатывали иодистым натрием, который отнимает элементы бромистоводородной кислоты с образованием А -связи и, кроме того, заменяет 2-бром на иод. Иод может быть легко удален действием тиосульфата или, по другим данным, действием хлористого хрома. В результате был получен кортизонацетат (XI). Эгот способ получил промышленное осуществление в 1955 г. в Англии. [c.371]

    Для получения газообразного бромистого водорода к системе после поглотительной колонки присоединяют трубку с хлористым или, лучше, бромистым кальцием. Газ конденсируют, охлаждая жидким воздухом, и очищают фракционной перегонкой. [c.149]


    Существуют два основных направления в синтетическом получении алкилацетиленов. Во-первых, можно исходить из 1-олефинов, к которым сначала присоединяют 1 моль хлора или брома, а затем отщепляют 2 моля хлористого или бромистого водорода обычно обработкой едким натром или едким кали  [c.283]

    К раствору, полученному при пропускании через воду 1,23 л смеси хлористого и бромистого водорода, добавили избыток раствора нитрата серебра. Выпавший при [c.47]

    Основные научные работы посвящены кинетике газовых химических реакций. Изучал (1893—1899) процессы получения и термической диссоциации иодистого водорода и состояние равновесия системы, что послужило исходным пунктом систематических исследований кинетики образования бромистого (1907—1908) и хлористого (1913) водорода из элементов. Установил (1899) условия проведения, молекулярный порядок и зависимость от материала реакционного сосуда кинетики термической диссоциации иодистого водорода. Вывел уравнение скорости образования бромистого водорода, показав ее зависи.мость от константы равновесия диссоциации молекулы брома. Выдвинул (1913) принцип стационарной концентрации промежуточных продуктов газовых реакций, согласно которому концентрация активных частиц в ходе реакции приобретает постоянное значение вследствие равенства скоростей их генерирования и расходования. Открыл (1913) фотохимические реакции с большим квантовым выходом, что положило начало представлениям о цепных процессах. Объяснил их закономерности передачей по кинетической цепи энергии возбуждения молекул. Объяснил падение активности твердых катализаторов блокировкой их по- [c.64]

    Алифатические углеводороды в парообразном состоянии можно окислять до кетонов с хорошими выходами при помош,и кислорода и бромистого водорода, который служит источником свободных радикалов (пример а). Окисление циклогексана изучено подробно, поскольку оно находит промышленное применение. Методы окисления, используемые в промышленности, приводят к получению ряда продуктов и в том числе гидроперекиси, спирта, кетона и продуктов расщепления и, по-видимому, мало подходят для применения в лаборатории. Вероятно, наилучшим лабораторным методом превращения углеводорода в кетон является нитрозирование при ультрафиолетовом освещении. При этих условиях, например, из циклогексана, хлористого нитрозила и концентрированной соляной кислоты при температуре от —5 до 5 °С был получен оксим циклогексанона со степенью конверсии 45—65% [611. [c.101]

    Получение хлористого и бромистого водорода [c.622]

    Книга содержит подробное описание методов получения в чистом состоянии 67 различных неорганических соединений. В том числе описаны синтезы хлористого водорода, бромистого водорода, различных амальгам, солей лития, кобальта, железа, ряда редких элементов, свободного фтора, некоторых фторидов, ряда комплексных соединений и др. [c.5]

    В колбу вливают смесь 20 г сухого чистого четыреххлористого углерода и 50 г бензола. К этой смеси понемногу прибавляют 15 г хлористого алюминия. Вначале колбу охлаждают и не дают реакции идти слишком бурно. Выделяющийся хлористый водород поглощают так же, как бромистый водород при получении бромбензола (см. с. 112). [c.130]

    К раствору ацетофенона в хлористом углероде довольно быстро приливают из воронки бром. Во время реакции колба нагревается на водяной бане до 45—50°. Через полученный однородный, бесцветный раствор продувается струя воздуха для удаления бромистого водорода. Растворитель отгоняют, и продукт перекристаллизовывают из водного спирта. Выход ЭО /о теории. [c.86]

    Никитин с сотр. [180, 183] и Штакельберг с сотр. [280, 282] изучили клатраты фенола с такими компо-нентами- гостями , как ксенон, хлористый, бромистый и иодистый водород, сероводород, селеноводород, двуокись серы, двуокись углерода, сероуглерод, бромистый метил, хлористый метилен, фторэтилен, 1, 1-ди-фторэтан, сероуглерод + воздух. Обычные процессы синтеза фенольных клатратных соединений имеют сходство с методами получения клатратов гидрохи- [c.121]

    Характерно, что склонность метилбензолов к образованию ионизированных комплексов в жидком фтористом водороде в отличие от их основности по отношению к хлористому и бромистому водороду резко возрастает при увеличении числа метильных групп. Это подтверждается также данными, полученными при определении коэффициентов распределения метилбензолов между жидким фтористым водородом и н-геп-таном [262]. [c.37]

    Для получения триметиленхлорбромида бромистый водород пропускают через батарею из последовательно соединенных бутылей с хлористым аллилом. [c.331]


    Для получения ле/тга-алкилированных фенолов можно осуществить перегруппировку в условиях термодинамического контроля, т. е. в присутствии большого избйтка кислоты Льюиса и таких сока-тализаторов, как хлористый алюминий — хлористый водород. Из алкильных групп метильная мигрирует труднее всего, поэтому перегруппировку, например /г-крезола, проводят в жидком бромистом водороде в автоклаве [7] [c.309]

    Бром для получения бромистого водорода следует предварительно перегнать и осушить хлористым кальцием. Водород должен быть очищен от кислорода и хорошо высушен. В противном случае в газоотводяи ,еи конце прибора будет скапливаться бромисто-водородпая кислота. [c.172]

    Получение бромистого н-додецила было описано ранее ( Синт. орг. преп. , сб. 1, стр. 112). Если внести в методику приведенные ниже изменения, то можно избежать образования эмульсии при промывании бромистого л-додецила серной кислотой. Полученный в результате реакции сырой бромид тщательно промывают водой, а затем раствором поташа. Промывать водой следует весьма тщательно, чтобы удалить большую часть кислоты и тем самым предотвратить сильное вспенивание при промывании поташом. Затем бромид сушат над хлористым кальцием и перегоняют. Дестиллат промывают концентрированной серной кислотой и обрабатывают, как указано в методике ( Сннт. орг. преп. , сб. 1, стр. 112). Однако проверявшие синтез считают, что следует предпочесть метод с применением безводного бромистого водорода ( Синт. орг. преп. , сб. 2, стр. 112). [c.247]

    Газообразный бромистый водород. Бромистый водород нельзя готовить методами, обычно применяющимися для приготовления хлористого водорода (т. е. действием концентрированной серной кислоты на галогениды металлов), так как образующийся бромистый водород в дначительной степени окисляется серной кислотой с выделением брома и сернистого ангидрида. Однако при определенных условиях (методика В) эту реакцию можно использовать для получения постоянно кипящей бромистоводородной кислоты. Можно избежать окисления бромистого водорода, заменив серную кислоту фосфорной в этом случае реакция идет медленно и требуется подогревание. Продукт почти всегда содержит значительные количества водяных паров. [c.146]

    Этот метод, имеющий как промышленное, так и лабораторное значение, пригоден для получения хлор-, бром- и иодалканов. Скорость реакции зависит от строения спирта и природы галогеноводорода. Реакционная способность спиртов падает в ряду третичные спирты> вторичные спирты > первичные спирты, а также в ряду иодистый водород > бромистый водород > хлористый водород. Если иодистый водород и бромистый водород реагируют быстро, то хлористый водород с первичными и вторичными спиртами в отсутствие катализаторов реагирует медленно. Здесь часто необходимы добавки серной кислоты или кислот Льюиса, например хлорида цинка. [c.286]

    Солеобразные продукты взаимодействия нитрилов с галогеноводородами. До 1931 г. было принято считать, что галогеноводороды присоединяются к нитрильной группе в соотношениях 1 1 и 2 1 с получением, соответственно, иминогалогенидов и амидО галогенидов . Однако в более поздних исследованиях было показано что за исключением молекулярных соединений (стр. 40) обычно существуют только продукты взаимодействия нитрилов с хлористым водородом и бромистым водородом состав 1 2. Различные соединения такого состава описаны в работах [c.37]

    В качестве кислых реагентов, в присутствии которых протекает синтез симм-тршзшоъ, часто используются различные протонные кислоты (хлористый водород, серная кислота, хлорсульфоновая кислота и др.)2 Тримеризация трихлорацетонитрила проводится при совместном действии хлористого алюминия и хлористого водорода бромистого алюминия и бромистого водорода 2 . 2,4 -Трис-(а,а-дихлорэтил)-1,3,5-триазин был получен при хлорировании пропионитрила, 2,4,6-трис-(дибромме-тил)-1,3,5-триазин — при взаимодействии эквимольных количеств брома и ацетонитрила в присутствии красного фосфора и карбоната кальция. Образование триазинов в этих условиях объясняется, очевидно, действием хлористого и бромистого водорода, выделяющихся в ходе реакций. [c.375]

    В 1849 г. Вёлер [314] описал соединение гидрохинона с сероводородом, полученное при непосредственном взаимодействии этих веществ. Позднее целый ряд исследователей наблюдали, что гидрохинон образует серии молекулярных соединений с некоторыми летучими веществами, такими, как двуокись серы, цианистый, хлористый и бромистый водород, метанол и ацетонитрил. [c.38]

    Облэд и Горин [135] в 1946 г. изучали влияние кислорода и других промоторов на катализируемую бромистым алюминием реакцию изомеризации н-бутана. Неустойчивый характер реакции в ранних исследованиях послужил причиной для утверждения, что некоторые примеси к катализаторам, действующие как промоторы, потребляются в ходе реакции. Таким веществом считался кислород, и его поведение в условиях реакции изучалось наиболее детально. Было найдено, что исследуемая реакция — первого порядка относительно взятого для реакции углеводорода нри дайной температуре, и ее течение зависит от концентрации бромистого алюминия, концентрации кислорода и размера поверхности. Было высказано предположение, что новерхность необходима для обеспечения полярной среды, в которой протекает реакция. Помимо кислорода, изучались и другие промоторы, включая воду, бром, водород, двуокись углерода, хлористый водород, бромистый водород, бромистый этил. Обсуждался также механизм реакции с учетом возможности образования бромистого водорода и бромистых алкилов под действием кислорода и дальнейшей реакции с получением [(СНз)з С ] и (АШгГ). [c.343]

    Синтез хлористого этила прямым взаимодействием этилена с хлористым водородом привлекал весьма широкое внимание с точки зрения возможности получения этилового спирта гидролизом образующегося хлористого этила. Для проведения этих реакций было предложено множество интересных методов. Так например Wibaut получал галоидные алкилы проведением смеси олефина и хлористого или бромистого водорода над металлами V группы (например трехгалоид-ным 1висмутом) пр И температурах выше 100°, но не превышающих 250°, собирая продукт реакции поглощением активированным углем. При разбавлении олефина другими газами или воздухом требуются более высокие температуры. [c.351]

    В хи.мическо.м отношении нафтеновые кислоты обладают все.ми характерными свойства.ми одноосновных карбоновых насыщенных кислот жирного ряда. Так например они являются вполне устойчивыми к галоидам и не присоединяют их однако в некоторых условиях при действии бро.ма здесь проис.ходит образование бромзамещенных соединений, сопровождае. мое выделением бромистого водорода. Выше уже было указано, что нафтеновые кислоты в присутствии катализатора, например концентрированной серной кислоты или хлористого водорода, очень легко реагируют со спиртами и превращаются в сложные эфиры таким образом получен целый ряд подобных эфиров, главным образом -метиловых. Интересно от.метить, ЧТО этерификагщю нафтеновых кислот можно проводить также [c.1169]

    Некоторые масс-спектры приведены на рис. 82. Материал, летучий при температуре жидкого азота, был в основном представлен окисью углерода и содержал малое количество метана и следы сероводорода и хлористого водорода. Материал, летучий при температуре твердой углекислоты, в дополнение к указанным выше соединениям содержал бромистый водород, сероуглерод, двуокись серы, сероокись углерода и двуокись углерода. При комнатной температуре в газообразных продуктах был найден дихлорбензол, В дополнение были обнаружены следы бензола и ряд углеводородных осколков, характерных для распада конденсированных ароматических систем. Пик с массой 50 был необычайно велик. Некоторая часть твердого продукта, оставшегося в системе, была помещена в емкость, непосредственно соединенную с масс-спектрометром без промежуточного натекателя при этом для различных температур был получен ряд спектров, которые не позволили провести полной идентификации всех продуктов. Было идентифицировано лишь два соединения бензофенон и следы нафталина. Один из полученных спектров приведен на рис. 82. Из полученных результатов следует, что соединение содержало углерод, водород, кислород, серу, хлор и бром. Весь хлор представлен дихлорбензолом, наличие которого подтверждает существование бензольного кольца, замещенного двумя атомами хлора в исходном соединении. Бром был идентифицирован в виде бромистого метила, что указывает на наличие группы — СНгВг. Кислород и сера в подавляющем большинстве представлены СО, OS, СО2, SO2 и S2. Группы, ответственные за появление такой сложной смеси, могут быть определены следующим образом. Образование СО связано с соединениями типа простых эфиров и кетонов, содержащих лишь один атом кислорода в молекуле. Двуокись углерода образуется с большой вероятностью из соединений, содержащих два и более атомов кислорода в молекуле очень близко один от другого (ангидриды кислот и карбоновые кислоты). По аналогии можно считать, что SO2 характеризует группу сульфокислот. Группы, ответственные за появление OS и S2, не могут быть установлены точно. Они свидетельствуют, конечно, о соседстве атомов кислорода и серы и наличии более чем одного атома серы. Содержание нафталина мало (так же как и содержание бензола), и это может свидетельствовать о наличии конденсированной системы, а не присоединенной нафталиновой группы. Присутствие бензофенона позволяет сделать очень важные выводы о структурной группе исследуемой молекулы этот факт свидетельствует также, что бензофеноновая группа не очень прочно связана с остальной частью скелета. Эта часть молекулы, как показали дальнейшие исследования, представлена структурой [c.180]


Смотреть страницы где упоминается термин Получение хлористого и бромистого водорода: [c.91]    [c.259]    [c.383]    [c.172]    [c.507]    [c.474]    [c.202]    [c.202]    [c.238]    [c.319]    [c.30]    [c.319]    [c.30]    [c.255]    [c.314]    [c.494]   
Смотреть главы в:

Лабораторная техника органической химии -> Получение хлористого и бромистого водорода




ПОИСК





Смотрите так же термины и статьи:

Бромистый водород

Водород получение

Хлористый водород

Хлористый и бромистый водород

Хлористый получение



© 2024 chem21.info Реклама на сайте