Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ цепных реакций

    Гомогенно-каталитические реакции в газовой фазе протекают обычно по механизму цепных реакций. Примером может служить гомогенный катализ цепной реакции окисления окиси углерода в двуокись углерода в присутствии следов водяного пара. Реакция начинается с образования атома кислорода (активного центра)  [c.413]

    В-3.7. Катализ цепных реакций [c.212]


    Окисление каучуков значительно ускоряется солями металлов переменной валентности (железо, медь, марганец, кобальт и др.). На рис. 146 приведены кинетические кривые окисления, иллюстрирующие высказанное положение [23]. Гомогенный катализ цепной реакции окисления каучуков происходит вследствие снижения [c.289]

    С этой точки зрения не вполне бесспорным могло показаться отнесение к катализу цепных реакций, так как инициатор таких реакций, например перекись, в ходе процесса не регенерируется. Но это было сделано в сущности для того, чтобы потом можно было убедиться в наличии связей цепных реакций со стеночным и вообще гетерогенным катализом. В остальном же все рассмотренные реакции можно считать бесспорно каталитическими, потому что они происходили при помощи регенерируемых агентов. [c.381]

    К. Майзус [170], исследуя различные возможности гомогенного катализа цепной реакции окисления пропана, высказала предположение, что каталитическое действие ЫОг и С1г, обусловленное их совместным присутствием, сохранится и сможет индуцировать процесс окисления углеводородов, если взять малые количества N0 и си, но зато ввести в систему необходимое количество молекулярного кислорода. [c.79]

    Значительное развитие получили в последнее время работы в области гомогенного катализа цепных реакций [70]. Были установлены многие новые закономерности. В частности, было открыто наличие последовательности разделяющихся во времени макроскопических стадий при окислении газообразных углеводородов в присутствии гомогенных катализаторов. Б период протекания первой, быстро затормаживающейся стадии, образуются молекулярные промежуточные продукты, которые затем медленно распадаются, каждым актом распада индуцируя ценную неразветвленную реакцию окисления углеводорода в то или иное кислородсодержащее соединение. Глубина реакции окисления определяется масштабом начальной макроскопической стадии. При этом процесс окисления останавливается задолго до израсходования исходных веществ. [c.35]

    В цепных реакциях очень распространено явление отрицательного катализа веществами, соединяющимися с активными переносчиками реакции и вызывающими обрыв цепей. Например, при распаде углеводородов активными частицами являются радикалы вроде метила СН3-, которые могут реагировать с окисью азота по уравнению [c.204]

    Наряду с описанными разрабатываются и другие теории гетерогенного катализа — электронно-химическая теория, теория цепных реакций и др. В работах последних лет механизм действия некоторых полупроводниковых и металлических катализаторов рассматривается в связи с возможными переходами электронов между различными поверхностными электронными энергетическими уровнями, отвечающими различным состояниям катализатора. [c.498]


    Обычно катализатор многократно вступает в такое взаимодействие, изменяя скорость химической реакции в течение длительного времени и образуя продукты реакции, вес которых может превосходить вес самого катализатора в тысячи и даже миллионы раз. Однако катализатор не может служить беспредельно в одних промышленных процессах его используют непрерывно в течение нескольких лет, а в других — лишь несколько минут. Катализ может нарушиться в результате изменения состава н структуры катализатора вследствие побочных химических реакций или из-за механических и температурных воздействий. При возбуждении разветвленных цепных реакций, в частности, реакций, приводящих к взрыву, в принципе возможно и однократное участие катализатора в химической реакции. [c.19]

    Наиболее широкое применение в промышленности нашли гетерогенные процессы на твердых катализаторах. Разновидностью гетерогенного катализа является гетерогенно-гомогенный, где роль твердого катализатора заключается в образовании активных частиц (атомов или радикалов) из молекул реагентов. Радикалы, переходят с поверхности катализатора в объем и возбуждают цепную реакцию. Существенным недостатком рассмотренной классификации является отсутствие учета взаимодействия катализатора с реагирующими веществами. [c.26]

    Как и другие науки, физическая химия и отдельные ее разделы возникали или начинали развиваться особенно быстро и успешно в те периоды, когда та или иная практическая потребность вызывала необходимость быстрого развития какой-либо отрасли промышленности, а для этого развития требовалась прочная теоретическая основа. Здесь необходимо отметить крупные исследования Н. С. Кур-накова (1860—1941) по физико-химическому анализу, работы в области электрохимии А. Н. Фрумкина, создание теории цепных реакций Н. Н. Семеновым, разработку теории гетерогенного катализа А. А. Баландиным. Физической химии принадлежит ведущая роль при решении многочисленных проблем, стоящих перед химической наукой и практикой. [c.9]

    Отрицательный катализ встречается, например, в цепных реакциях, когда катализатор вступает в промежуточное взаимодействие с активными частицами, что приводит к обрыву цепей. Замедление реакций Б присутствии некоторых веществ часто не связано с катализом. Например, при замедлении химического растворения металлов в присутствии поверхностно-активных веществ проявляется защитное действие адсорбционной пленки этого вещества. [c.405]

    В последнее время была предложена цепная теория катализа (Семенов, Воеводский), согласно которой катализатор, обладая свободными валентностями, может действовать как свободный радикал, возбуждая образование цепей и участвуя в их развитии. Цепную теорию катализа можно рассматривать как распространение электронной теории катализа на полупроводниках (и металлах) на класс цепных реакций. [c.460]

    Цепные реакции при гетерогенном катализе протекают через образование радикалов указанных типов. [c.166]

    Участие катализаторов в цепных реакциях представляет собой одну из сложнейших форм химического инициирования, которое состоит из двух основных стадий образования свободного радикала (с участием растворимых соединений металлов переменной валентности — при гомогенном катализе или с участием поверхности адсорбента — при гетерогенном катализе) и регенерации катализатора Подробнее см. Афанасьев В. А., Заикин Г. Е. В мире катализа. М.) Наука, 1977, с. 71—80. [c.181]

    АКТИВНЫЕ ЦЕНТРЫ — высоко реакционноспособные промежуточные продукты реакции. Например, в цепных реакциях А. ц. будут химически ненасыщенные свободные атомы и радикалы, в гетерогенном катализе — участки поверхности катализатора, на которых протекает реакция. В реакционной системе А. ц. могут образовываться в результате термического разложения и диссоциации молекул, при поглощении кванта света, в результате столкновения двух насыщенных молекул и т. д. [c.14]

    VI. Самоускорение может проявиться не в начальный период, а только в развившемся процессе. В этом случае будут наблюдаться кинетические кривые группы VI. Причины ускорения реакции разнообразны образование продукта-катализатора, расходование примеси-ингибитора, катализ стенкой реакционного сосуда и рост ее каталитической активности, изменение среды вследствие образования продуктов, накопление продуктов-инициаторов (в случае цепной реакции), саморазогрев системы при недостаточном теплоотводе и т. д. [c.11]

    ГЛАВА XXV ГОМОГЕННЫЙ КАТАЛИЗ В ЦЕПНЫХ РЕАКЦИЯХ [c.184]

    Катализ бромистым водородом при окислении углеводородов в газовой фазе. В присутствии бромистого водорода пропан окисляется только в ацетон. Реакция протекает в две макроскопические стадии в первой НВг превращается в продукт —инициатор, а во второй стадии этот продукт распадается на радикалы, которые инициируют цепную реакцию окисления пропана. Образование продукта-инициатора тормозится ацетоном, поэтому первая стадия заканчивается, когда начинается вторая  [c.185]


    В данной части рассмотрены физические способы активации системы в отличие от чисто химических — катализ (вводится подходящий катализатор) и цепная реакция (вводится инициатор). Молекулы вещества активируются воздействием света или быстрых частиц (электронов, протонов, нейтронов и т. д.). В результате таких воздействий [c.267]

    Во-вторых, детальное изучение многих сложных химических реакций выявило важную роль активных промежуточных продуктов свободных атомов и радикалов в цепных реакциях, лабильных ионов и ион-радикалов в ионной полимеризации, возбужденных состояний молекул в фотохимических и радиационно-химических реакциях, лабильных комплексов в гомогенном катализе. Для изучения таких активных соединений, реагирующих очень быстро, в кинетике разработаны специальные методы и аппаратура. Можно с полным правом сказать, что современная экспериментальная кинетика есть в значительной своей части кинетика быстро реагирующих активных частиц. [c.367]

    Из электронной теории катализа иа полупроводниках вытекают представления о том, что при уходе молекулы (радикала) с поверхности в объем на поверхности остаются ненасыщенные валентности. Наличие этих поверхностных валентностей и радикалов предопределяет возможность возникновения поверхностных цепных реакций. На этой основе Н. Н. Семеновым и В. В. Воеводским была развита цепная теория гетерогенного катализа, в которой катализатор выступает как полирадикал, обеспечивающий зарождение и развитие реакционных цепей на поверхности. Можно показать, что существует возможность перехода цепей с поверхности в объем в результате десорбции радикалов. Было экспериментально показано, что в подобном случае температура в объеме оказывается выше, чем на поверхности катализатора. Радикальный механизм не может претендовать на универсальность, так как образование и выход в объем радикалов требуют значительных затрат энергии. Кроме того, большинство гетерогенно-каталитических процессов обратимы, а принцип детальной обратимости несовместим с не-стационарностью течения реакций с участием промен уточных активных продуктов — атомов и радикалов. [c.303]

    Огромный вклад в развитие физической химии сделан советскими учеными. Мировой известностью пользуются работы школы Н. С. Курнакова, основателя физико-химического анализа, А. Н. Фрумкина в области электрохимии и электрохимической кинетики, Е. К. Завойского, открывшего явление электронного парамагнитного резонанса. Ведущую роль играют исследования по кинетике цепных реакций, выполненные Н. Н. Семеновым и его учениками, работы по органическому катализу (А. А. Баландин, Н. В. Кобозев, С. 3. Рогинский), исследования П. Л. Лазарева, А. М. Теренина в области фотохимии, В. А. Каргина в физико-химии высокомолекулярных соединений. [c.7]

    Программа курса Кинетика и катализ охватывает 1) теорию ки-нетики гомогенных процессов (формальная кинетика, за некоторыми специальными исключениями, предполагается достаточно из вестноп из общего курса физической химии), включая разбор механизма элементар ных актов, теории столкновений и активного комплекса, разбор моно- и тримолекулярных реакций и некаталитических реакций в растворах 2) гомогенный катализ, сопря женные реакции и окислительные процессы, теорию промежуточных соединений в гомогенном катализе, кислот но -основной катализ цепные реакции, фотохимические реакции, газовоэлектрохимические реакции (последние в очень небольшом масштабе в связи с читаемым в IX семестре для части студентов специальным курсом Газовая электрохимия ) 3) кинетику гетерогенных каталитических процессов (теория Лэнгмюра, влияние неоднородности поверхности на гетерогенный каталитический процесс, кинетика реакции в потоке, элементы макрокинетики) и 4) теорию активных центров в гетерогенном катализе (первоначальные теории активных центров, теории мультиплетов и активных ансамблей, современные электронные представления в катализе). [c.220]

    Несколько позднее Нернст объяснил этот процесс с помощью атомного цепного механизма [179]. Для объяснения отдельных проблем мономолекулярных реакций и отрицательного катализа цепных реакций Кристиансон и Крамере [180] исходили из того, что необходимые для сохранения скорости реакции активные молекулы производит, собственно говоря, сама реакция. Согласно этой теории, богатые энергией продукты реакции при столкновении, в сущности, в единственном акте отдают свой избыток энергии исходным молекулам. Такое представление получило быстрое распространение, и в начале тридцатых годов энергетические цепи рассматривались как типичные представители цепных реакций [181, 182]. Согласно теории цепных реакций Н. Н. Семенова [118], основное различие между простыми и цепными реакциями заключается в том, что в цепных реакциях именно тепловой эффект, т. е. освобождающиеся в отдельных химических актах порции энергии, определяет развитие цепей и, таким образом, оказывает влияние на скорость реакции . Поэтому Н. Н. Семенов считал, что основной линией теоретической химии в будущем должна быть разработка статистики стационарных процессов и основательное изучение закономерностей процессов передачи энергии. [c.135]

    Химическая кинетика и катализ. Формальная кинетика. Вывод кинетических уравнений и определение основных кшетических характеристик химических реакций. Теории химической кинетики. Лимитирующая ст адия п]10цесса. Зависимость скорости реакции от смнсрату-ры. Энергия активации и стерический фактор. Кш етика цепных реакций. [c.9]

    Каталитические реакции можно рассматривать по радикальному механизму, согласно которому при активированной адсорбции происходит расщепление молекулы реагента на радикалы. При гетерогенном катализе по модели Ленгмюра свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются. В случае гетрерогенно-гомогенного катализа образующиеся радикалы переходят в свободный объем, где и продолжается цепная реакция и катализатор являйся возбудителем реак- [c.89]

    При этих процессах из нескольких термодинамически возможных направлений катализатор избирательно проводит часто лишь одно, что зависит от того или иного типа ориентации молекул на активных центрах катализатора (геометрический фактор). Катализаторы обладают способностью вступать в одну и ту же реакцию многократно, саморегенерируясь поэтому малые количества контакта способны изменить большие количества реагентов, что подтверждает механизм цепных реакций. В случаях сложных реакций, протекающих в несколько химических стадий, число стадий при поверхностных процессах значительно возрастает. Такие сложные процессы, как получение дивинила из этилового спирта, синтез высших спиртов или углеводородов из водяного газа, реакции необратимого катализа, кетонизация первичных спиртов и др., идут через ряд консекутивных и параллельных реакций. [c.167]

    Как мы уже отмечали, макрорадикальный характер твердых тел атомного строения предопределяет их высокую химическую активность, которая проявляется в виде хемосорбции. Но хемосорбция часто является только первым актом дальнейших сложных процессов. К таким процессам относятся, например, процессы молекулярного наслаивания, позволяющие осуществлять направленный синтез атомных твердых веществ с гарантированной воспроизводимостью. Но еще задолго до использования этих процессов внимание исследователей и производственников привлекали процессы гетерогенного катализа, относительно которых известно, что они также начинаются с актов хемосорбции, по крайней мере одного из катализируемых веществ. В определенных случаях твердое тело играет только роль инициатора (или, нередко, ингибитора) реакции, которая при этом развивается по законам цепных реакций, открытым Н. Н. Семеновым. Зная, что твердое тело является макрорадикалом, нетрудно себе представить, что соударение с ним молекул должно непрерывно генерировать радикалы — осколки этих молекул, обладающие неспаренными электронами, если свободные валентности твердого тела возрождаются. То же условие самовозобновления макрорадикала, а в более общем случае самовоспроизведение определенного набора функциональных [c.244]

    Катализ — селективное ускорение химической реакции веществом — катализатором, который многократно вступает в промежуточные химические реакции, но регенерируется к моменту образования конечных продуктов. К этому определению необходимо сделать несколько пояснений. Во-первых, далеко не всегда ускорение реакции добавкой вещества есть катализ. Например, ионную реакцию можно ускорить, изменив ионную силу раствора, однако такое ускорение не результат катализа химически нейтральные ионы влияют на частоту встреч реагентов в растворе, но они не участвуют в реакции, не образуют с ними промежуточных соединений. Во-вторых, катализатор следует отличать от инициатора цепной реакции. Инициатор реагирует, вызывая ряд (цепочку) химических превращений, но в отличие от катализатора он не регенерируется в конце процесса, его участие в химическом превращении приводит к его необратимому расходованию. В-третьих, катализатор далеко не всегда сохраняется к концу эксперимента в неизменной форме и количестве. Он может расходоваться в разнообразных побочных процессах, не связанных с главной катализи- [c.220]

    Катализ в газовой фазе можно пытаться представить как образование промелсуточных соединений, распадающихся с образованием продуктов с последующей регенерацией катализатора. Процесс образования промежуточного соединения считается быстрым, достигающим равновесия, а распад его выступает как определяющая стадия реакции. Однако С. Н. Гиншель-вуд показал, что таких реакций практически не существует и что в действительности имеют место цепные реакции, в которых роль катализатора играют переносчики, способствующие образованию активных промежуточных соединений. Примером является окисление СО, прекращающееся (как и ряд других окислительных процессов) в результате глубокой осушки смеси СО Н-0-2. Реакция СО протекает при участии [c.287]

    Новое направление в исследованиях многокомпонентных систем было создано работами Н. С. Курнакова и привело к развитию физико-химического анализа — учению о зависимости свойств физико-химических систем от состава. К числу больших достижений XX в. относятся теория растворов сильных электролитов П. Дебая и Э. Хюккеля (1923), теория цепных реакций (Н. А. Шилов, Н. Н. Семенов), теории катализа. В последние годы интенсивно развиваются методы исследования строения и свойств молекул. К ним относятся электронный резонанс (ЭМР), масс-спектрометрия и др. Большой вклад в развитие физической химии внесли советские ученые Я. К. Сыркин, М. Е. Дяткииа (метод молекулярных орбиталей), Н. Н. Семенов (теория цепных реакций), А. Н. Фрумкин (фундаментальные исследования в области электрохимии), Н. А. Измайлов (теория электрохимии неводных растворов). [c.8]

    В дальнейшем были открыты многие новые явления положительного и отрицательного катализа малыми примесями , как их характеризует Н. Н. Семенов [12]. Все они рассмотрены в связи с ОСНОВИЫМ1И положениями теории цепных реакций. Было установлено, что одни и те же посторонние вещества в одних условиях играют роль ингибиторов реакций, обрывая цепи, а в других — катализаторов, способствуя генерированию свободных радикалов [12, с. 250—253]. [c.118]

    Прочная научная основа была подведена под изучение роли стенок в ходе реакций лип1ь теорией цепных реакций в работах Н. Н. Семенова [12, с. 272— 309], М. В. Полякова [14], А. А, Ковальского [15] и др. Первоначальные указания иа роль стеики в реакциях содержались в объяснении предельных явлений, зависящих от размеров сосуда, сущность которых сводилась к предположению о гетерогенном замедлении в результате захвата свободных радикалов стеикой. Вскоре М. В. Поляковым была выдвинута гипотеза о гетероген,но-гомогешюм, катализе, предполагающая участие стенки в качестве катализатора, обеспечивающего генерирование и захват свободных радикалов на всех стадиях реакции. В дальнейшем и те и другие предположения нашли экспериментальные подтверждения стенка способна участвовать как в замедлении гомогенных реакций, так и в ускорении их путем генерирования радикалов. [c.119]


Смотреть страницы где упоминается термин Катализ цепных реакций: [c.381]    [c.133]    [c.46]    [c.213]    [c.28]    [c.54]    [c.404]    [c.414]    [c.253]   
Смотреть главы в:

АБВ химической кинетики -> Катализ цепных реакций




ПОИСК





Смотрите так же термины и статьи:

Катализ реакции

Цепные реакции

Цепные реакции Реакции цепные



© 2024 chem21.info Реклама на сайте