Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Паро-жидкое равновесие при высоких давлениях

    В отличие от АЯ п и AS . , которые мало зависят от температуры, AG° очень сильно зависит от температуры, Т, которая явно входит в соотношение (18-1). Если ради простоты предположить, что изменения энтальпии и энтропии постоянны, то можно графически представить зависимость AG от ДЯ и AS, как это сделано на рис. 18-3 на примере Н2О. При высоких температурах произведение 7AS° больше, чем АЯ°, свободная энергия испарения отрицательна и испарение воды при парциальном давлении водяных паров 1 атм должно происходить самопроизвольно. При низких температурах АЯ° больше, чем TAS°, так что AG° положительно, и самопроизвольно осуществляется конденсация водяных паров. При некоторой промежуточной температуре энтальпийный и энтропийный эффекты в точности компенсируют друг друга, AG° становится равным нулю и жидкая вода находится в равновесии с парами воды при парциальном давлении 1 атм. Такое состояние отвечает нормальной температуре кипения жидкости, (температура кипения на уровне моря). Для воды эта температура равна 100°С, или 373,15 К. При более низком атмосферном давлении (на большой высоте над поверхностью моря) вода кипит при температуре ниже 100°С. [c.124]


    В случае идеальной смеси определение этой константы не вызывает затруднений. Для систем, находящихся при высоких давлениях и температурах, расчет константы фазового равновесия проводится с помощью фугитивности жидкой и паровой фаз (см. главу двенадцатую). Из уравнения (8. 28) следует, что в условиях равновесия распределение данного компонента между паровой и жидкой фазами равно отношению давления насыщенных паров данного компонента к общему давлению паров смеси. [c.148]

    Ряд современных химических процессов, включая блоки подготовки (осушки) газового сырья, осуществляется при высоком давлении. Содержание водяных паров в газах, находящихся в равновесии с жидкой водой, при высоких давлениях должно рассчитываться с учетом фактора сжимаемости. Обычно для этих целей пользуются специальными графиками, которые позволяют определить для природного газа влагосодержание в газе при насыщении в диапазоне температур от -60 до 350 °С и давлений от 1 10 до 7 10 Па. При повышении давления избыток влаги конденсируется, абсолютная влажность, отнесенная к единице объема газа при нормальных условиях, снижается, вследствие чего уменьшается удельный расход адсорбента на осушку. [c.390]

    Паро-жидкое равновесие при высоких давлениях [c.120]

    При расчетах процессов массообмена под высоким давлением, проведенных по законам Рауля и Дальтона, получаются отклонения, так как эти законы справедливы только для идеальных газов. Напомним, что по условию равновесия двухфазной системы жидкость — иар общее давление насыщенных паров жидкой фазы должно быть равно общему давлению в паровой фазе. [c.262]

    При равновесии газа с жидкой водой не только вода содержит растворенный газ, но и газовая фаза содержит пары воды. Водяные пары в газовой фазе уменьшают содержание самого газового компонента, что приводит к уменьшению его растворимости в воде. Растворимость газа в воде и воды в газе — две стороны одного и того же явления (фазового равновесия газ-вода). В общем случае решение задач фазового равновесия требует совместного рассмотрения растворимости газа в воде и воды в газе. Не редки случаи, когда предсказание растворимости газа в воде ограничено знанием растворимости водяного пара в газе, закономерности изменения которой при высоких давлениях известны недостаточно полно. В табл. 36—54 приводятся экспериментальные данные по содержанию водяного пара в различных сжатых газах, равновесных с жидким водяным раствором. Сведения о содержании водяного пара в газовой фазе при весьма высоких температурах можно получить из рис. 27-42. [c.80]


    Если взять на диаграмме какую либо точку лежащую выше линии ос, то ей будет соответствовать более высокое давление чем давление насыщенного пара т е выше того которое должно быть при равновесии жидкой и паровой фаз Ясно что система в этом случае будет представлять собой жидкую воду Для точек диаграммы расположенных ниже линии ос давление имеет более низкое значение чем при равновесии воды с паром а поэтому система существует лишь в виде пара [c.3150]

    Нефть, вытекающая из трапов высокого давления, также содержит много летучих углеводородов и имеет высокую упругость паров, равную давлению в трапе. При переводе нефти в следующий трап низкого давления выделится еще часть углеводородов — до восстановления равновесия между жидкой и паровой фазами при новом, более низком давлении. Выделившийся здесь газ тяжелее той его части (самых легких углеводородов), которая раньше выделялась в трапе высокого давления. [c.245]

    АНт и А8т — изменение энтальпии и энтропии в процессе плавления при этом предполагается, что каждое вещество должно находиться в определенном термодинамическом состоянии, обычно при давлении насыщенного пара. Поскольку в данных процессах участвуют вещества только в конденсированной фазе, различия между изменениями стандартных величин энтальпии и энтропии АНт° и А8т° и соответствующими изменениями величин АНт и А8т незначительны, за исключением процессов, протекающих при высоких давлениях. Для чистых веществ в жидком и твердом состояниях влияние средних давлений на термодинамические свойства почти всегда пренебрежимо мало. Так, например, теплоемкость при низких температурах того или иного соединения обычно определяют при давлении насыщенного пара плюс зависящее от температуры давление гелия, вводимого для ускорения достижения теп.лового равновесия. [c.220]

    На рис. 1 приведена графическая зависимость между объемом и давлением диоксида углерода при постоянных температурах. Такие кривые называются изотермами. У изотерм при низких температурах (О, 10, 20°С) можно выделить три участка АВ, ВС и СО. Участок АВ, показывающий, что с уменьшением объема давление увеличивается, соответствует газообразному состоянию вещества. Участок ВС отвечает переходу газа в жидкость, т. е. равновесию между жидкостью и газом в состоянии насыщенного пара. Участок СО характеризует жидкое состояние, так как даже при очень высоких давлениях объем жидкости практически не меняется. С повышением температуры участок ВС уменьшается и превращается [c.14]

    Следовательно, раствор, содержащий 0,25 и 0,75 молярных долей летучих жидкостей А и Б находится в равновесии с паром, содержащим 0,167 молярных долей (16,7 молекулярных процентов) вещества А и 0,833 молярных долей (83,3 молекулярных процента) вещества Б. Компонент Б, обладающий более высоким давлением пара, содержится в паровой фазе в более высокой концентрации, чем в жидкой фазе. [c.81]

    Для исследования фазовых равновесий в системах вода— твердое тело при высоких давлениях и температурах предложен ряд методов, характеризующихся тем, что давление в сосуде создается вследствие испарения воды при нагревании сосуда высокого давления до температуры опыта. Варьируя количество загруженной в аппарат жидкой фазы и температуру, можно достичь различных давлений. Этот же метод позволяет исследовать растворимость твердых тел в водяном паре. [c.297]

    Давление паров жидкого иода при температуре затвердевания (114°) равно 90 мм рт ст. Это давление точно равно давлению паров кристаллов при той же температуре, как об этом говорилось в предыдущем разделе. Таким образом, иод в газообразном состоянии при давлении 90 мм рт ст находится в равновесии с жидкостью при 114° (температуре затвердевания жидкости), и газообразный иод точно так же находится в равновесии с кристаллами иода при той же температуре (при температуре их плавления). Кристаллы и жидкость находятся в равновесии при температуре затвердевания (или, что то же, при температуре плавления), при этом кристаллы и н идкость имеют точно одинаковое давление паров. Если две фазы имеют различное давление паров, то фаза с более высоким давлением паров будет продолжать испаряться и пар будет продолжать конденсироваться в виде другой фазы до тех пор, пока первая фаза не исчезнет. [c.42]

    Данные по равновесному содержанию пара жидких углеводородов в сжатых углеводородных газах мы извлекли из многих работ, посвященных изучению фазового равновесия в бинарных системах при высоких давлениях. Здесь следует от- [c.469]

    В следующих разделах этой главы будут очено кратко рассмотрены два хорошо известные и полезные метода расчета фазового равновесия пар—жидкость при высоких давлениях, (С подробностями методов читатель может ознакомиться по первоисточникам). Первый метод — это распространение на область высоких давлений, подхода, использовавшегося в методах расчета равновесия пар-жидкость при низких давлениях. В нем сохраняется концепция коэффициентов активности и стандартного состояния. Во втором методе коэффициенты активности не используются (и тем самым снимается проблема стандартных состояний для сверхкритических компонентов), а вместо этого интегрируются волюметрические характеристики (уравнение состояния) как для паровой фазы, так и для жидкой.  [c.326]


    Давление насьпценных паров - это давление паров находяпщхся в равновесии с жидкой фазой при определен ных соотношениях объемов жидкой и паровой фаз при дан ной температуре. Давление насыщенных паров нефти и нефтепродукта характеризует их испаряемость, наличие в-них лег ких компонентов, растворенных газов. Оно резко увеличивается с повышением температуры. Если в бензше растворено много газа или содержится много низкокипящих фракций, то он имеет высокое давление насьпценных паров при работе двигателя на таком бензине образуются паровые пробки, что крайне нежелательно. [c.10]

    Теплота смешения паров обычно очень мала, и, кроме случаев весьма высоких давлений, ею вполне можно пренебречь. Это означает, что и для реальных си-втем изотермы (1.101) представляются на тепловой диаграмме прямыми линиями. Однако, как и для случая жидкой фазы, только одна точка-каждой из этих изотерм, та, абсцисса которой равна концен-т рации у равновесной паровой фазы, принадлежит линии на-сыш енного пара энтальпийной диаграммы. Таким образом, если на график энтальпия — состав нанести изотермы (1.100) и (1.101) и с помощью данных парожидкостного равновесия [c.59]

    Справочные данные о значениях термодинамических функций разных веществ относятся большей частью к стандартному состоянию их. Поэтому при сопоставлении термодинамических свойств данного веи1ества в жидком и газообразном состояниях и для расчета изменения этих свойств в процессе испарения нередко возникает необходимость перехода от величин, относящихся к стандартным состояниям жидкости и газа, к величинам, относящихся к равновесным их состояниям. Тепловые эффекты процесса (кроме области высоких давлений и концентрированных растворов) различаются в этом случае незначительно. Однако изменения энтропии (и, следовательно, AG) могут сильно различаться. Энтропия жидкости в стандартном состоянии мало отличается от энтрепии ее в состоянии равновесия с насыщенным паром при той же температуре, и этим отличием можно пренебречь, но для газообразного состояния значения энтропии могут быть весьма различными, так как энтропия газа сильно зависит от давления. Ограничиваясь условиями, в которых допустимо применение законов идеальных газов, и учитывая, что для стандартного состояния газа р— атм, можио, пользуясь ур. (VII, 53), выразить разность между энтропией газа в стандартном состоянии 8° и в состоянии насыщенного пара SpaBH равенством  [c.256]

    На рис. 27 приведена диаграмма состояния фосфора. Ее интересная особенность состоит в том, что одна из твердых модификаций фосфора — белый фосфор —при всех температурах обладает более высоким давлением пара, чем фиолетовый фосфор, т. е. химический потенциал белого фосфора всегда больше, чем фиолетового. Белы фосфор является метастабильно существующей фазой. Из рис. 27 ясно, что белый фосфор можно получить из переохлажденного жидкого фосфора (метастабильное состояние равновесия в точке 2), но переход белого фосфора в фиолетовый необратим. Такое превращение называют монотропным или односторонним, чтобы подчеркнуть, что непосредственный переход от фиолетового фосфора к белому при 7= onst невозможен. Из переохлажденной жидкости можно получить как одну, так и другую модификацию фосфора. Это связано с тем, что химический потенциал фосфора в переохлажденной жидкости больше химического потенциала фосфора в каждой из твердых фаз. Б этом случае оба [c.125]

    Жидкое состояние вещества является промежуточным между твердым и газообразным (рис. 1.1). Сбласть существования жидкости ограничена со стороны низких температур переходом в твердое состояние (точки сМ ), а со стороны высоких — переходом в газообразное состояние (точки с, е). Линия АК, разделяющая жидкую и газообразную фазы, заканчивается критической точкой, соответствующей температуре и давлению р р, выше которых невозможно существование жидкости в равновесии с паром. Линия равновесия жидкость — твердая фаза критической точки не имеет. У металлов температура плавления повышается с увеличением давления (кривая АВ) у льда, кремния, гер1иа-ния — понижается (кривая АВ ). Точка А на диаграмме состояния соответствует температуре и давлению, при которых в закрытом сосуде находятся в равновесии твердая, жидкая и газообразная фазы. Жидкости сочетают некоторые свойства как твердых тел, так и газов. Твердые тела бывают кристаллические и аморфные. По типам связи кристаллы подразделяют на атомные, ионные, металлические и молекулярные. Они обладают ближним и дальним порядками. Ближний порядок означает правильное расположение около фиксированного атома, иона или молекулы определенного числа ближайших соседей. Дальним порядком называется расположение частиц в определенной последовательности с образованием единой трехмерной решетки. При наличии дальнего порядка расстояние до любого атома кристалла вычисляется через параметры элементарной ячейки по формуле [c.7]

    Повышение давления до нескольких десятков гигапаскаль (сотни килобар) в одних случаях ведет к росту координационного числа, а в других к его уменьшению. Но при очень высоких давлениях по-рядкк 10 Паскаль можно полагать, что реализуется плотнейшая упаковка. Здесь различия между твердой и жидкой фазами исчезают. При столь высоких давлениях, видимо, должна существовать критическая точка, в которой жидкая и твердая фазы становятся тождественными по своим свойствам. Эта критическая точка — своеобразный аналог критической точки жидкость — пар, в которой становятся одинаковыми свойства жидкой фазы и пара. Критическая точка на кривой фазового равновесия жидкость — твердое тело может возникать при очень высоких далениях в результате изменения структуры электронных оболочек атомов. Можно полагать, что эта критическая точка подобна критической точке равновесия а- и 7-модификаций церия. Согласно имеющимся экспериментальным данным эта точка находится при температуре 350—400° С и давлении порядка 2,0 ГПа [c.271]

    Этот метод широко применяют для разделения изотопов в -колоннах. Он основан на различии в составах жидкой и паровой фаз, находящихся в состоянии термодинамического равновесия. Вследствие переноса массы, в вертикальном направлении-(паром вверх, а жидкостью вниз) фазовое равновесие нарушается. При этом низк01к1 пящий компонент, имеющий при данной температуре более высокое давление паров, концентрируется в газовой фазе в верхней части колонны. В потоке жидкости, направляющемся из верхней части колонны к испарителю (кубу) колонны, накапливаются более высококипящие компоненты. Эффективная дистилляция достигается при циркуляции потоков с отбором небольшой части обогащенного потока. Остальная часть (флегма) возвращается в колонну путем дефлегмации или испарения. В случае разделения изотопов флег-мовое число (отношение количеств жидкости, возвращаемой после конденсации в верхнюю часть колонны, к количеству отбираемой жидкости) имеет очень высокое значение. [c.76]

    ФАЗ ПР. ВИЛО, закон, связывающий число фаз, находящихся в термодинамически равновесной системе, с числом компонентов системы, числом ее степеней свободы и числом внеш. параметров, определяющих состояние системы. При этом под фазой подразумевают однородную по хим. составу и термодинамич. св-вам часть системы, отделенную от др. частей (фаз) пов-стями раздела. На этих пов-стях скачкообразно меняются св-ва системы (состав, плотность, параметры кристаллич. решетки и т. п.). Под числом фаз ф понимают кол-во разл. фаз. Напр., вода в равновесии со ладом образует двухфазную систему твердая соль в равновесии с ее насыщ. водным р-ром и паром - трехфазную систему. Газообразные в-ва, как правило, образуют всегда одну фазу (при высоких давлениях газовые смеси мотут расслаиваться с появлением двух фаз). Число фаз в системе, жидких и особенно кристаллических, вообще говоря, не ограничено, т.к. жидкости и кристаллич. тела далеко не всевда Moiyr смешиваться в любых отношениях. [c.53]

    Книга включает две части. В первой части адсорбционный процесс рассмотрен как комплекс равновесных и кинетических закономерностей адсорбционно-десорб-ционного цикла и вспомогательных стадий. Здесь освещены вопросы теории равновесия при адсорбции индивидуальных компонентов промышленных газов и их смесей, кинетики и динамики прямого (адсорбция) и обратного (десорбция) процессов, изложены закономерности адсорбции под высоким давлением и в жидкой среде. Вторая часть посвящена технологии и аппаратурному оформлению, а также технико-экономическим показателям современных адсорбционных процессов очистки, осушки, разделения газов, паров и жидкостей, в том числе в движущемся слое адсорбента. Большое внимание уделено процессам, позволяющим обезвредить промышленные выбросы, рекуперировать из них ценные продукты и решить проблему защиты биосферы. В дополнительном разделе рассмотрены примеры применения адсорбентов для снижения загрязнения атмосферы и гидросферы токсичными веществамн. Рассмотрены новые каталитические процессы на основе промышленных адсорбентов. [c.10]

    Но 2ух,г равно работе когезии жидкости, т. е. работе обратимого разрыва столбика жидкости, имеющего 1 см в поперечном сечении (рис. 87, б). В результате = и работа необходимая для отделения жидкости от твердого тела, покрытого адсорбционной пленкой, в точности равна работе необходимой для разделения двух порций жидкости. Адсорбционная пленка ведет себя точно так, как будто бы она жидкость, и насыщенный пар будет конденсироваться на ней так же, как на поверхности жидкости. Поверхность раздела 5У исчезает и заменяется поверхностью ЬУ. Если, однако, ф>0, жидкая линза может, как видно из рис. 86, находиться в равновесии на покрытом адсорбционной пленкой твердом теле, не расплываясь по нему. Поэтому, когда капля жидкости попадает на адсорбционную пленку или подходит к поверхности пленки в процессе расплывания по той части поверхности, для которой ф = 0, она не должна расплываться по пленке. Из этого следует, что на адсорбционной пленке насыщенный пар не полностью конденсируется в жидкость. Количество адсорбированного пара должно оставаться конечным [33] даже при р = ро. Ссылки на литературу указывают, что такое поведение довольно часто встречается на практике (ср. //( на рис. 88). Если изотерма пересекает ординату давления насыщения под конечным углом, то краевой угол должен быть больще нуля при высоких давлениях (1К) и будет оставаться таким, пока происходит десорбция вдоль ветви НЬР. В таких случаях значение радиуса Кельвина, рассчитанное по изотерме в предположении, что ф = 0, будет завышено в 1/созф раз. Однако, пока ф не приближается к 90°, ошибка мала. Например, значения 1/соз ф при ф, равном 10, 20 и 30°, составляют соответственно 1,015 1,05 и 1,13. Для угла 84° 15 значение 1/соз ф равно 10,0, так что ошибка достигает порядка самой величины. А для 89°22 это значение равно 100, что дает ошибку в два порядка. Однако столь большие значения ф кажутся маловероятными для большинства систем твердое тело — жидкость. [c.177]

    Тройная точка азота. В тройной точке азота, 63,Г К, давление паров углекислоты уменьшается до 10 2 мм рт. ст., а СО, в равновесии с твердой фазой [135], имеет еще давление 40 ммрт. ст. Поэтому, подкачивая жидкий азот в охлаждаемый отросток, можно удалить эту мешающую примесь окиси углерода. Чтобы подавить выбросы, следует соблюдать осторожность при пропускании азота в охлаждаемый отросток через капилляр при откачке. СО с той стороны вентиля, где имеется высокое давление, можно очистить даже в нормальной точке кипения азота (77,35° К). В ней давление паров СО2 равно 1,05-10" мм рт. ст., а давление паров СО — 453 мм рт. ст. Поэтому концентрацию СО2 можно свести к 2,3 частей на 10°. [c.279]

    Чтобы ответить на этот вопрос, во время нагревания бомбу слегка наклоняют в одну сторону, а при охлаждении— поворачивают в другую сторону. Если стекло было действительно жидким при высокой температуре, то во время нагревания оно собирается в нижней части тигля, в то время как сосуществующий весьма текучий раствор собирается и затвердеет в той части, которая при охлаждении была нижней. Необходимо прежде охладить нИжнюю часть бомбы, в которой находится тигель, чтобы быстро закалить содержимое тигля и отделить его от газовой фазы, находящейся над ним. Затем раствор охлаждается под давлением и растворы щелочных силикатов образуют прозрачные, гомогенные водосодержащие стекла, вполне твердые, если содержание воды не превыщало 25%. Если, однако, золотой тигель поместить в бомбе лишь немного ниже крышки, то тепло будет быстрее отниматься от стенок бомбы, нежели от пробы, в то время как пространство наполнится водяным паром. При этом произойдет внезапное уменьщение давления, вода бурно выкипит из раствора, а нелетучие компоненты вспучатся и одновременно затвердеют. Образуются очень пористые пемзообразные, почти безводные силикатные массы. Этот процесс аналогичен вспучиванию нагреваемых природных пемз или водных стекол , описанному Барусом (см. С. I, 192). Главное преимущество метода Мори состоит в том, что-он может быть использован при статическом исследовании фазовых равновесий. Этот метод гидротермальной закалки позволяет сохранить в неизмененном виде (по химическому составу) кристаллы и раствор, которые были стабильными при высоких температурах (раствор представлен водосодержащим стеклом). Если при постоянной температуре изменять содержание воды и состав силикатной смеси, то граиищу области образования некоторой кристаллической фазы можно определить в соответствии с теми же принципами, которые справедливы в отнощении обычного сухого метода закалки (см. В. I, ЦО и ниже). Если, кроме того, стекло взвесить, то определится количество адсорбированной воды, т. е. содержание воды в горячем расплаве. Таким образом, станет известным истинный состав равновесных растворов, насыщенных при данной температуре относительно определенной кристаллической фазы. [c.600]

    Многие работы были посвящены исследованию фазовых равновесий при высоких температурах между твердыми, жидкими и паровыми фазами в двойных и многокомпонентных водносолевых системах. Работы проводились с целью выявления условий существования кристаллических солей и жидких водных растворов солей и щелочей в присутствии водяного пара высокого давления. Эти условия наиболее полно определяются изучением растворимости и давления пара насыщенных растворов соответствующих систем в возможно более широком температурном интервале. [c.123]


Смотреть страницы где упоминается термин Паро-жидкое равновесие при высоких давлениях: [c.68]    [c.34]    [c.323]    [c.85]    [c.96]    [c.40]    [c.99]   
Смотреть главы в:

Курс теории перегонки и ректификации -> Паро-жидкое равновесие при высоких давлениях

Курс теории перегонки и ректификации -> Паро-жидкое равновесие при высоких давлениях




ПОИСК





Смотрите так же термины и статьи:

Давление жидким

Давление паров жидкой

Жидкие давление пара

Равновесие при высоких давлениях



© 2025 chem21.info Реклама на сайте