Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ширина линий и полос

    Важнейшим показателем качества спектра при этом является ширина линий (полос). Очевидно, что при значительном уширении линии различных компонентов могут сливаться (перекрываться), что затруднит или вообще сделает невозможным их идентификацию. [c.208]

    Уравнения (20) и (21) или (23) и (24) составляют модель, обладающую приемлемой точностью для представления экспериментальных характеристик газа, поскольку она учитывает структуру линий и полосы. Таким образом, в модели широкой полосы вводится три параметра м — параметр ширины полосы 5 — параметр ширины линий а — интегральная интенсивность полосы (не путать с поглощательной способностью)  [c.488]


    Е. Радиационные характеристики молекулярных газов. Приняв узкополосную 1см. уравненне (19) или широкополосную 1см. уравнения (23), (24)] модель, необходимо определить следующие величины ширину полосы 11, отношение ширины линий к расстоянию между ними Рй, интенсивность полосы а/, или оптическую глубину Эти данные позволяют найти спектральные характеристики по (19) и (23), (24) или эквивалентную ширину полосы по (27) — (29). Ниже изложены способы вычисления и или а также оп- [c.490]

    Ширина полос поглощения жидкостей на два-четыре порядка превосходит ширину линий поглощения газов при обычных давлениях, а ее зависимость от изменений среды (растворитель, другие компоненты смеси, температура) относительно много меньше зависимости ширины линий газа от давления. У жидких углеводородов ширина полос достигает 30 см -, как правило, она имеет величину от 15 до —5 см . Примерно в тех же пределах меняется и ширина полос обычных призменных монохроматоров. Поэтому наблюдаемые контуры полос оказываются в большей иди меньшей степени сглаженными (рис. 7), но в отличие от газов наблюдаемая величина может сравниваться с соответствующей истинной в той же точке . В последние годы инфракрасные спектрофотометры быстро совершенствуются, повышается их практическая разрешающая способность и соответственно измеряемые интенсивности полос приближаются к истинным. Например, такие большие расхождения, как 13 приведенном выше примере бензола, уже сравнительно редки, а обычные величины расхождений составляют 10—100%. [c.497]

    Это уравнение дает способ оценки В [а следовательно, и А см. уравнение (2.1)] из данных по поглощению. Для данной средней вероятности перехода существует некое обратное соотношение между шириной линии поглощения и коэффициентом экстинкции. Однако для типичной ширины полосы максимальное значение десятичного молярного коэффициента экстинкции редко превышает 10 дм (моль-см) значение З-Ю дм /(моль-см) считается обычным. [c.34]

    Интересный пример предиссоциации двухатомных свободных радикалов — предиссоциация радикала А1Н. На рис. 104, а приведена микрофотограмма полосы спектра испускания А1Н видно, что все три ветви внезапно обрываются при одном и том же значении J верхнего состояния. Что такой обрыв вызван предиссоциацией, подтверждается наблюдением той же самой полосы в спектре поглощения (рис. 104, б) заметно, что линии с высокими значениями J уширены. Важно учесть, что ослабление линий испускания является значительно более чувствительным признаком предиссоциации, чем уширение. Чтобы произошло заметное уширение, ширина линии должна стать больше 0,1 см , что в 100 раз превышает естественную ширину линии. Это означает, что вероятность безызлучательного перехода у должна быть в 100 раз больше вероятности перехода (3 с излучением. Уменьшение же интенсивности линии на 50% произойдет при у = . По этой причине в полосе поглощения радикала А1Н (рис. 104, б) уширение линий наблюдается только при несколько более высоких значениях чем те, при которых происходит обрыв ветвей в спектре испускания. Другим примером может служить предиссоциация радикала СН (см. фотографию полосы на рис. 49). [c.182]


    Спектроскопия биения света (называемая также спектроскопией, основанной на доплеровском сдвиге, или рэлеевской спектроскопией ширины полосы) используется для оценки формы (ширины линии) пика Рэлея. [c.212]

    Ширина линии АЯ. зависит от физической природы излучающего газа и увеличивается с увеличением давления и температуры. Длина когерентности соответственно уменьшается (уширение спектральных линий с увеличением давления). Волновые пакеты конечной длины не могут быть монохроматическими их полоса частот всегда конечна, поскольку волновой пакет конечной длины можно описать суммой членов разложения Фурье относительно основной частоты Vm- Даже воображаемый монохроматический и непрерывный волновой пакет имеет определенную полосу частот, поскольку он не бесконечный, а начинается в определенный момент времени. [c.100]

    Для линии 0,546 мкм ртутной лампы со средним давлением Лт/АЯ = 2500. Максимально допустимая разность оптических путей составляет g = X-S, поскольку соответствующее значение 5 равно 5 = 7Дт/АЯ = 625 средняя длина когерентности А/= 1,35 мм. У ртутных ламп низкого давления, заполненных изотопом (чистотой 99,9%), средняя длина когерентности той же спектральной лннии составляет 0,6 м (что соответствует - 10 Я). Ширина линии ртутных ламп высокого давления ( 130 атм) значительно больше. Спектр имеет также непрерывную часть. Поэтому ширина линии определяется полосой пропускания фильтра. Для абсорбционных фильтров типичны значения АЯ = 0,012- 10 м для поглощения 50% и АЯ = 0,008 10 м для поглощения 85% света. Комбинации интерференционных фильтров пропускают больше света в полосе пропускания, однако частота пропускания зависит от точной ориентации фильтра в параллельном пучке. [c.101]

    На рис. 14, а справа внизу два кросс-пика указывают на то, что две слабопольных линии коррелируют с разными полностью перекрывающимися сильнопольными линиями. Напротив два кросс-пика в левой верхней части спектра, по-видимому, коррелируют с одним и тем же сильнопольным пиком. Эта разница обусловливается тем, что ширина линии в превышает ширину в/2 На рис. 14, > изображен тот же самый спектр, но здесь диагональный сильнопольный сигнал вызывает полосу ,-щума, которая скрывает хорошо разрешимую пару кросс-пиков. На этом спектре не возможно ожидать, что два слабопольных пика коррелируют с разными сильнопольными пиками, проблему можно решить лишь улучшением разрешения по измерению/,. [c.41]

    Обрезиненный корд раскраивают по диагонали или поперек нитей основы. Обрезиненный корд для диагональных покрышек раскраивают на полосы (рис. 9.1) шириной до 3650 мм под углом 25— 37° с таким расчетом, чтобы в готовой покрышке угол расположения нитей в средней части покрышки составлял 48—52°. Ширина раскроенных полос измеряется по наименьшему расстоянию (перпендикуляру) между линиями отреза, а длина — по линии отреза при помощи линеек и рулеток. Углом раскроя а называется угол, образованный линией отреза 1 и линией 2, перпендикулярной нитям основы корда (ткани). Угол раскроя проверяют, измеряя с помощью металлических прямоугольных треугольников дополнительный угол р, который равен разности между углом 90° и углом раскроя. Чтобы определить отклонение угла раскроя, применяют угольники с углами, отличающимися от заданного на 410,5— 1°, т. е. в пределах допуска. [c.96]

    Сведения о степенях свободы вращения были непосредственно получены [133] при применении спектрометра с высоким разрешением. В спектре адсорбированного метана тонкая структура не была обнаружена, хотя разрешающая сила была такой же, как при работе с газами (рис. 10). Однако, даже если молекулы свободно вращаются, вращательная структура полос не обязательно будет разрешена. Частота колебаний адсорбированной молекулы перпендикулярно к поверхности составляет приблизительно 10>2 сек- [141, 142]. Эти колебания должны прерывать свободные вращательные движения в такой степени, что собственная ширина линий станет соизмерима с разрешающей способностью прибора в этих условиях не следует ожидать тонкой структуры. При учете эффекта прерванного свободного вращения экспериментальные данные были сопо- [c.280]

    Несмотря на то, что Марк, как указывалось выше [4], делал ранее выводы о реальных размерах мицеллы как кристаллита, в дальнейших своих работах он указывает на тот факт, что числовое значение длины мицеллы не могло быть определено вследствие несовершенства рентгенографического метода. Этим методом, как отмечают Краткий и Марк [12], можно получить нри современном состоянии техники рентгенографического испытания ширины интерференционных полос для параллельно расположенных цепей с длиной не выше 600 А. Поэтому нельзя делать каких-либо заключений о длине мицелл, пока не будет дан более совершенный метод получения интерференционных линий для очень больших периодов идентичности. [c.31]


    ШИРИНА ЛИНИЙ И ПОЛОС [c.254]

    Источник излучения. В отличие от широких полос поглощения в молекулярной спектрофотометрии, спектры поглощения атомов состоят из чрезвычайно тонких линий, обычно шириной порядка 0,01 А. Для соблюдения закона Бера ширина полосы поглощаемого излучения должна быть уже, чем линия поглощения определяемых атомов. Это означает, что либо ширина линии излучения источника либо ширина полосы пропускания селектора частоты (монохроматора) должна быть [c.695]

    При количественных применениях необходимо учитывать влияние эффекта расширения, связанного с давлением. Если давление поглощающего газообразного образца возрастает, ширина линии пропорционально увеличивается в большом интервале давлений. Интегральная интенсивность поглощения также растет прямо пропорционально давлению, и, следовательно, высота пика остается в этом интервале независимой от давления. При малом парциальном давлении добавление к поглощающему образцу инородного газа ведет к таким же последствиям — изменению полуширины полосы поглощения. [c.164]

    Твердотельные, а в особенности лазеры на органических красителях с резонаторами без селектирующих элементов генерируют довольно широкие участки спектра. У рубинового лазера ширина линии генерации 1 д. Неодимовые стекла генерируют полосу шириной 10 А а лазеры на органических красителях — чаще всего применяемые в лазерной спектроско- [c.374]

    Интенсивность, форма и ширина линий колебательновращательных полос поглощения СО. [c.279]

    Влияние, давления на уширение линий колебательновращательных полос поглощения. Часть 3. Экспериментальные методы определения ширины линий, [c.294]

    Основной источник систематических ошибок связан с не-монохроматичностью излучения. Монохроматор может выделить из спектра излучения источника более или менее широкий, но всегда конечный участок спектра, который мы называем полосой монохроматора. Любая измеренная в точке величина (/, Т, В,) является эффективной, определенным образом усредненной в пределах полосы монохроматора, и результат такого усреднения в общем случае существенно зависит от ширины полосы монохроматора. Практически заметные отличия наблюдаемых величин от истинных будут в тех случаях, когда ширина полосы монохроматора сравнима с шириной полос (линий) поглощения и тем более когда первая превосходит вторую. При этих же условиях теряют силу простые законы поглощения (3)—(6). Величина наблюдающихся инструментальных отклонений от соотношений (3) — (6) зависит от величины погашения, соответственно произведения сх равные отно-сптельные изменения с и а по отдельности приводят к равным аффектам. То, что инструментальные отклонения являются в равной мере отклонениями от закона Бугера-Ламберта (3) и закона Беера (4), позволяет отличать их от действительных отклонений от закона Беера (4), наблюдающихся только при изменении концентрации с. Эффекты, связанные с немонохроматичностью излучения, особенно велики при измерениях спектров газов. Ширина полосы обычных призменных монохроматоров много больше расстояний между линиями и ширины линий вращательной структуры полос поглощения. Поэтому в пределах полосы моно- [c.494]

    В случае многоатомных частиц возбуждение электрона можст сопровождаться разнообразными изменениями энергии колебаний и вращения. Поэтому каждому электронному переходу в спект1)е соответствует скопление большого числа близко расположенных линий. Зарегистрировать эти линии удается лишь в газе, где ширина линий невелика, причем только для частиц с не очень большим числом атомов. В случае сложных молекул и в растворах, где ширина линий увеличивается в результате взаимодействия с молекулами растворителя, линии сливаются в одну или несколько довольно широких полос поглощения. [c.35]

Рис. 3.4. Пример теста на форму линии (протонный спектр на 500 МГц). Ширина линии на полувысоте 0,3 Гц получены ожидаемые, чля лоренцевой формы пгарины в тестовых точках-4 и 9 Гц. Видны боковые полосы первого порядка с интенсивностью, впо,ине допустимой для таких магнитов, и небо.1ьшие горбы справа от основного сигнала, от которых, по-видимому, можно избавиться за счет настройки У-градиентов высших порядков. Рис. 3.4. Пример теста на <a href="/info/122617">форму линии</a> (<a href="/info/122614">протонный спектр</a> на 500 МГц). <a href="/info/2959">Ширина линии</a> на <a href="/info/934347">полувысоте</a> 0,3 Гц получены ожидаемые, чля лоренцевой формы пгарины в тестовых точках-4 и 9 Гц. Видны <a href="/info/122570">боковые полосы</a> <a href="/info/891867">первого порядка</a> с интенсивностью, впо,ине допустимой для таких магнитов, и небо.1ьшие горбы справа от <a href="/info/1724906">основного сигнала</a>, от которых, по-видимому, можно избавиться за счет настройки У-градиентов высших порядков.
    Цифровое разрешение и времена выборки данных. Одномерные протонные спектры обычно регистрируются с цифровым разрешением, равным илн несколько меньшим, чем наблюдаемая ширина линии. Например, для регистрации спектральной полосы шириной 10 м. д. типичные условия соответствуют регистрации от 16 до 32 К точек данных, что в зависимости от иапряженности поля приводит к временам выборки данных порядка нескольких секунд н цифровому разрешению 0,2-0,4 Гц иа точку. Для молекул среднего размера ширины линий составляют обычно от 0,5 до 1,5 Гц в недегазированных растворах, поэтому на каждую линию будет приходиться несколько точек. Это может быть недостаточно для некоторых операций, требующих точных количественных измерений, но в целом оказывается достаточным, еслн преследовать только цель разрешения мультиплетной структуры. Поскольку значения Tf лежат в диапазоне 0.2-0,6 с, за время каждого прохождения поперечная намагниченность будет самопроизвольно затухать практически до нуля. Поэтому ие возникнет стационарного эха, и использование импульсов, соответствующих углу Эрнста (гл. 7), дает оптимальную чувствительность. [c.298]

    МКМ , благодаря чему УФ-свет в этой области глубоко проникает в микронный слой ПММА с полосой при 215 нм совпадает и максимум спектральной чувствительности слоя ПММА [6]. При контактной печати одномикронных или более тонких слоев ПММА с Л ш = 9-10 и Мш/М = 3,04 и его аналогов па 8102/81 с помощью источника коротковолнового УФ-света, последующем проявлении метилизобутилкетоном, бутилацетатом или быстродействующим целлозольвацетатом (а также смесями этих растворителей с другими) удается получить исключительно высоко разрешенный позитивный рельеф с АЙ = 5, например, с шириной линий 0,6—1 мкм и интервалом между ними 0,3 мкм. Время экспонирования уменьшается на 13%, если поглощающий коротковолновый УФ-свет кислород отдуть азотом. [c.178]

    Исторически главным препятствием внедрения фотохимических процессов в промышленность являлись неудовлетворительные спектральные и энергетические характеристики источников света. Лазеры произвели радикальную революцию в этом вопросе. Доля электрической энергии, превращаемой в лазерных устройствах в полезное излучение, значительно возросла. Для традиционных источников света характерна значительная ширина линий излучения и наличие других, не используемых в данном процессе линий и полос излучения. Это не только приводит к сложностям получения изотопической селективности, но и вызывает подчас нежелательный фотолиз дочерних продуктов. Лазеры предоставляют уникальные возможности для разработки нзотопи-чески селективных пригодных фотохимических процессов. [c.262]

    В работе Коллисона и Мак-Дональда [24] были исследованы водные суспензии, содержащие от 8 до 40% крахмала, и гели, образующиеся при нагревании этих суспензий (80 С). При 35 °С и рабочей частоте 16,1 МГц зарегистрированный сигнал имел форму симметричной гауссовой кривой. В спектре имеется очень узкая линия шириной от 0,4 до 1,35 м. д. на фоне очень широкой полосы (более 1000 м. д.) протонов крахмала. Ширина линии на половине ее высоты имела следующие значения  [c.490]

    К теории ширины линии можно подойти сначала полуколичественно, применяя принцип неопределенности. Конечная ширина полосы поглощения означает, что разность энергий верхнего и нижнего состояний (е" — г ) не определена точно. Это будет в том случае, если время жизни электрона в каждом из этих состояний неопределенно, ибо энергия и время являются сопряженными величинами в соотношении неопределенности Гейзенберга б6 бi /г/2я. Если среднее время жизни электрона в данном состоянии т, то можно определить т с неопределенностью 8t по времени. Тогда соответствующая неопределенность в энергетическом уровне составит по порядку величины бе Ь12пг. Чем стабильнее состояние, тем меньше неопределенность в уровне. [c.204]

    Сверхтонкая структура может быть интересна с кинетической точки зрения [7, 8]. Структура исчезнет и полоса поглощения уступит место одиночной линии, если время слишком мало, чтобы можно было обнаружить различные резонансные линии. Можно представить себе это явление в общих чертах следующим образом. Дублет будет обнаруживаться, если частицы, обусловливающие его, в среднем существуют в течение времени порядка 1/Ау сек, где Av — расщепление дублета, т. е. расстояние между никами в герцах. Если среднее время жизни частицы много меньше этой величины, то она не успеет проявить поглощение излучения во всем интервале частот, и линии сольются. Например, сверхтонкая структура ион-радикала бензофенопа в растворе (стр. 215) исчезнет, если добавить достаточное количество бензофенона. Это значит, что реакция электронного обмена стала настолько быстрой, что в среднем электрон не остается около какого-нибудь протона достаточно долго, чтобы могла наблюдаться линия, характерная для данного протона, и возникающая линия представляет собой среднее для различных окружений. Математическая теория этого явления подобна теории исчезновения мультиплетной структуры спектров ЯМР, и дальнейшее рассмотрение ее будет приведено в следующей главе (стр. 237 и сл.). Если расстояние по частоте между компонентами (которое определяет минимальное время, требуемое для их обнаружения) равно Avo и ширина линии после слияния равна б у, то среднее время жизни для обмена приблизительно составляет б v/4яAvJ [уравнение (11.22)]. Следовательно, в подходящих случаях можно определить константу скорости миграции электрона из одного окружения в другое. Наиболее короткое поддающееся обнаружению время жизни—менее 10 1 сек. [c.208]

    Для такой высокой чувствительности описанные выше методы усиления и регистрации сигнала непригодны. Частота модуляции поля должна быть высокой (10 гц), а амплитуду делают малой, значительно меньше ширины линии, чтобы усилитель мог иметь узкую полосу пропускания с целью максимального исключения шумов. Модулированное поле передвигается по резонансной области путем постепенного изменения постоянного тока, создающего основное поле. Постоянную времени усиливающей системы специально увеличивают для уменьшения шумов для прохождения линии поглощения может понадобиться 10 мин. Маленькая амплитудная модуляция развертки сканирует линию ногло-щения и дает сигнал, пропорциональный ее наклону (первая производная). Сигнал усиливается и выпрямляется фазочувстви-тельпым детектором, и выход постоянного тока записывается самописцем. Форма линии поглощения может быть рассчитана из производной кривой. Описание деталей этого и более совершенных методов можно найти в монографиях [2, 3]. Разрешающая способность хорошего спектрометра ЭПР около 0,03 гаусс (10 гц). Приборы имеются в продаже. [c.211]

    В этой области, будет соответствовать более широкая спектральная полоса, чем ширина линии поглощения атомов, окружающих дугу. В этих условиях центральная часть полосы излучения, испускаемого атомами в дуге, поглощается теми атомами, которые окружают дугу. Этот экстремальный пример самопоглощения, называемый самообращением, может усложнить качественный анализ. Самообращенная линия, такая как показана на рис. 20-20, состоит как бы из двух отдельных линий по каждой стороне от истинного положения эмиссионной линии (сравните эту самообращенную линию с дублетом линий натрия при 589 нм на рис. 19-5). [c.711]

    В межпакетном пространстве довольно подвижной водной фазой [5]. По мере обезвоживания интенсивность этого сигнала в спектре ЯМР 1Л быстро уменьшается с появлением боковых полос. Эти последние свидетельствуют о том, что часть обменных Ь1+-ионов теряет свою подвижность. По расщеплению боковых полос рассчитана константа квадрупольной связи (ККС) и оценен градиент электрет Кого поля в месте расположения ионов лития. Полученные результаты сопоставимы с аналогичными величинами для различных литийсодержа.щи еществ. После вакуумирования при 100°полосы исчезают, а центральный максимум становится асимметричным. Это явление связано с более сильными электрическими взаимодействиями квадруполь-ных моментов ядер с решеткой. Одним из возможных объяснений является внедрение обменных Ь1" -ионов в вакантные октаэдрические позиции структуры. Состояние воды в вёрмикулите отличается от монтмориллонита более прочной связью молекул с поверхностью. Соответственно ширина линий спектров ЯМР значительно выше, чем в монтмориллоните. В последнее время нами получены интересные данные и по ядерному магнитному резонансу в цеолитах и мономинеральных вяжущих. [c.5]

    Условие (13.29) не накладывает ощутимьЕХ ограничений на условия эксперимента. Оно не выполняется лишь при использовании вместо сплошного неразрешенного многолинейчатого спектра (например, водородного) или при наложении на сплошной спектр молекулярного фона с неразрешенной структурой (например, угольная дуга с циановыми полосами). В остальных случаях обычно можно считать, что инструментальная деформация контура линии ведет лишь к перераспределению ноглош,енной энергии по спектру и не меняет эквивалентной ширины линии. Сказанное, конечно, не означает, что любые аппаратные искажения спектра не влияют на измеренные значения эквивалентной ширины. Напротив, такие причины, как рассеянный свет, духи решеток, вуаль при фотографической регистрации и т. д., вносят ошибки в результат и должны быть устранены или учтены. [c.342]


Смотреть страницы где упоминается термин Ширина линий и полос: [c.39]    [c.488]    [c.507]    [c.287]    [c.243]    [c.394]    [c.431]    [c.97]    [c.165]    [c.236]    [c.64]    [c.429]    [c.696]    [c.224]    [c.125]    [c.171]    [c.251]   
Смотреть главы в:

Современная химия координационных соединений -> Ширина линий и полос




ПОИСК





Смотрите так же термины и статьи:

Ширины линий



© 2025 chem21.info Реклама на сайте