Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты классификация

    На основании своей классификации Ш. Жерар предсказал формулу и свойства неизвестного тогда пропилового спирта. Классификация Жерара,— писал А. Кекуле,— имела громад-пое влияние на развитие науки. Отдельные группы, составленные по химическим функциям, и в особенности гомологические ряды, вошли во все позднейшие системы  [c.166]


    Смолы, составляющие 3-ю группу (по классификации Гольде), отделяются из светлых минеральных масел экстракцией 70% спиртом. Они напоминают по своим свойствам растительные смолы. [c.114]

    КЛАССИФИКАЦИЯ МНОГОАТОМНЫХ СПИРТОВ [c.7]

    Содержание остаточных спиртов до 1,0% вследствие использования соответствующих эфиров считается приемлемым. г См. Классификация европейских бензинов по испаряемости . [c.97]

    Состав, строение. Классификация. Жиры — это смесь сложных эфиров глицерина и высших жирных кислот (ВЖК). В образовании сложных эфиров, входящих в состав жиров, могут принимать участие различные высшие жирные кислоты, но из спиртов — только один — глицерин. Поэтому эти эфиры называют глицеридами  [c.169]

    Кроме такой классификации возможна классификация растворителей по признаку их влияния на относительную силу кислот и солей, по их способности изменять соотношение в силе электролитов. По этому признаку растворители можно подразделить на нивелирующие и дифференцирующие. К нивелирующим относят те растворители, в которых кислоты, основания и соли уравниваются по своей силе, или, более осторожно, — растворители, в которых соотношения в силе электролитов, свойственные их водным растворам, сохраняются. К ним относятся прежде всего все растворители, содержащие гидроксильную группу — спирты, фенолы. В дифференцирующих растворителях проявляется значительное различие в силе электролитов, и в частности в силе кислот и оснований. К ним относятся прежде всего растворители, не содержащие гидроксильных групп альдегиды, кетоны, нитрилы и т. д. В этих растворителях соотношение в силе электролитов иное, чем в воде. Обычно такие растворители не являются донорами протонов, но и пе являются хорошими их акцепторами. Дифференцирующим действием могут обладать в той или иной степени все неводные растворители. [c.274]

    Выявление в молекуле определенных атомных группировок (функциональных групп и фрагментов углеродного скелета). Таким образом осуществляется отнесение исследуемого вещества к той или иной группе (классу) органических соединений классификация или групповая идентификация). В зависимости от возможностей метода и природы исследуемого объекта групповая идентификация осуществляется на разных уровнях а) отнесение к классу веществ с очень общей и неполной характеристикой структуры (циклоалкан, олефин, спирт, простой эфир, амин и т. д.) б) определение принадлежности к тому или иному гомологическому ряду (например, ряд бензола, предель- [c.5]

    Встречаясь с бесконечным разнообразием природы, человеческий ум, первоначально, быть может, даже бессознательно, стремится прежде всего объединить сходные предметы или явления, облегчая себе таким образом их дальнейшее понимание. Поэтому первым этапом развития молодой науки является всегда накопление фактов и систематизация опытного материала. Пытаясь произвести такую систематизацию, химики древности и средних веков не делали различия между органическими и минеральными веществами. Свою классификацию они основывали на внешних признаках веществ. Например, солями именовались все бесцветные кристаллические вещества, растворимые в воде. Вместе с настоящими солями сюда попадали янтарная кислота, щавелевая кислота, винная кислота. Маслами считались все густые жидкости сюда причислялись и растительные масла (подсолнечное, хлопковое и др.), и масло винного камня (расплывшееся во влажном воздухе едкое кали), и купоросное масло — название, еще и сегодня употребляемое в технике для концентрированной серной кислоты. Спиртовыми веществами считались летучие жидкости винный спирт, хлорное олово, соляная и азотная кислоты, водный раствор аммиака. Для последнего еще и ныне употребительно название нашатырный спирт . [c.3]


    Развивая бутлеровский подход к гомологии, Ю. А. Жданов рассмотрел это явление в историческом и современном плане Переход от одного гомолога к другому происходит за счет внедрения группы СН2 по одной из ковалентных связей, в которой участвует хотя бы один С-атом. На основе такого подхода дана классификация типов гомологии, в дальнейшем развитая А. П. Терентьевым. Рассмотрим пример этилового спирта  [c.44]

    Спирты. Их строение, классификация, номенклатура. Способы получения, физические и химические свойства одно-атомных спиртов. [c.155]

    Так как описание внутреннего вращения в большой степени зависит от того, я вляется ли волчок симметричным или асимметричным, это учитывается при классификации молекул с внутренними вращениями. Выделяются следующие классы молекулы, представляемые в виде остова, несущего симметричные волчки молекулы, представляемые в виде остова, несущего асимметричные волчки молекулы, представляемые в виде остова, несущего симметричные и асимметричные волчки молекулы, представляемые в виде остова, несущего волчки на волчках (к данному классу принадлежат, например, н-бутан, н-бутиловый спирт и молекулы с более длинной углеводородной цепью). [c.245]

    Учение алхимиков об элементах сульфур (сера—горючесть), Меркурий (ртуть — летучесть), соль (растворимость, нелетучесть) позволило классифицировать вещества по их сходным свойствам. При этом оказались в одной группе такие вещества (спирт и ртуть), которые по всем остальным свойствам коренным образом отличались друг от друга. Это дало повод Р. Бойлю выступить с критикой такой классификации веществ. По его мнению, пет никаких оснований присваивать данному телу название того или иного элемента лишь потому, что оно похоже па него одним каким-либо легко заметным свойством ведь с таким же правом я мог бы отказать ему в этом названии ввиду того, что другие свойства являются разными .  [c.38]

    Классификация спиртов по атомности  [c.527]

    Как известно, окислением называют реакции, связанные с потерей атомом (или молекулой) электронов. Достаточно легко установить происходящие при этом изменения в состоянии окисления реагирующих партнеров для чисто ионных реакций. Однако для превращений ковалентных органических соединений понятия окисление или восстановление далеко не всегда кажутся столь же очевидными. Действительно, если речь идет об окислении первичного спирта в карбоновую кислоту (или обратном процессе), об окислении алкенов в эпоксиды или их превращении в алканы, то ясно, что это все — типичные окислительно-восстановительные реакции. Но уже классификация в тех же терминах таких реакций присоединения по двойной связи, как гидратация или бромирование, и обратных им реакций элиминирования не кажется столь же определенной. Тем не менее и по отношению к подобного рода реакциям можно уверенно использовать понятия окисления и восстановления, если опираться на определенные формальные критерии и принять за начало отсчета степень окисления углерода в алканах (уровень окисления 0). [c.132]

    Сильные водородные связи придают аммиаку диполярный характер, вследствие чего в нем облегчается образование заряженных частиц типа катионов, а также радикал-анионов, анионов и дианионов. Известно, что катионы сольватированы как в протонных, так и в диполярных апротонных растворителях, но по способности соль-ватировать анион эти два типа растворителей заметно различаются. И хотя формально по классификации Паркера аммиак относится к протонным растворителям, значительно большая его способность, чем, например, гидроксилсодержащих растворителей, сольватиро-вать анионные реагенты позволяет считать его, по существу, апро-тонным растворителем. Важно также то, что протонироваться аммиаком могут лишь относительно основные анионные частицы. В случае необходимости кислотность среды может быть увеличена добавлением соединений - доноров протонов, таких как кислые углеводороды, спирты или вода. Все это создает основу для проведения в аммиаке реакций, в которых важную роль играют интермедиаты анионного типа. [c.168]

    Алифатические спирты часто подразделяют на первичные, вторичные и третичные. Эта классификация основана на числе С-атомов, непосредственно связанных с атомом углерода, несущим гидроксильную группу. Табл. 3.1 иллюстрирует эту классификацию на примере спиртов с четырьмя атомами углерода. [c.146]

    Спирты. Классификация. Одноатомные предельные спирты. Изомерия и номенклатура. Способы получения. Физические свойства. Н-связь. Химические свойства. Высшие жирные спирты (ВЖС). Двух-и трехатомные спирты. Получение и свойства. Непредельные спирты. Правило А. П. Эльтекова. Отдельные представители спиртов. УФ и ИК спектры спиртов. [c.169]

    Классификация, гомологический ряд, изомерия и номенклатура предельных одноатомных спиртов. Физические свойства, влияние водородной связи. Способы получения опиртов. [шч90кже [c.190]

    Классификация ПАВ и их применение [7]. По механизму действия на поверхностные свойства растворов ПАВ следует разделить на четыре группы. К первой группе относятся вещества, поверхностно-активные на границе жидкость — газ и прежде всего на границе вода —воздух, но не образующие коллоидных частиц ни в объеме, ни в поверхностном слое. Такими ПАВ являются низкомолекулярные истинно растворимые в воде вещества, например низшие члены гомологических рядов спиртов, кислот и т. п. Понижая поверхностное натяжение воды до 50—30 эрг1см , они облегчают ее растекание по плохо смачиваемым гидрофобным поверхностям в тонкую пленку. Эти вещества также слабые пенообразователи, повышающие устойчивость свободных двусторонних жидких пленок в пене. Поэтому ПАВ первой группы нашли применение во флотационных процессах, в которых пена должна быть неустойчивой, легко разрушающейся. Наиболее широкое применение ПАВ этой группы получили (В качестве пе-ногасителей, резко снижающих устойчивость пены. Пеногасители приобрели значение во всех процессах, где возникновение устойчивых пен нарушает или затрудняет ход процесса, например в т1аровых котлах высокого давления, в промывочных растворах применяющихся в глубоком бурении скважин и др. [c.34]


    Классификация, основанная на представлениях Бренстеда — Льюиса о кислотах, различает протонные и непротонные растворители. Часто ее применяют к растворителям, которые путем автоионизации образуют сольватированный протон, таким, как вода, фтористоводородная кислота, аммиак, спирты с малым молекулярным весом. Однако лучшей разновидностью классификации того же направления служит разделение растворителей ио протофильному характеру. В этом случае различают четыре главных класса растворителей  [c.349]

    Наличие конкретной функциональной группы в составе органических молекул является причиной обшности их свойств, и на этом основана их классификация внутри каждого из рядов. Необходимо отметить, что существенную роль в проявлении конкретной функции играет строение скелета молекулы. Например, гидроксигруппа может быть связана как с алифатическим, так и с ароматическим углеводородным радикалом. В первом случае соединение будет относиться к классу спиртов, во втором — к классу фенолов  [c.274]

    Амины—органические производные аммиака, получающиеся ири замене его водородных атомов на углеводородные радикалы. В зависимости от числа Н-атомов аммиака, замещенных на углеводородные радикалы, различают амины первичные К—МНа. вторичные R2NH, третичные RзN. Эта классификация строится на ином принципе, чем классификация галогенопроизводных, спиртов  [c.323]

    Безусловно, такое деление растворов является чрезвычайно грубым. Внутри каждой группы наблюдается большое качественное разнообразие объектов. В особенности это относится к системам, содержащим полярные компоненты. Взаимодействия между полярными молекулами (для растворов второго типа это взаимодействие А—А, если А — полярная молекула для растворов третьего типа — взаимодействия А—А, В—В и А—В) могут быть чисто ван-дер-ваальсовыми, как, например, взаимодействия между молекулами хлороформа. Но очень часто наряду с ван-дер-ваальсовыми имеются слабые химические (специфические) взаимодействия типа водородной связи, особенности которой были кратко охарактеризованы в гл. XI, 6. Растворы, в которых имеют место специфические взаимодействия, получили- название ассоциированных растворов. По приведенной выше классификации эти растворы могут принадлежать либо ко второй группе (спирт—углеводород, например), либо к третьей (спирт—вода, ацетон—хлороформ). Свойства ассоциированных растворов представляют результат сложного наложения специфических и ван-дер-ваальсовых взаимодействий. В ряде случаев можно говорить об образовании в растворе химических соединений определенного состава, ассоциатов (соединений одинаковых молекул) и сольватов (соединений молекул разного рода). Особое место занимают водные растворы, свойства которых обнаруживают значительную специфику по сравнению с другими системами с водородными связями. Эта специфика, по-видимому, обусловлена тем, что молекулы воды, каждая из которых способна участвовать в четырех водородных связях, образуют подвижную пространственную сетку водородных связей. Представления об образовании молекулами воды ассоциатов определенного состава оказываются непригодными. Более оправданными являются идеи о наличии в воде зародышей квазикристаллических структур разного типа. [c.397]

    Пены, используемые в различных областях, должны иметь различную устойчивость. Так, во флотации, когда производится барботи-роваиие большого количества воздуха через водные растворы ПАВ, содержащие частички руды, образование обильной высокоустойчивой пены нежелательно, поскольку это затруднит дальнейшее выделение из пены ценного минерала. В этом случае используют ПАВ первой группы, но классификации Ребиндера, — слабые пенообразователи, для которых время жизни индивидуальных пузырьков не превышает нескольких десятков секунд. В качестве таких слабых пенообразователей обычно применяют низшие спирты или продукты переработки древесины (сосновое масло). Пена, содержащая флотируемые частицы (так называемая трехфазная пена), обладает более высокой устойчивостью, чем пена без твердых частиц, так что на поверхности флотационного аппарата образуется сравнительно тонкий слой сливок , содержащих довольно высокую концентрацию флотируемого минерала. Периодически удаляя с поверхности эти сливки и затем разрушая пену, получают концентрат данного минерала. [c.283]

    Из неионогенных ПАВ меньшей токсичностью обладают сложные эфиры, жирные кислоты, эфиры высших поли-гликолей или ангидридосорбитов с жирными спиртами, которые в основном относятся к 4 классу токсичности и опасности по ГОСТ 12.1.007. 76. Система стандартов безопасности труда. Вредные вещества. Классификация н общие требования безопасности . Слабо выраженное резорб-тивное действие этих соединений, вероятно, объясняется их большой молекулярной массой, препятствующей быстрому всасыванию. Местными раздражающими свойствами они почти не обладают (17, 18). [c.49]

    На рис. 2 представлены изотермы кажущейся адсорбции ПЭПА и МЭА на синтетическом алмазе. Термин кажущаяся адсорбция мы применили потому, что на поверхности алмаза может адсорбироваться не только амин, но и растворитель (этиловый спирт) и измеряемая на опыте разность в концентрации аминов отражает количественную сторону различной адсорбции аминов и спирта. Настоящие исследования не позволили нам перейти от изотермы кажущейся адсорбции к индивидуальной изотерме растворенного амина. Полученные изотермы по виду относятся к типу I (ПЭПА) и IV (МЭА) классификации Брунауера, Деминга и Теллера [2]. Исследования по обратимости адсорбции показали, что на алмазе имеет место преимущественно физическая адсорбция ПЭПА и МЭА. [c.114]

    Четвертый класс потенциально малоопасных соединений ограничен верхним пределом III класса КВИО — 3, что составляет 0,33 в долях от насыщающей концентрации и соответствует разряду умеренно токсичных соединений по классификации С. Д. Заугольникова (IVB). Подобные концентрации при современной организации производства на практике редко встречаются в воздухе рабочей зоны. Вещества, входящие в этот класс, в основном или малотоксичны, хотя и относительно летучи (этиловый спирт, бензотрифторид, бутилацетат и др.), или малолетучи, хотя и умеренно (мало) токсичны (дитолилметан, окись мезитила, циклогексанон и др.). В производственных условиях острых ингаляционных отравлений соединениями этого класса, как правило, не бывает. Границы двух средних классов—II и III — определены с расчетом отличия от крайних (I, IV) классов примерно на порядок. [c.78]

    Амнны можно рассматривать как нроизводные аммиака, у которого одни, два нлн три атома водорода замещены на алкильные илн арильные грунны подобно тому, как спирты и простые эфнры можно рассматривать аналогичньш образом как нроизводные воды. В зависимосги от числа алкильных илн арильных групп, находящихся у атома азота, амины подразделяются на первичные КМНг, вторичные КгКН и третичные КзК. Следует особо подчеркнуть, что эта классификация отражает только число заместителей у азота и никак не связана с природой заместителя. В первичных, вторичных и третичных аминах алкильные группы могут быть как первичньши, так вторичными и третичными. [c.1604]

    Огромное число полимеров можно подразделить на три основных класса, лежащих в основе принятой сейчас классификации. К первому классу относится обширная группа карбоцепных полимеров, макромолекулы которых имеют скелет, построенный из атомов углерода. Типичш>ши представителями полимеров этого класса можно назвать полиэтилен, полипропилен, полиизобутилен, полиметилметакрилат, поливиниловый спирт и множество других. Фрагмент макромолекулы первого из них имеет следующее строение  [c.19]

    Именно в силу обретения А. собственного теоретич. взгляда на свой предмет главные практич. вклады А. приходятся на 8-12 вв. в арабском мире и на 12-14 вв. в Европе. Получены серная, соляная и азотная к-ты, винный спирт, эфир, берлинская лазурь. Создано разнообразное оснащение мастерской-лаборатории - стаканы, колбы, фиалы, чаши, стеклянные блюда для кристаллизации, кувшины, щипцы, воронки, ступки, песчаная и водяная бани, волосяные и полотняные фильтры, печи. Разработаны операции с различными в-вами-дистилляция, возгонка, растворение, осаждение, измельчение, прокаливание до постоянного веса. Расширен ассортимент в-в, используемых в лаб. практике нашатырь, сулема, селитра, бура, оксиды и соли металлов, сульфиды мышьяка, сурьмы. Разработаны классификации в-в. Впервые описано взаимодействие к-ты и щелочи. Открыты сурьма, цинк, фосфор. Изобретены порох, фарфор. Бонавентура (13 в.) установил факт растворения серебра и золота в царской водке. В трактате Р. Бэкона Зеркало алхимии можно усмотреть неосознанное приближение к правилам стехиометрич. соотношений и принципу постоянства состава. Ему же принадлежит систематизированное описание св-в семи известных тогда металлов. Но успехи прикладного св-ва А. должна разделить с хим. ремеслом. [c.108]


Смотреть страницы где упоминается термин Спирты классификация: [c.645]    [c.317]    [c.440]    [c.103]    [c.35]    [c.299]    [c.246]    [c.342]    [c.58]    [c.102]    [c.412]    [c.187]    [c.465]    [c.55]    [c.8]   
Органическая химия (1974) -- [ c.158 ]

Химия справочное руководство (1975) -- [ c.230 ]

Органическая химия (1964) -- [ c.49 , c.52 ]

Общая органическая химия Том 2 (1982) -- [ c.13 ]

Органическая химия (1956) -- [ c.157 ]

общая органическая химия Том 2 (1982) -- [ c.13 ]

Сырье и полупродуктов для лакокрасочных материалов (1978) -- [ c.12 , c.13 ]

Сырье и полупродукты для лакокрасочных материалов (1978) -- [ c.12 , c.13 ]

Органическая химия (1964) -- [ c.49 , c.52 ]




ПОИСК







© 2025 chem21.info Реклама на сайте