Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды в кислом гудроне

    При действии крепкой, особенно дымящей серной кислоты на дистилляты из ароматических углеводородов получаются сульфокислоты, которые частично остаются в кислом гудроне, а частично растворяются в очищенном продукте. Фенолы могут реагировать с креп й серной кислотой, образуя соответствующие сульфопроизводные, которые переходят в кислый гудрон. [c.209]


    Этот метод применяют для переработки кислого гудрона, получаемого при очистке жидкого и твёрдого парафина, ароматических углеводородов, топлив и масел. Вьщеляющийся при этом диоксид серы можно использовать для получения бисульфита натрия, безводного сульфата натрия или разбавленной серной кислоты с последующей утилизацией её в производстве суперфосфата. Этим методом можно получить и чистую стандартную серную кислоту любой концентрации, вплоть до олеума. [c.350]

    Эта реакция протекает лри обычных температурах. Кислые эфиры серной кислоты реагируют с ароматическими углеводородами при низких температурах, образуя алкилзамещенные углеводороды. При взаимодействии с непредельными углеводородами эти эфиры образуют соответствующие полимеры — густые смолообразные вещества. Кислые эфиры концентрируются в кислом гудроне, содержащем также не растворимые в очищаемом дистилляте продукты реакции серной кислоты с углеводородами и их серо- и кислородсодержащими производными. [c.61]

    Термохимический способ. В подогретую нефть вводят 0,5—2,0°/о различных химических реагентов (деэмульгаторов), например нейтрализованный черный контакт (НЧК), представляющий собой водный раствор кальциевых или натриевых солей сульфокислот, получаемых из отбросных кислых гудронов. К настоящему времени синтезировано большое количество поверхностно-активных веществ (ПАВ), используемых в качестве деэмульгаторов нефтяных эмульсий. По внешнему виду это густые жидкости, мазеобразные или твердые вещества. Деэмульгаторы растворяют в широких фракциях (160—240 °С 170—270 °С) ароматических углеводородов или в метиловом спирте и в виде 40—70%-ных растворов поставляют потребителям. [c.13]

    В нефтяной промышленности давно очищают дистиллятные фракции методом сульфирования некоторых компонентов концентрированной серной кислотой (см. гл. IV). При этом получают неутилизируемый отход — кислый гудрон. Он состоит из не вступившей в реакцию серной кислоты, продуктов сульфирования, окисления, уплотнения ненасыщенных и значительной части ароматических углеводородов, сернистых, кислородных и азотистых соединений. В растворе кислого гудрона сохраняются без изменения химического строения лишь небольшие количества содержавшихся,во фракциях наиболее стабильных сернистых, кислородных и азотистых соединений. [c.130]


    При химической очистке используют реагенты (щелочь, кислоту, водород), химически взаимодействующие с удаляемыми компонентами. Наиболее старыми, но до сих пор используемыми методами являются сернокислотная и щелочная очистки. В процессе сернокислотной очистки из исходного сырья удаляются преимущественно смолисто-асфальтеновые вещества и полициклические ароматические углеводороды. Кислые вещества, остающиеся в очищенном масле после удаления кислого гудрона, удаляют обработкой водным раствором щелочи или контактированием с отбеливающими землями. При гидрогенизационных методах очистки требуемое качество масел достигается химическим преобразованием нежелательных компонентов сырья в углеводороды нужной структуры. [c.253]

    Смолистые вещества в серной кислоте частично растворяются некоторая их часть конденсируется с образованием веществ, подобных асфальтенам из остальной части смол образуются сульфокислоты. Все эти виды смол переходят в кислый гудрон. При сульфировании ароматических углеводородов протекают химические и физико-химические реакции. [c.210]

    Как известно, кислые гудроны в больших количествах получаются при очистке нефтепродуктов (смазочных масел, ароматических углеводородов, растворителей и Др), при производстве поверхностно-активных веществ (контакта Петрова, пасты РАС, НЧК и др.) и в других нефтехимических процессах. [c.72]

    Метод очистки нефтяных дистиллятов сульфированием 96—98%-ной серной кислотой и олеумом известен давно. При обработке сернистого дистиллята 5—20% концентрированной серной кислоты или олеума сульфиды, меркаптаны, тиофены и частично ароматические углеводороды сульфируются. Реакция сопровождается выделением тепла. Образуется так называемый кислый гудрон — раствор смол и сульфокислот в концентрированной серной кислоте. Поскольку серная кислота является одновременно окислителем, меркаптаны и сульфиды подвергаются не только сульфированию, но и окислению с последующим растворением продуктов окисления в кислом гудроне. Протекающие реакции окисления можно представить в виде следующих общих схем  [c.96]

    Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]

    Для сернокислотной очистки осветительного керосина применяется 92—94%-ная серная кислота, для удаления ароматических углеводородов из бензинов-растворителей — 98%-ная кислота или олеум. Температура сернокислотной очистки дистиллятов должна быть как можно ниже повышение температуры от О до 30 °С увеличивает потери с кислым гудроном. [c.320]

    Концентрированная серная кислота (93—98%,-ная) при обычной температуре химически почти не действует на нормальные парафиновые и нафтеновые углеводороды, но они частично растворяются в ней. Поэтому их почти всегда обнаруживают в кислом гудроне. Углеводороды изостроения, содержащие третичный углеродный атом, легко сульфируются концентрированной серной кислотой и образуют сульфокислоты и воду. Ароматические углеводороды при взаимодействии с избытком такой кислоты подвергаются сульфированию с образованием сульфокислот. Как правило, ароматические углеводороды растворяются в концентри-р ованной серной кислоте, причем растворимость их зависит от структуры ароматических углеводородов и концентрации кислоты с повышением концентрации растворимость ароматических углеводородов увеличивается. [c.99]

Рис. 103. Схема установки производства сульфокислот из дизельного топлива и регенерация ароматических углеводородов из кислого гудрона сульфирования. Рис. 103. <a href="/info/866027">Схема установки производства</a> сульфокислот из <a href="/info/78734">дизельного топлива</a> и <a href="/info/1602765">регенерация ароматических углеводородов</a> из <a href="/info/62740">кислого гудрона</a> сульфирования.

    Углеводороды из СМВ имеют плотность более единицы, показатель преломления выше 1,5800 и молекулярный вес порядка 350. Это смесь конденсированных нафтено-ароматических соединений, которые состоят в среднем из менее двух нафтеновых и более двух ароматических колец. Следовательно, это не рафинат, механически увлеченный в кислый гудрон, а продукт, селективно извлеченный серной кислотой из исходного дистиллята. [c.43]

    Ароматические углеводороды бензинов реагируют с серной кислотой, образуя сульфокислоты, которые растворяются в избытке серной кислоты и удаляются с кислым гудроном  [c.291]

    Тяжелые крекинг-дестиллаты, будучи преимущественно ароматикой, реагируют с серной кислотой с образованием сульфокислот. Двух объёмов 96% серной кислоты достаточно, чтобы количественно превратить все ароматические углеводороды крекинг-дестиллатов в сульфокислоты, растворяющиеся в кислом гудроне. Действие 98% серной кислоты на крекинг-дестиллаты показано в табл. 190. [c.400]

    Сульфокислоты моноциклических ароматических углеводородов не растворяются в углеводородах вследствие большого соотношения между числом сульфогрупп и углеродных атомов бензольных колец они представляют собой одноосновные кислоты, полученные из тяжелых бензинов, уайт-спиритов и керосинов. Эти кислоты абсорбируются в массе остаточной кислоты и вместе с продуктами побочных реакций (кислородные соединения и смолы) образуют кислую вяз-ную массу, которая отделяется от непрореагировавших углеводородов и носит название кислый гудрон. [c.228]

    Установка сульфирования ароматических углеводородов из дизельного топлива с целью получения сульфокислот для приготовления моющих веществ (рис. 103) работает непрерывно. Дизельное топливо проходит через три смесителя с серной кислотой и через три промывочные емкости, в которых находится свежая серная кислота или разбавленный спирт (25—30% раствор метанола или этанола). После каждого смесителя и емкости для промывки в главном потоке дизельного топлива устанавливаются по одному отстойнику, где собирается кислый гудрон и водный раствор сульфокислот. [c.231]

    Для фракций, содержащих большое количество непредельных, как это имеет место в продуктах крекинга, методики определения группового химического состава разрабатывались только для бензинов и до сих пор не найдено вполне удовлетворительной методики. Как уже указывалось, основное затруднение представляет присутствие непредельных углеводородов при обработке их серной кислотой они лишь частью удаляются вместе с ароматическими в кислом гудроне, а частью полимеризуются, алкилируют ароматику и т. д., давая высококипящие продукты уплотнения. Для определения их количества и освобождения от них неароматической части, обработанный кислотой продукт подвергают вторичной перегонке, отделяя остаток, кипящий выше температуры конца кипения исходного сырья. Таким путем может быть найдено приблизительно суммарно.е содержание ароматики в непредельных. [c.181]

    Вначале бензин крекинга обрабатывают 96—98%-ной На804 и (после отделения образовавшихся гудронов) 20%-ным олеумом. По-видимому, при этом протекают в основном реакции алкилирования ароматических углеводородов алкенами и реакции образования кислых эфиров этих алкенов, а затем алкилароматические углеводо-,роды сульфируются олеумом. [c.342]

    Выход и состав сульфокислот при сульфировании олеумом отдельных групп ароматических углеводородов, выделенных из фракций различных нефтей, были неодинаковы. Например, при сульфировании легких ароматических углеводородов из фракции 420—500°С нефти месторождения Нефтяные Камни были получены только маслорастворимые сульфокислоты с выходом 100 %, а при сульфировании таких же углеводородов, выделенных из двух других нефтей, наряду с маслорастворимыми образовывались и водоростворимые сульфокислоты, отделяемые с кислым гудроном. Наибольшее количество. маслорастворимых сульфокислот получается из легких ароматических углеводородов. Тяжелые ароматические углеводороды при сульфировании полностью превращаются в водорастворимые сульфокислоты, а из средних ароматических углеводородов образуются почти одинаковые количества, масло- и водорастворимых сульфокислот. [c.73]

    После сульфирования ароматических углеводородов смесь парафина с кислым гудроном поступает из мешалки 21 в емкость 22 для предварительного отделения кислого гудрона от парафина. Парафин с верха емкости 22 подают в электроразделитель 23 для дополнительнвго. отделения кислого гудрона. Парафин, со следами кислого гудрона направляют через смеситель 42 в электроразделитель 41. В поток кислого парафина перед смесителем 42 подают циркулирующий раствор щелочи. Щелочные отходы периодически выводят с установки (на"рисунке не показано). Нейтрализованный парафин со следами про- дуктов нейтрализации поступает из алектроразделителя 41 через смеситель 40 в емкость 39, куда одновременно подают паровой конденсат для отмывки парафина. Воду с низа отстойника сбрасывают в канализацию. Влаж-.  [c.117]

    Утилизация кислых гудронов. Процесс сернокислотной очистки парафина является высокоэффективным только при условии регенерации кислого гудрона. Одним из серьезных препятствий для широкого внедрения атого процесса была невозможность утилизации отходов очистки - кислого гудрона и продуктов нейтрализации. Кислый гудрон, получаемый при деароматизации кидкйх парафинов, представляет собой жидкую массу рт темно-коричневого до черного цвета с запахом сернистого ангидрида. Он состоит из непрореагировавшей серной кислоты, нерастворимых в парафине продуктов реакции серной кислоты с углеводородами (главным образом с ароматическими углеводородами и кислородными, азотистыми и сернистыми соединениями), а также из увлеченного парафина. Состав кислого гудрона, образовавшегося после очистки олеумом жидких парафинов(которые были получены на установке карбамидной депарафинизации) и денормализации на цеолитах, приведен ниже  [c.221]

    Очистку нефтяных фракций серной кислотой проводят для удаления из них непредельных, серо-, азотсодержащих и смолистых соединений, которые обусловливают малую стабильность топлив при хранении, нестабильность цвета и ухудщают некоторые эксплуатационные свойства. В обычных процессах очистки серная кислота не действует на парафиновые и нафтеновые углеводороды. Однако почти всегда в побочных продуктах процесса (кислых гудронах) эти углеводороды обнаруживаются, так как в присутствии сульфокислот и кислых эфиров серной кислоты эти углеводороды образуют эмульсии, увлекаемые продуктами очистки. Ароматические углеводороды не одинаково легко подвергаются сульфированию. Степень их сульфирования зависит от расположения алкильных групп. Трудность сульфирования ароматических углеводородо1в возрастает с увеличением длины и числа боковых цепей. Полициклические иафтено-ароматические углеводороды подвергаются сульфированию при большом расходе кислоты. [c.60]

    Прежде дистилляты очищали от серосодержащих соединений в основном избирательными растворителями и серной кислотой. В качестве побочных продуктов получали большое количество высокосернистых экстрактов и кислых гудронов. При этом вместе с серой удалялась органическая часть молекул серосодержащих соединений. В результате выход целевых продуктов снижался этрму также способствовал переход в экстрактную фазу других компонентов, главным образом ароматических углеводородов. За последние 20 лет широкое распространение получили каталитические процессы гидроочистки, особенно гидрообеосеривание светлых прямогонных дистиллятов бензиновых, керо1СИ1Новых и дистиллятов дизельного топлива. Необходимый для этих процессов водород поставляется с установок каталитического риформинга и реже — с водородных установок. [c.261]

    Сырьем для производства контакта Петрова служат керосино-газойлевые фракции, содержащие от 20 до 40% ароматических углеводородов, так как именно ароматические углеводороды наиболее легко сульфируются с образованием сульфокислот. Как обычно, при сульфировании нефтепродуктов образуется два слоя верхний — кислое масло, нижний — кислый гудрон. Высокомолекулярные ароматические сульфокислоты, которые и являются целевым продуктом процесса, хорошо растворяются в кислом масле, а затем, после разделения кислого масла и кислого гудрона, экстрагируются из кислого масла нресной водой. [c.390]

    Опыты по изучению осветляющих свойств башкирских природных сорбентов были проведены на примере жидких парафинов с установки "Парекс", полученных без стадии олеумной очистки (десорбат), с содержанием ароматических углеводородов 1-3%. Олеумная очистка сопряжена с образованием трудноутилиэируемого кислого гудрона. Предварительные результаты, приведенные в табл. 2, показывают, что высокоэффективная по показателю цветности очистка может быть осуществлена с использованием исследуемых природных минеральных сорбентов как в статическом, так и в динамическом режимах. [c.104]

    В эти же годы на заводе построены две установки Парекс по производству нормальных парафинов (жидких парафинов), каждая из которых обеспечивает переработку 650-700 тыс.т/год дизельного топлива с получением при этом до 120 тыс.т/год нормальных парафинов Очистка их до требуемых качеств стандарта по содержанию ароматических углеводородов производится олеумом. В процессе очистки получается так называемый кислый гудрон. Для его утилизации, во избежание зафязнения окружающей среды, в восьмидесятые годы были введены в эксплуатацию две установки регенерации кислого гудрона (У ПС К в 1981 г. и УПСК-[ в 1988 г.) с получением серной кислоты и олеума. Олеум возвращается в процесс очистки нормальных парафинов, что обеспечивает безотходное про- [c.5]

    Важнейшими параметрами при очистке нефтепродуктов серной кислотой являются концентрация и количество кислоты, температура, интенсивность перемешивания и эффективность удаления кислого гудрона. Изменяя эти параметры, можно получать различные результаты очистки. Под действием серной кислоты алканы могут растворяться, сульфироваться, окисляться или алкилироваться [14]. Цикланы могут вступать в такие же реакции, но, кроме того, могут дегидрироваться до ароматических углеводородов и конденсироваться с алканами. Однако при обычно применяемых условиях кислотной очистки ни алканы, ни цикланы не вступают в сколько-нибудь заметное взаимодействие с кислотой. Ароматические углеводороды сульфируются сравнительно легко, но их реакционная способность изменяется даже в пределах одного гомологического ряда и зависит от многих других условий. Алкены под действием коццентрированной серной кислоты очень легко нолимеризуются и этерифицируются, а диены реагируют чрезвычайно энергично даже со слабой кислотой. [c.109]

    Кислые гудроны (КГ) получают при производстве сульфонатных присадок, при сульфировании и очистке масел, парафинов, керосино-газойлевых фракций и других нефтепродуктов от ароматических углеводородов. Они представляют собой высоковязкие смолообраэные массы разной степени подвижности, в состав которых входит от 4 до 85% серной кислоты, 8-97% органической массы и от следов до 37% воды. Перспективно несколько методов их утилизации. [c.257]

    Как видно из приведенных данных, выход углеводородов из СМВ несколько выше при экстракции, чем при хроматографии, и составляет 50%. Эти углеводороды имеют плотность больше единицы и высокий показатель преломления. Из физической характеристики углеводородов из СМВ вытекает их структурно-групповой состав, определенный по Хезельвуду [14]. Это полициклические нафтеноароматические углеводороды с содержанием более 4 колец в молекуле, в том числе 2,35 ароматических. Доля углерода в парафиновых цепях не превышает 27%. Если исходить из предположения, что все кольца соединены между собой только через алифатические цепи и имеют, кроме того, алкильные цепи, то средний молекулярный вес этих углеводородов, рассчитанный по структурно-групповому составу, составлял бы 490. Эта величина значительно отличается от экспериментально найденной —355... Такой сравнительно низкий молекулярный вес может соответствовать только соединениям с общими углеродными атомами в циклических структурах. Следовательно, рассматриваемые структуры являются высококонденси-рованными. Подобные ароматические структуры обнаружены Л. Г. Жердевой и Ф. Г. Сидляронком [51 при исследовании состава экстрактов селективной очистки масел. Полученные данные о природе углеводородов из СМВ масляных кислых гудронов согласуются с данными опыта Н. И. Черножукова и К- А. Щегровой [81 по выяснению изменения углеводородного состава дистиллята трансформаторного масла по мере обработки его возрастающим количеством серной кислоты. Показано, что обработка серной кислотой эффективно извлекает из исходного дистиллята смолы и полициклические нафтено-ароматические и ароматические углеводороды. Подобные результаты получены [151 при очистке легкого машинного дистиллята серной кислотой. [c.39]

    К наиболее массовым крупнотоннажным жидким отходам относятся кислые гудроны. Они образуются при очистке серной кислотой масел, жидких и твердых парафинов, ароматических углеводородов, при получении сульфонатных присадок на стадии сульфирования и при некоторых других процессах. В процессе сернокислотной очистки в кислый гудрон частично увлекаются очищаемый продукт и серная кислота. Наличие последней затрудняет хранение и транспортирование гудрона. Вследствие сложного химического состава, разного содержания серной кислоты и разнообразия органических примесей эффективные и экономичные методы переработки кислых гудронов до сих пор птсутствуют. Поэтому на многих предприятиях кислые гудроны после нейтрализации щелочными отходами, аммиаком или известковым молоком направляют в пруды-накопители, где они не только загрязняют почву, но и окружающий воздух (диокси- [c.55]

    Как известно, концентраты высокомолекулярных ароматических углеводородов в виде экстрактов селективной очистки масел находят рациональное использование в двух направлениях в качестве пластификаторов каучука и резины и в качестве сырья для производства сажи. Высококипящие нефтяные фракции, богатые ароматическими углеводородами, применяются для маслонаполненного каучука [10]. Зарубежные фирмы вырабатывают из масляных кислых гудронов пластификаторы, так называемые нафтолены. Нафтолены используются в качестве пластификаторов и мягчите-лей каучука и резины [16], а также в качестве растворителей при пластификации поливинилхлорида [12] состав и способ производства этих пластификаторов не приводятся. [c.42]

    Кислый гудрон, получаемый при очистке ароматических углеводородов (в процессе пиролиза), используется для выработки суррогата растительной олифы (лакойля). К такому кислому гудрону добавляют полимеры, получаемые в качестве остатка после отгона выщелоченных ароматических углеводородов, а для ускорения высыхания пленки — головные фракции ректификации бензола. [c.371]

    Опыты показывают, что два или три объема 94—98% серной кислоты количественно удаляют из бензинов все ароматические углеводороды. Дымящая серная кислота, даже с небольшим содержанием серного ангидрида, не может применяться, так как она энергично реагирует с другими классами углеводородов, особенно с нафтеновыми углеводородами, поэтому при определении ароматики с дымящей серной кислотой получается неверный результат анализа. Негш-сыщенные углеводороды реагируют с серной кислотой разными путями, давая эфиры серной кислоты, спирты, полимеры и смолы. Эти реакции будут подробно рассмотрены в главе шестой. Часть образовавшихся растворимых в серной кислоте продуктов (сульфокислоты) удаляется с кислым гудроном. Другие продукты реакции серной кислоты и ненасыщенных углеводородов (диалкилэфиры и полимеры) нерастворимы в серной кислоте и остаются в обрабатываемом бензине. Температура кипения этих соединений выше конца кипения исходного бензина. Поэтому образовавшиеся высококипящие продукты могут быть выделены при перегонке бензина до той же температуры, до которой он перегонялся перед обработкой. Остаток от перегонки состоит из высококипящих продуктов, образовавшихся в результате обработки ненасыщенных углеводородов серной кислотой. Некоторые димеры могут кипеть в пределах исходного бензина, например, димеры бутиленов или амиленов, но они могут полимер1изоваться и дальше в высококипящие полимеры. Если полимеризация олефинов в высококипящие полимеры проходит полностью, то йодное число обработанных серной кислотой и перегнанных бензинов должно быть равно нулю. [c.292]

    Все выбросы НПЗ можно разделить на массовые и немассо-вые. Внимание производственников и инспектирующих органов по охране природы в основном сосредоточено на наиболее опасных и массовых выбросах и отходах производства, определяющих санитарно-гигиеническое состояние среды вокруг НПЗ. К таким выбросам относятся оксид углерода, диоксид серы, сероводород, оксиды азота, углеводороды, фенол, аммиак, минеральные соли, сточные воды, отработанные глины, шламы, ил и нефтегрязь. Для отдельных заводов (в зависимости от специфики их производства) массовыми загрязнителями могут быть жирные кислоты и спирты, кислые гудроны, органические и неорганические растворители, кислоты, органические соединения серы, пылевидная сера, ароматические углеводороды, ката-лизаторная пыль и др. Для других заводов эти выбросы могут быть немассовыми. [c.13]

    Деароматизация и обессеривание серной кислотой имеют ограниченное применение из-за больших отходов производства — кислого гудрона. Проблема обессеривания [3, 4, 5, 7,] и Деароматизации легких нефтяных фракций проще решается применением диэтиленглнколя. Преимуществом диэтнленгликоля как растворителя [1, 2] является его высокая селективность в отношеш и ароматических углеводородов, отсутствие токсичности н корродирующего действия на аппаратуру, нелетучесть и безопасность его в пожарном отношении. [c.172]

    В производстве контакта IIeтpoila путей сульфирования керосиновой фракции нефти (керосина) контактныи газон с содерханиен серного ангидрида 7 % об.содержание ароматических углеводородов снижается с 20 25 56 до 7-10% и образуется значительное количество водорастворимых сульфокислот (В , ),называемых кислым гудроном.При нейтрализации аммиаком этих кислот получается нейтрализованный черный контакт <НЧК).В связи с ограниченностью спроса на НЧК он является малоценным продуктом,ограничивающим выпуск контакта Петрова в снижающим эффективность процесса. [c.38]

    Нефтегазохимическая схема на практике не проверялась, но по отдельным ее элементам были проведены испытания во ВНИИНП и НИИ-100 на искусственных смесях, состоящих из бензина, ароматических углеводородов, спиртов и т. п. в соотношениях, получающихся при использовании РКГ. В лабораторных условиях проверено использование для извлечения меди слабой На304, полученной при отмывке водой кислого гудрона, что может сделать рациональным очистку нефтяных дистиллатов серной кислотой. [c.20]


Смотреть страницы где упоминается термин Ароматические углеводороды в кислом гудроне: [c.466]    [c.138]    [c.114]    [c.214]    [c.370]    [c.67]    [c.6]    [c.154]    [c.155]    [c.41]    [c.7]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Гудрон

Регенерация ароматических углеводородов из кислого гудрона



© 2025 chem21.info Реклама на сайте