Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции замещения производных кислот

    Химические свойства. Фуран, его гомологи и производные обладают ароматическими свойствами, однако фурановое кольцо не имеет такой прочности, как бензольное или некоторые другие гетероциклические кольца. Почти не изменяясь от ш,елочей, он легко разрушается сильными кислотами и окислителями. Для него характерны реакции замещения, но при соблюдении определенных условий. Например, азотная кислота разрушает фуран, поэтому прямое его нитрование невозможно. Применяют более мягкий нитрующий реагент — ацетилнитрат (образуется при смешении уксусного ангидрида с азотной кислотой) в пиридиновом растворе [c.415]


    В качественном и количественном анализе карбоновых кислот используют их кислотные свойства. Для получения производных важны реакции замещения водорода или гидроксила в группе -СООН. [c.256]

    Производные углеводородов. Радикалы и функциональные группы. Реакции замещения. Спирты, простые эфиры, альдегиды, кетоны, карбоновые кислоты, сложные эфиры, амины, аминокислоты. Пептидные связи, пептиды и белки. [c.263]

    Способы получения некоторых кислот фуранового ряда были рассмотрены ранее в различных разделах книги. Так например, синтезы фурилакриловой кислоты и ее эфира посредством конденсации фурфурола с уксуснокислым натрием по Перкину, с этиловым эфиром уксусной кислоты, с малоновой кислотой, а также получение диэтилового эфира фурфурил и денмалоновой кислоты приводятся в разделе 2, посвященном конденсации фурановых альдегидов и кетонов. Там же во вводной части указаны другие случаи конденсации подобного типа. В том же разделе содержится синтез пирослизевой кислоты из фурфурола по реакции Канниццаро. В разделе 3, Реакции замещения , можно найти синтез галоидо,-нитро- и т. д. замещенных в ядре производных пирослизевой кислоты. [c.157]

    Таким образом объясняется особая легкость восстановления кислот этого типа, я также причина того, что реакция идет не в согласии с правилом Марковникова, т. е. что галоид галоидоводорода (или гидроксил в случае гидратации) присоединяется к более гидрогенизированному атому углерода, всегда образуя р-замещенные производные кислот. [c.403]

    Реакция замещения диазогруппы на арил находит успешное применение в открытом Пшорром (1896) общем методе синтеза производных фенантрена. При конденсации о-нитробензальдегида с фенилацета-том натрия (или его производными) и уксусным ангидридом по Перкину образуется главным образом г с-а-фенил-о-нитрокоричная кислота. Последнюю превращают в амин, а затем в диазониевую соль, которая под каталитическим действием порошкообразной меди отщепляет азот и хлористый водород и с замыканием кольца образует фенантрен-9-карбоновую кислоту. [c.264]

    Каталитическое действие оказывают третичные амины, анион ОН, например, в реакциях замещения производных кислот типа [c.443]

    А. Реакции замещения производных кислот [c.478]


    В. реакции замещенных производных мочевины с ангидридами карбоновых кислот [c.359]

    В. РЕАКЦИИ ЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ МОЧЕВИНЫ С АНГИДРИДАМИ КАРБОНОВЫХ КИСЛОТ [c.383]

    Бензол и ряд его гомологов, а затем и большая группа других соединений вскоре после их открытия были выделены в группу ароматических соединений, так как обладали особыми, ароматическими свойствами. Вопрос о причинах этих свойств почти со времени создания Бутлеровым теории химического строения — один из важнейших в теоретической органической химии. Главное затруднение было в том, что формула бензола указывает на высокую ненасыщенность, которая не обнаруживается в реакционной способности этого соединения. Бензол не обесцвечивает бромную воду, не окисляется раствором перманганата, не присоединяет серную кислоту. Лишь в особых и достаточно жестких условиях можно провести реакцию между бензолом и бромом, серной или азотной кислотой, причем в результате этих реакций происходит замещение атомов водорода, а не присоединение, характерное для олефинов. Другая особенность, отличающая ароматические соединения от олефинов,— их высокая устойчивость, способность образоваться даже в жестких пиролитических процессах и сравнительная трудность протекания реакций окисления. Наконец, весьма характерными являются свойства некоторых производных ароматических соединений. Так, ароматические амины менее основны, чем алифатические. При реакции с азотистой кислотой [c.12]

    Изучение различных радикальных реакций с участием низших алканов служит основой для моделирования механизма процессов превращения сложных алканов. Это обусловлено тем, что, начиная с некоторой длины цепи радикала или молекулы, кинетические и термодинамические характеристики однотипных реакций замещения, присоединения или распада практически слабо зависят от природы радикалов. Аналогичная картина наблюдается для процессов с участием сложных соединений других классов (галоген-производных, спиртов, альдегидов, кетонов и кислот). [c.214]

    Многочисленные винильные производные ароматических углеводородов получены декарбоксилированием соответствующих замещенных коричных кислот. Этот синтез основан на реакции [c.11]

    Реакции замещения гидроксила в карбоксиле (образование производных карбоновых кислот). Гидроксильная группа в карбоксиле кислот может быть замещена различными атомами или груп- [c.157]

    К их числу относится прежде всего то, что фуран и его производные-с электроположительными заместителями при ядре (в том числе гомологи, фурана) весьма чувствительны к действию минеральных кислот и окислителей. Поэтому реакции замещения, при которых используются или в условиях опыта образуются подобные реагенты, протекают обычно плохо, вследствие побочных процессов расщепления цикла. Наоборот, наличие при цикле, особенно в а-положении, электроотрицательной группы (например, карбоксильной, карбалкоксильной, карбонильной и др.) стабилизирует фурановый цикл, и такие производные фурана образуют с вполне удовлетворительными выходами продукты замещения даже при действии энергичных реагентов, в том числе и сильных минеральных кислот. [c.73]

    Многие процессы замещения протекают в живых организмах. В то время как в лабораториях химики в качестве уходящих групп часто используют галогепиды и производные серной кислоты, в организме человека реакции замещения протекают с другими уходящими группами. Среди наиболее часто встречающихся в живых системах уходящих групп — фосфатная группа 0Р(0)(0Н)2. Ниже показан гидролиз фосфорного эфира  [c.182]

    Хорошими примерами являются нитрование коричной кислоты и реакции замещения производных М-окиси пиридина. Орто- и пара-положения в коричной кислоте несомненно более положительны, чем жета-положение, вследствие резонансных взаимодействий карбоксильной группы с соседней сопряженной системой. К этому выводу приводят как теория МО [28], так и рассмотрение резонансйых структур [c.43]

    В первой части доклада будут рассмотрены реакции производных кислот трехвалентного фосфора с предельными галогеннесодержащими органическими соединениями спиртами, их простыми и сложными эфирами, а-окисями реакции с гидронерекисными и перекисными соединениями реакции с карбоновыми и фосфорсодержащими кислотами, азот- и серусодержащими соединениями, представляющие собой реакции нуклеофильного замещения. Во второй части доклада рассмотрены реакции присоединения производных кислот трехвалентного фосфора к галогеннесодержащим органическим соединениям по кратным связям предельным и ненредельным альдегидам и кетонам, дикарбонильным соединениям, ненредельным карбоновым кислотам и их производным, непредельным углеводородам. [c.17]


    ЧТО присутствие в молекуле ангидрида объемистой группы приводит к стерическому отталкиванию в модели перпендикулярного переходного состояния . С помощью этого переходного состояния можно также объяснить реакционную способность лактонов, если принять во внимание различия в электростатическом отталкивании от диполя свободной пары атома кислорода в лактонах и в эфирах с открытой цепью. В этой связи важное значение имеет поведение вещества VIII. Оно реагирует в десять раз быстрее, чем обычные эфиры, несмотря на полное блокирование с противоположной по отношению к карбонильной группе стороны. Эти данные показывают, что для рассмотренных реакций очень важна доступность тс-электронов. Наконец, наличие внутримолекулярной стадии гидролиза фталамино-вой кислоты — превращения фталаминовой кислоты во фталевый ангидрид (87, 88] (см. раздел V, А) — служит стереохимическим доказательством образования переходного состояния путем подхода нуклеофильного реагента к тс-электронам в направлении, перпендикулярном к плоскости карбонильной группы. В этом случае нуклеофильная атака протонированного амида о-кар-боксильным ионом невозможна, так как обе группы не могут лежать в одной плоскости (плоскости бензольного кольца). С другой стороны, атака на тс-орбиту очень удобна, как показано формулой IX, и реакция протекает чрезвычайно легко. Эти экспериментальные данные согласуются между собой и наиболее удовлетво- рительно объясняются с помощью предположения о перпендикулярном подходе нуклеофильного реагента к карбонильному атому углерода при образовании переходного состояния в бимолекулярных реакциях замещения производных ку)боновых кислот. [c.28]

    Так как в фурановом ядре дибензофурана не имеется способных замещаться водородных атомов, реакции замещения этого, соединения являются реакциями бензольного производного. При обработке растворенного в четыреххлористом углероде дибензофурана эквимо.пярным количеством хлорсульфоновой кислоты нри 25° в течение 1 часа получилась с выходом 89% сульфокислота, выделенная в виде ее натриевой соли [854]. Указывается, что свободная кислота получена нодкислением раствора соли и охлаждением. Так как полученный таким образом продукт плавился выше 300°, то сомнительно, чтобы это в действительности была свободная кислота. Указанное ниже строение этой сульфокислоты подтверждается переводом ее через сульфохлорид и сульфиновую кислоту в меркурхлорид. [c.130]

    В приведенных таблицах перечислены известные сульфохлориды— производные важнейших ароматических соединений. Реактив I означает пятихлористый фосфор или, реже, хлорокись фосфора II — хлорсульфоновую кислоту III—один из прочихметодов синтеза, включая вышеупомянутые реакции замещения. Ссылки, относящиеся к этим последним, приведенные в тексте, не повто- [c.278]

    Трополон об.ладает ярко выраженным ароматическим характером. Это явствует, в частности, из того, что, подобно бензолу и его производным, он очень легко вступает в реакции замещения. Так, при действии брома он образует трибромзамещенное соединение, при действии азотистой кислоты — нитрозотрополон, а при действии азотной кислоты — нитротрополон с солями феиилдиазония он сочетается с образованием фенилазотрополона. [c.915]

    Разработаны высокоэффективные методы синтеза новых 2-амино-5-замещенных 1,3,4-тиадиазолов на основе арилтио-, арилсульфонилуксусных и пропионовых кислот, определены спектрофотометрическим методом их константы ионизации. Экспериментально установлено, что в растворах 2-амино-1,3,4-тиадиазолы на основе сульфонил-пропионовых кислот имеют место неизученные до сих пор взаимодействия с гидроксильными i pynnaMH щелочей, спиртов и воды. Изучены реакции ацилирования 2-амино-5-замещенных 1,3,4-тиадиазолов хлорангидридами сульфо- и карбоновых кислот. Продолжено изучение синтетических возможностей бифункциональных ангидридов замещенных сульфокарбоновых кислот. Использование различной реакционной способности хлорангидридной и сульфохлоридной группы в реакциях ацилирования гетероциклических аминов и аминов, содержащих такие функциональные группы, как -СООН, -ОН, и др. открывает путь к новым сложнозамещенным производным сульфоновых кислот. [c.51]

    На стадии 2 электрофилом является протон. Почти во всех реакциях, рассматриваемых в данной главе, электрофильная атака происходит либо атомом водорода, либо атомом углерода. Отметим, что стадия 1 точно соответствует стадии 1 тетраэдрического механизма нуклеофильного замещения у карбонильного атома углерода (т. 2, разд. 10.9), поэтому можно ожидать, что замещение будет конкурировать с присоединением. Однако такое встречается редко. Если А и В — это Н, К или Аг, то субстрат представляет собой альдегид или кетон, а они почти никогда не вступают в реакции замещения, так как Н.КиАг — очень плохие уходящие группы. В случае кислот и их производных (Б = ОН, ОК, ЫНг и т. д.) присоединение происходит редко, так как перечисленные группы представляют собой хорошие уходящие группы. Таким образом, в зависимости от природы [c.322]

    Аммиак, а также первичные и вторичные амины присоединяются к изоцианатам, давая замещенные производные мочевины [46]. Из изотиоцианатов получаются производные тиомочевины. Это прекрасный метод синтеза мочевин и тиомоче-вин, и такие соединения часто используются как производные первичных и вторичных аминов. Изоциановая кислота HN O также вступает в реакцию, хотя обычно используются ее соли, например NaN O. Знаменитый синтез мочевины по Вёлеру — это присоединение аммиака к солн из циановой кислоты [168]. [c.347]

    Эта реакция особенно важна для производных малоновой кислоты, например НООС—СКг—СООН, при декарбоксили-рованин которых получаются замещенные уксусные кислоты (СНКзСООН). [c.167]

    Используя широкие синтетические возможности фурана, разработан ряд интересных препаративных реакций. Обнаружена уникальная реакция отщепления фуранового цикла, позволяющая получать эфиры замещенных салициловых кислот и 2-гидроксиацетофенонов из фурилциклогексенонов. На основе реакции отщепления фуранового цикла получены производные бензотиазина из соответствующих орто-изотиоционатов арилдифурилме-танового ряда. [c.31]

    Тиофен устойчив к нагреванию. По многим свойствам он очень напоминает бензол, но отличается от последнего сравнительно легкой окисляемостью при реакции с хлорноватистой кислотой, азотной кислотой и др. В этом отношении тиофен похож на фу-рановые соединения. Ароматический характер тиофена проявляется в различных реакциях замещения. Соблюдая некоторые предосторожности (разбавление инертными растворителями, охлаждение), действием хлора и брома можно получить а-галоид-производные тиофена. При нитровании и сульфировании в мягких условиях образуются соответственно а-нитротиофен и а-суль-фотиофен. [c.584]

    Ацильная группа. Может быть использовано любое производное кислоты, но обычно применяют ангидриды или хлорангидриды. Для получения максимальных выходов, кетонов необходимо брать по крайней мере I экв хлористого алюминия при реакции с ацилгалогенидами или 2 экв при реакции с ангидридами. Аци-лирующий агент является объемным, слабо электрофильным и потому весьма селективным по своей ориентационной способности. Таким образом, предпочтительным направлением замещения является замещение в лй зй-положение, и поэтому циклы, деактивированные в этом положении, как, например, ацетофеноны, производные ароматических кислот, бензонитрилы, нитробензолы, хинолины, пиридины и подобные им соединения, ацилировать не удается. Галогенангидриды кислот склонны к выделению в присутствии хлористого алюминия окиси углерода, если остающаяся часть алкильной группы представляет собой стабильный катион. [c.122]

    Сольволитические методы составляют самую большую группу зметодов синтеза сложных эфиров, поскольку все производные кислот так или иначе способны к взаимопревращениям. По уменьшению относительной реакционной способности эти производные располагаются в следующий ряд хлорангидрид > ангидрид кислоты > > сложный эфир > амид, нитрил > соль. Можно ожидать, что сложные эфиры, находящиеся в середине этого ряда, легко будут образовываться из хлорангидридов или ангидридов кислот, существовать в равновесии с другими эфирами (в условиях кислотного катализа) и с несколько большим трудом образовываться из амидов и солей. Получение эфиров из солей облегчается, если при этом происходит выделение или осаждение нерастворимой неорганической. соли. Короче говоря, сложные эфиры могут быть получены из кислот (реакция этерификации), а также из соединений пяти других приведенных выше типов. Кроме того, для синтеза сложных эфиров можно применять и другие исходные вещества, например ке-тены — соединения, родственные ангидридам, и 1,1,1-тригалоген-замещенные или -дигалогензамещенные простые эфиры, имеющие ту же степень окисления, что и сложные эфиры. Единственным в своем роде методом получения является рассмотренный пример Т1ир0лиза медных солеи (разд. А. 12), при котором происходит необычная ориентация. [c.282]

    Опубликован обзор сольволитических методов 12]. Кислоты и их производные обладают самыми различными активностями, что ограничивает число общих методов синтеза, хотя два из них можно вьщелить -из хлорангидридов кислот и аммиака или аминов (разд. А.2) и из кислот и аминов в присутствии карбодиимида (разд. А.1). Третьим, весьма привлекательным методом является реакция замещенного амида натрия (RNHM) со сложным эфиром (разд. А.4). [c.384]

    Тианафтен легко вступает в реакции замещения водорода металлами. Натрий или амид натрия взаимодействует с тианафтеном в ксилоле или этиловом эфире, образуя 2-натрий- и 2,3-динатрий-производные. Карбоксилирование приводит к соответствующей карбоновой кислоте (уравнение 83). Реакция транс-замещения металлом с применением бутиллития также дает соответствующее 2-литиевое производное. Взаимодействие с этилмагний-бромидом ведет к образованию 2-тианафтенмагнийбромида. [c.292]

    Стадией, определяющей скорость реакции Гофмана, является, повидимому, отщепление иона галоида от галопдамидиого аниона. К этому выводу приводит количественное изучение влияния м- и л-заместителей на скорость перегруппировки производных бензамида [9]. Так, например, заместители У, способствующие отталкиванию электронов от карбонильной группы (иапример, метил и метоксил, которые уменьн1ают силу соответствуюн их замещенных бензойных кислот), благоприятствуют перегруппировке  [c.257]

    Из замещенных производных левулиновой кислоты по той же схеме образуются -аминокислоты. Исключением пз правила о преимущественном образовании ациламинокислот является реакция с а, Р-ненасыщенным кетоном, бензальацетоном, в результате которой удалось выделить только N-метиламид коричной кислоты [11]. Повидимому, в этом случае тенденция к образованию N-винилзамещенного ацетамида отсутствует  [c.301]


Смотреть страницы где упоминается термин Реакции замещения производных кислот: [c.478]    [c.21]    [c.114]    [c.299]    [c.406]    [c.278]    [c.77]    [c.101]    [c.162]   
Смотреть главы в:

Основы органической химии -> Реакции замещения производных кислот

Основы органической химии 1 Издание 2 -> Реакции замещения производных кислот

Основы органической химии Часть 1 -> Реакции замещения производных кислот




ПОИСК





Смотрите так же термины и статьи:

Кислоты, производные в реакции

Реакции замещения



© 2025 chem21.info Реклама на сайте