Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность и сопряжение

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    На рис. У-З и У-4 приводятся два вида системы углеводород — растворитель. Рис. У-З показывает изменения системы [64, 65 , в которой ни один из углеводородных компонентов не смешивается полностью при данной температуре это типично для многих систем, содержащих нафтены, алканы и селективный растворитель [66]. Область, в которой сосуществуют обе фазы, ограничена линиями аЬ и сд,-, эти линии дают соответственно составы, при которых фаза растворителя (экстракт) и углеводородная фаза (рафинат) разделены. Составы, нри которых фазы находятся в равновесии, соединяются связующими линиями еЬ, е Ь и е"Ь" Самым простым методом построения связующих линий, является анализ сопряженных фаз всей концентрационной области. Разработаны различные методики определения, которые облегчают анализ [67—69]. [c.276]

    Рассмотрим влияние энергетического сопряжения на результирующий перенос массы и селективность мембранного процесса в стационарных условиях [1]. Для анализа введем следующие комплексы феноменологических коэффициентов из уравнения (1.7)  [c.18]

    Таким образом, селективность, сопряжение и управление строением тесно взаимосвязаны в кибернетическом катализе [81]. [c.306]

    В мембранных системах с возрастающей энергией связи повышение селективности сопровождается снижением проницаемости и, следовательно, производительности мембранных модулей. В ряде случаев этого удается избежать путем формирования оптимальной структуры матрицы мембраны, направленного синтеза полимерных материалов для разделения газовых смесей определенного состава, причем особенно перспективны реакционно-диффузионные мембраны, в которых возможно максимальное приближение к природным мембранным системам за счет сопряжения процессов диффузии, сорбции и химических превращений. [c.15]

    Обычно при разделении газовой смеси через мембрану мигрируют все компоненты. Энергетическое сопряжение процессов диффузии и химической реакции позволяет интенсифицировать перенос целевого компонента с одновременным подавлением потоков других компонентов иногда возможна организация активного транспорта нецелевого компонента, проникшего в дренажную полость. Очевидно, реализация принципов энергетического сопряжения позволит резко повысить селективность разделения при сохранении высокой производительности мембран по целевому компоненту, что в конечном счете определяет экономичность мембранного газоразделения. [c.22]


    Рассмотрим влияние степени сопряжения на селективность мембранного разделения смеси. Ограничившись допущением о векторно-скалярном сопряжении процессов проницания каждого компонента, примем потоки их в мембране взаимно независимыми. Тогда эффективность разделения определится отношением потоков, которое с учетом коэффициентов ускорения можно представить в виде [c.24]

    Проблеме энергетической эффективности селективного проницания, сопряженного с химической реакцией в мембране, посвящен следующий раздел. [c.248]

    Следовательно, для поршневых компрессоров индивидуального и мелкосерийного производства с диаметром зеркала цилиндра до 300 мм можно рекомендовать допуск на изготовление зеркала цилиндра по системе отверстия 2а класса точности с образованием расчетного минимального зазора в сопряжении за счет отклонения размера поршня. Для компрессоров серийного производства необходимо при сборке селективно подбирать расчетный минимальный зазор для увеличения долговечности работы сопряжения. [c.99]

    Для компрессоров, у которых зазор в сопряжении поршень— цилиндр селективно не подбирается, величину допустимого перекоса поршня в цилиндре, вычисленного по формуле (104), можно увеличить исходя из следующего. [c.118]

    В шатунно-поршневых механизмах для ограничения колебания величины зазоров в данных сопряжениях очень часто применяется селективная сборка. [c.140]

    Расчетная посадка в данном сопряжении 0 60 — с селективным подбором деталей, количество групп точности 2. Ввиду малости зазоров в этом сопряжении по сравнению с отклоне-лиями других звеньев размерной цепи, влиянием звена Д18, Ец на замыкающее звено пренебрегаем. [c.171]

    Электрофильные замещения в аренах сопровождаются переносом электрона от сопряженной системы ароматического ядра к атакующей группе. Введение заместителя в ароматическое ядро приводит к перераспределению исходной электронной плотности за счет воздействия заместителя. Кроме того, направленность атаки зависит от эффективных объемов заместителя и входящей группы. Следует отметить, что введенная алкильная группа может оказывать пространственное влияние как на общую реакционную способность, так и на селективность при атаке определенных положений ядра. Эти явления находят практические применения- при использовании объемных групп (например, грег-бутильных) для экранирования необходимых положений ароматического ядра. Кроме того, скорость реакции зависит от стабильности сг-комплекса, а заместитель способен локализовать (или делокализовать) имеющийся в этом комплексе заряд. [c.40]

    Что же касается вопросов выбора современной технологии, то расчеты убеждают, что в современных экономических условиях на широкую реализацию могут претендовать лишь такие процессы производства нефтехимических продуктов первого сопряжения, где достигается селективность по целевому продукту не ниже 90%. Это означает, что экономический эффект при получении продуктов второго сопряжения может быть достигнут лишь в таких процессах, где суммарная селективность не ниже 80% (0,9 0,9). [c.12]

    Другие примеры металлов, особенно эффективных в специфических реакциях медь для насыщения групп, соединенных с бензольным кольцом цинк для гидрирования альдегидных групп, сопряженных с олефиновыми связями кобальт для превращения двойных связей и серебро для окисления этилена в окись этилена. Медь как основа катализаторов 52-1 и 51-1 фирмы Ай-Си-Ай обеспечивает соответствующие высокие селективности для реакции окиси углерода с паром с образованием двуокиси углерода и водорода и для гидрирования окиси углерода в метанол. [c.24]

    Главным методом первичной переработки каменноугольной смолы является ректификация с получением фракций, подвергающихся дальнейшей переработке с получением соответствующих товарных продуктов. Относительно высокая термическая стабильность основных компонентов каменноугольной смолы позволяет широко использовать этот, хорошо освоенный, высокопроизводительный и легко управляемый процесс. Ступенчатое разделение каменноугольной смолы с помощью растворителей [41, с. 255] не имеет особых перспектив. Хотя при разделении смолы растворителями ослабляются вторичные процессы термической конденсации, использование больших объемов растворителей, удаление из них экстрактов и рафинатов связано с существенными энергетическими затратами и потерями, поэтому экономически процесс не имеет особых преимуществ. К тому же при отделении растворителя возможно термическое разложение его. Невелика и селективность холодного фракционирования сложных смесей из-за неизбежного сопряженного растворения компонентов. [c.160]

    Кристаллизацию и растворение можно использовать для разделения благодаря разной растворимости близкокипящих полициклических ароматических углеводородов. Высокие температуры плавления ряда веществ облегчают отделение низкокипящих примесей и получение чистых веществ. Поэтому для очистки широко используют перекристаллизацию, кристаллизацию в сочетании с прессованием для отделения жидких веществ, кристаллизацию — плавление [4], кристаллизацию с добавлением растворителя, смещающего равновесие системы. В связи с значительными различиями в растворимости компонентов, входящих в смеси кристаллов, часто используют экстрактивное растворение ( выщелачивание ) легко растворимых компонентов. Общим недостатком этой группы методов оказывается невысокая селективность разделения, обусловленная сопряженной растворимостью. [c.296]


    Точность сопряжения втулочного цилиндра с плунжером достигается методом групповой взаимозаменяемости, предусматривающим селективную сортировку втулок и подбор плунжера соответствующего размера. [c.343]

    Такой вариант использовали, несмотря на определенные ограничения, вплоть до 1966 г., когда было показано, что активными интермедиатами в реакции являются медьорганические соединения и что предварительно полученные метилмедь и ди-метилкупрат лития чрезвычайно легко претерпевают 1,4-присо-едднение к трамс-пентен-З-ону-2. Последующие исследования подтвердили, что селективное сопряженное присоединение часто более эффективно осуществляется при использовании стехиометрических количеств медьорганических реагентов, чем при катализе медью реакций магний- или литийорганических реагентов [93]. Например, реакция енона (86) с метилмагнийиодидом в присутствии ацетата меди(1) дает смесь продуктов 1,2-и 1,4-присоединения в соотношении 56 34, в то время как при реакции с диметилкупратом лития с количественным выходом образуется 1,4-аддукт (87) [121] [схема (2.91)]. [c.59]

    В табл.2 проведено сопоатавленке полученных результатов (серия I) с опубликованными ранее данными о реакционной способности и селективности сопряженно-карбониевых ионов группы малахитового зеленого (серия II) , а также их [c.390]

    Избирательная гидрогенизация замещенных ацетиленов. Многочисленные представители моно- и дизамещенных ацетиленов были гидрогенизи-рованы в соответствующие олефины. Сопряженные системы, содержащие тройную и двойную связи (винилацетилен, дивинилацетилен), также были гидрогенизированы в полиолефины [90]. Селективная гидрогенизация применяется в промышленности для удаления замещенных ацетиленов из бутадиена [И]. [c.240]

    Восстановление ароматических (в том числе гетероциклических) хлоридов или бромидов водными формиатами в присутствии катализатора гидрирования и межфазного катализатора описано в патенте [553]. Примером является восстановление о-хлорнитробензола, который далее дегалогенируется до анилина. Эта реакция осуществляется на поверхности раздела фаз, о чем свидетельствует тот факт, что анионные поверхностно-активные реагенты также оказывают каталитическое действие. Другая группа исследователей [1616] использовала систему муравьиная кислота/триэтиламин при 100 °С для селективного восстановления с помощью Р(1/С одной из нитрогрупп до аминогруппы в полинитробензолах. Примерами являются 3-нитроанилин (77%), 2-амино-4-нитрофенол (57%), метил-З-амино-5-нитробензоат (65%)- Подобная же смесь реагентов была использована а) для восстановления фенила или двойной связи в сопряженных алкинах с образованием г ыс-алкенов и алканов (48—84%) и б) для гидрогенолиза третичных алкиламинов (61—93%) [1617]  [c.377]

    Мембранный перенос массы является результатом сопряжения нескольких процессов, протекающих в мембране, прежде всего диффузии и сорбции компонентов газовой смеси существенно также влияние дополнительных связей, возникающих в мембранной системе при нарушении принципа аддитивности. Только в газодиффузионных пористых мембранах, где удается организовать свободномолекулярное течение, процессы проницания газов независимы. В общем случае процессы в мембранах вза-имно-обусловлены, а такие интегральные характеристики мембран, как проницаемость Л и селективность а, являются результатом сопряжения отдельных процессов. Сорбционно-диффу-зионная модель проницания чистых газов через гомогенные непористые мембраны служит примером сопряжения процессов поверхностной сорбции, растворения и диффузии. Предполагается, что характерные времена этих процессов существенно раз- [c.15]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]

    Расчет процесса разделения смеси в мембранном модуле представляет сопряженную задачу, включающую решение системы уравнений, неразрывности, движения и диффузии (4.1ч-4.4) в напорном и дренажном каналах, которые взаимосвязаны граничными условиями в форме уравнений проницания (4.5- -4.8). Следует учесть, что скорость отсоса (вдува) и селективность мембраны являются функцией термодинамических и гидродинамических параметров газовых потоков, меняющихся вдоль канала и зависящих от выбранной схемы движения в мембранном модуле. Кроме того, в определенных условиях возможно возникновение свободной конвекции вследствие концентрационной неустойчивости диффузионного погранслоя. Численное решение системы дифференциальных уравнений весьма громоздко и в ряде случаев основано на существенных упрощениях реальной физической картины, например, не учитывается продольная диффузия и свободная конвекция. Процедуру вычислений можно упростить, если использовать одномерные уравнения расхода, импульса и диффузии (4.18), (4.21) и (4.29) и обобщенные законы массообмена, изложенные выше. [c.150]

    Подставив выражения для химического сродства Аг, скорости реакции Vrr и перекрестного коэффициента г в уравнение диссипативной функции (7.77) и интегрируя ifo по объему мембраны (см. 7.45), можно получить уравнение для расчета и анализа потерь эксергии в процессе селективного проницания через реакционно-диффузионную мембрану. Необходимое значение степени сопряжения массопереноса и химического превращения находят по уравнению (1.18) на основе опытных значений коэффициента ускорения Фь Предполагается также, что известно распределение концентраций всех компонентов разделяемой газовой смеои и веществ матрицы мембраны, участвующих в реакциях, как решение системы нелинейных дифференциальных уравнений (1.26). Энергетическая эффективность процесса при 7 = Гер оценивает эксергетический к. п.д., вычисляемый по уравнению (7.71). [c.255]

    В противоположность олефинам продукты окисления ароматических ядер, по-видимому, образуются путем присоединения к сопряженной системе, а не путем замещения. При 1,4-присоединении к бензольному ядру образуется хиноидная система, которую всегда находят среди первичных продуктов, и вполне возможно, что хорошие выходы малеинового ангидрида из бутадиена имеют такое же происхождение [16]. Иоффе и Волькенштейн [162] указывают, что окисление бензола на окислах-полупроводниках р-тнпа (как, например, СиО) приводит к полному сгоранию (СО, Oj), но с одновременным образованием следов фенола и дифенила, которые не были найдены при селективном окислении на окислах-полупроводниках п-типа (как, например, V2O5) в этом случае главными продуктами являются хинон и малеиновый ангидрид. Теоретические соображения заставляют думать, что в первом случае при диссоциативной адсорбции gHg образуются фенильные радикалы gHe, а во втором случае ассоциативная адсорбция приводит к образованию хиноидных бирадикалов  [c.177]

    Вторая особенность этих размерных цепей заключается в том, что величина зазора в ряде сопряжений, а иногда и линейные размеры подбираются селективно. Например, зазор в сопряжении щатун—порщневой палец. [c.152]

    На диаграмме У=[(Х) (рис. ХП-8, б) любая точка на кривой селективности соответствует определенным составам сосуществующих фаз экстракта и рафината, поэтому любую Л1шию сопряжения на рис. ХП-8, а можно определить при помощи диаграммы Y = f(X). [c.745]

    Например, на рис. ХП-8, а нужно нанести линию сопряжения для состава рафината Rn- Для этого из точки R на рис. ХП-8, а, характеризующей состав Rn, проводится вертикаль до пересечения с кривой селективности в точке RnEn. На рис. ХП-8, б из точки проводят горизонталь до пересечения с диагональю в точке гг и из нее проводят вертикаль до пересечения с ветвью экстрактов на бинодальной кривой (рис. XI -8, а) в точке Еп. Линия RnEn и будет искомой линией сопряжения. [c.745]

    Инертность простых двойных связей по отношению к гидридам металлов оказывается весьма полезной, так как это позволяет проводить восстановление, например, карбонильной или нитрогруииы, не затрагивая двойной связи в той же молекуле (селективность реакций восстановления обсуждается в т. 4, гл. 19). Натрий в жидком аммиаке не восстанавливает простые двойные связи [230], хотя в этой системе идет восстановление алкинов, алленов, сопряженных диенов [231] и ароматических колец (реакция 15-11). [c.179]

    Высокие температуры кристаллизации ряда веществ облегчают отделение примесей с низкой температурой крисгаллизации и получение чистых веществ. Поэтому для очистки широко используют перекристаллизацию, кристаллизацию в сочетании с прессованием для отделения жидких нешеств, кристаллизацию-плавление, кристаллизацию с добавлением растворителей, снижающих вязкость системы или смещающих равновесие системы. В связи со значительными различиями в растворимости компонентов,/входящих в смеси кристаллов, часто используют экстрактивное растворение ( вьицелачивание ) легко растворимых компонентов. Общим недостатком этой группы методов оказывается невысокая селективность разделения, обусловленная уже упоминавшимся "сопряженным растворением. Суть его в том, что раствор хорошо растворимого компонента оказывается хорошим растворителем для труднорастворимого компонента. В результате выделить чистое вещество из экстракта сложно, выход очищенного трудно растворимого компонента снижается. Приходится использовать многоступенчатые Промывание и кристаллизацию, использовать большие объемы растворителей, что й делает технологический процесс капиталоемким, крайне пожароопасным и малоэкономичным. [c.358]

    В эту группу входят дистиллятные масла из малосернистых и сернистых нефтей селективной очистки с присадками и без присадок вязкостью при 50 °С от 2,2 до 15,5 ммУс (см. табл. 6.5 и 6.7). Они служат для смазывания высокоскоростных механизмов металлорежущих станков, текстильных машин, сепараторов, центрифуг, шпинделей, подшипников и сопряженных с ними соединений. [c.275]

    Пониженная селективность Л -метилазетидинона-2 по сравнению с высшими гомологами объясняется напряженностью молекулы, нарушением копланарности и вследствие этого меньшей степенью сопряжения неподеленной пары злектронов [c.37]

    Дополнительным признаком некоторых типов веществ может служить селективность фрагментации, характеризуемая числом главных пиков, на которые приходится более половины суммарного ионного тока. У соединений, где преобладает одно-два основных направления фрагментации с образованием устойчивых ионов (ароматические соединения, амины, гидразины, ацетали, соединения с йесопря-женными гетероатомами и кратными связями, с третичными углеводородными радикалами, полигалогенугле-водороды и др.) селективность фрагментации обычно высока (2—4 главных пика). Напротив, у многих соединений, содержащих тройные связи и сопряженные системы С=С—С=С, С=С—С=0 или С==С—С=К, она ниже, а спектры [c.180]

    Реакция водорода с сопряженными диенами может идти либо как 1,2-, либо как 1,4-присоединение. Селективное 1,4-присоединение достигается при гидрировании в присутствии моноксида углерода, а также катализатора — бис (циклопентадие-нил)хрома [243]. При каталитическом гидрировании алленов., как правило, восстанавливаются обе двойные связи восстановление только одной двойной связи с образованием олефина осуществлено при использовании системы Ма—МНз [244] или гидрида диизобутилалюминия [245], а также при каталитическом гидрировании в присутствии КЬС1(РРЬз)з [246]. [c.180]


Смотреть страницы где упоминается термин Селективность и сопряжение: [c.512]    [c.77]    [c.24]    [c.76]    [c.285]    [c.126]    [c.35]    [c.39]    [c.40]    [c.42]    [c.211]    [c.177]    [c.178]    [c.201]    [c.356]   
Смотреть главы в:

Основы применения хроматографии в катализе -> Селективность и сопряжение




ПОИСК





Смотрите так же термины и статьи:

Сопряжение



© 2025 chem21.info Реклама на сайте