Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация вкладов

    Классификация вкладов в энергию взаимодействия двух молекул [128] [c.63]

    Составляющие межмолекулярного взаимодействия по методу молекулярных орбиталей. Метод молекулярных орбиталей позволяет дать более детальную на электронном уровне классификацию вкладов в энергию взаимодействия молекул. На рис. 4.47 схематично изображено взаимодействие МО, приводящее к различным вкладам. [c.154]


    Научные исследования в области явлений сорбции начались с конца XIX в. В 1876 г. Ж- Гиббс установил математическую зависимость между поверхностной концентрацией и поверхностным натяжением, в 90-х годах были начаты работы по исследованию свойств поверхностных пленок. Глубокое изучение сорбционных явлений, классификация их и создание научных теорий относится к нашему веку. В эту область многие исследователи внесли ценнейший вклад. В 1903 г. М. С. Цвет [9] открыл избирательную и фракционную адсорбцию твердыми адсорбентами из растворов, положив начало хроматографическому анализу. С 1910 г. появляется ряд работ А. А. Титова по изучению равновесий при адсорбции газов активированными углями [10]. [c.92]

    В приложении 5 приведены вклады отдельных связей и атомных групп в величины стандартных теплот сгорания и образования при 25° С. В этом приложении принята следующая классификация связей С—Н р, 5, I — соответственно первичная, вторичная и третичная связи, удаленные от двойной (или тройной) более чем на одну связь р, — связи, удаленные от двойной (или тройной) на одну связь Р2, 52 и 3 — связи, соседние с двойной или тройной связью. Числа в приложении 5, приведенные в скобках, вычислены исходя из предположения, что на вклад данной связи в теплоту не влияет наличие в молекуле двойных или тройных связей. [c.31]

    Для осуществления групповой классификации на основе зависимостей типа индекс — индекс можно воспользоваться также эффектом заметного изменения параметров удерживания представителей различных классов органических соединений при существенном изменении содержания неподвижной фазы на твердом носителе. Согласно [50, 53] такой прием, основанный на перераспределении вкладов адсорбции и абсорбции в общую величину удерживания, особенно эффективен при разделении геометрических изомеров непредельных углеводородов на капиллярных колонках. [c.182]

    Выбор оптимальной неподвижной фазы для решения данной задачи разделения всегда требует большого опыта, и не может быть дан универсальный рецепт на любой случай. Это объясняется тем, что теория растворов еще не разработана в такой степени, чтобы можно было охватить все взаимодействия, выражаемые математически коэффициентами активности. Хотя вклад дисперсионных и ориентационных сил может быть непосредственно вычислен (Мартире, 1961), при отрицательном отклонении от закона Рауля необходимы уже полуэмпирические определения. Взаимодействия между растворенным веществом и неподвижной фазой слишком сложны для того, чтобы можно было в настоящее время в каждом случае точно предсказать объем удерживания. Поэтому в разд. 1 и 2 эти взаимодействия описаны лишь качественно. В то же время по причине этих сложных взаимосвязей не существует простой последовательности неподвижных фаз, которая представляла бы единую модель величин удерживания для всех анализируемых веществ. Хотя полярность как неподвижных фаз, так и анализируемых веществ играет большую роль, между дипольными моментами и объемами удерживания не найдено соотношения, которое было бы пригодно для классификации неподвижных фаз. Газохроматографическая полярность может быть определена лишь следующим образом фаза считается тем более полярной, чем больше при ее применении отношение величины удерживания полярного растворенного вещества к величине удерживания сравни- [c.216]


    Системы буровых растворов классифицируются по составу дисперсионной среды, которой могут служить вода, нефть или нефтепродукты и газ. Часто в растворе одновременно присутствуют два, а то и все три компонента, каждый из которых вносит свой вклад в формирование свойств бурового раствора. Такая классификация приведена в табл. 1.1. [c.9]

    В газовой хроматографии очень велика роль вклада в удерживание взаимодействия за счет образования водородных связей. Для их оценки приведем классификацию вещества по водородным связям. Известные классы веществ разбиты на группы в порядке убывания прочности водородных связей от многократного их проявления (класс I) до отсутствия (класс V)  [c.104]

    Успехи неорганической химии вносят свой вклад в катализ по двум направлениям. Во-первых, открытие и идентификация новых соединений резко расширяет круг разнообразных веществ, пригодных для использования в каталитических процессах. Во-вторых, появляются возможности решения проблемы обеспечения стабильности катализаторов при воздействии высоких температур и реакционной среды. Среди огромного числа соединений существуют группы веществ, проявляющие общие свойства, что обеспечивает основу для их классификации. [c.111]

    Таким образом, классификация катионов металлов на группы а и б в целом основана на эмпирических данных по свободным энергиям комплексообразования. Эта классификация объяснима с точки зрения термодинамической движушей силы реакции. Далее следует учитывать, что для данной конкретной реакции полное изменение энтальпии и энтропии является сложным суммарным результатом многих эффектов. Однако при сравнении нескольких реакций некоторыми общими для всех реакций эффектами можно пренебречь. Еще одним следствием из вышеприведенных рассуждений является то, что попытка объяснить различия в константах устойчивости (или свободных энергиях) для двух реакций без знания вкладов энтропийного и энтальпийного членов сопряжена с большим риском. [c.260]

    В соответствии с общим постулатом физико-химическое свойство Р есть сумма вкладов от отдельных структурных элементов, причем от эквивалентных структурных элементов вклады равны. Другими словами, отдельные вклады классифицируются по видам в соответствии с классификацией структурных элементов. [c.144]

    В соответствии с общим постулатом, физико-химическое свойство Р есть сумма вкладов от отдельных структурных элементов, причем от эквивалентных структурных элементов вклады равны. Последнее замечание означает, что отдельные вклады классифицируются по видам в соответствии с классификацией структурных элементов. Эти вклады будем называть постоянными, отнесенными к структурным элементам определенного вида или, что то же самое, к связи [c.181]

    В связи с существенным вкладом адсорбционных взаимодействий в величину удерживаемого объема и влияния их (особенно адсорбции на поверхности НЖФ — твердый носитель) на величину удельной эффективности (ВЭТТ) возникает вопрос о разработке новой классификации хромато- [c.219]

    Для целей систематизации различных видов межмолекулярных взаимодействий с учетом их вкладов в удерживаемые объемы в газовой хроматографии целесообразно их разделить на два типа неспецифические и специфические. Неспецифическое, в основном дисперсионное взаимодействие универсально, оно проявляется между любыми молекулами. Специфическое же взаимодействие, в основном ориентационное, вызывается особенностями локального распределения электронной плотности во взаимодействующих молекулах. Эти особенности связаны с локальным концентрированием отрицательного и положительного зарядов на отдельных связях или звеньях специфически взаимодействующих молекул. Водородная связь представляет собой частный случай таких специфических, но еще межмолекулярных взаимодействий. Такое подразделение взаимодействий в известной степени условно. Однако оно помогаем систематизации разрозненных фактов и позволяет дать им удобную качественную классификацию. [c.86]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]


    Указанные признаки вносят решающий вклад практически во все свойства нефтяных дисперсных систем, определяют их поведение при различных термобарических условиях, а также являются основой для выделения более конкретных взаимосвязей в нефтяных дисперсных системах, уточнения характера межмолекулярных взаимодействий, в конечном итоге позволяют некоторым специальным образом классифицировать нефтяные дисперсные системы. К настоящему времени накоплен значительный эмпирический материал в области исследования нефтяных дисперсных систем. Анализ этой феноменологической информации дает возможность создания принципиальных основ теории нефтяных дисперсных систем и их классификации. Базовыми понятиями теории нефтяных дисперсных систем считаются размеры структурных образований в нефтяной системе и ее устойчивость против расслоения. Следует подчеркнуть, что любые исследования нефтяных дисперсных систем в конечном итоге, как правило, сводятся к определению склонности системы к расслоению и анализу изменения размеров частиц дисперсной фазы. При этом естественно учитываются и рассматриваются возможные физическис и химические превращения в системе при определенных условиях ее существования. [c.67]

    Классификация межмолекулярных взаимодействий дает ясный физический смысл тому, как осуществляется ММВ. Поляризационный и дисперсионный вклады Е ол и Едсп) соответствуют поляризационной и дисперсионной составляющей ван-дер-ваальсовых сил. Поляризационный вклад определяется взаимодействием зарядов, индуцированных взаимным влиянием, двух молекул. [c.154]

    Обменный вклад (Еабы) отвечает отталкиванию электронных оболочек двух молекул друг от друга и соответствует четвертой составляющей, выше обсуждавшихся сил Ван-дер-Ваальса. Энергия этого взаимодействия положительна. Последний вклад (Епз) относится к так называемому переносу заряда. Суть взаимодействия ясна из рис. 4.47 электроны с верхних занятых МО одной молекулы, поступают на нижние свободные МО другой, и тем самым способствуют стабилизации системы. Энергия системы из двух молекул в результате такого взаимодействия понижается. Последние два вклада (Еобм и Епз) относятся к короткодействующим, а остальные — к дальнодействуюшд1м взаимодействиям. Учитывая наличие вклада с переносом заряда и более широкое описание методом МО остальных составляющих взаимодействия, данную классификацию следует считать общей для всех сил ММВ, в том числе и специфических. [c.155]

    СХОДСТВО. Де Шанкуртуа заметил, что в дополнение к 16 вертикальным линиям могут быть проведены другие соединяющие линии и что элементы, расположенные на этих линиях, также в каком-то отношении сходны. На основании такого распределения де Шанкуртуа сделал предположение, что свойства элементов являются свойствами чисел. Это уже близко подходит к основной идее более поздней периодической классификации, но еще многого не достает в сравнении с последующим вкладом в науку Менделеева и Мейера. Однако два его соотечественника — де Буабод-ран и Лаппаран — пытались показать некоторую долю участия де Шанкуртуа в открытии периодического закона. Но их мнение не разделялось большинством комментируя теллурову спираль, в 1900 г. английский химик доктор В. А. Тилден сказал автор имел смутное представление о том, что свойства элемента каким-то образом связаны с атомным весом, но эти представления на> столько были запутаны его собственными фантастическими идеями, что нет уверенности в том, что он действительно видел в этой зависимости что-либо похожее на периодичность . [c.82]

    Крупный вклад в развитие учения о риродных горючих газах внес советский геохимик В. А. Соколов. Он рассмотрел происхожедние всех природных газов земной коры и дал их классификацию (табл. 14). [c.212]

    Более ста лет назад химиков очень заиктересовали периодичность химических свойств элементов как функция их атомного веса и существование групп элементов с очень сходными свойствами. Все это побуждало химиков создать удовлетворительную классификацию элементов. Самую удобную для своего времени классификацию дал вс ликий русский ученый Д. И. Менделеев. Периодическая система Д. И Мендслеера явилась самым бе льшим вкладом одного человека а общую химию всех элементов. Она и.мела важное значение как обобщение имеющихся в то время знаний, а также большую предсказательную силу, что было доказано открытием новых элементов. Другая важная черта вклада Д. И. Менделеева состояла з том, что он дал направление дальнейшего развития теории валентности и химической связи. [c.3]

    Именно в силу обретения А. собственного теоретич. взгляда на свой предмет главные практич. вклады А. приходятся на 8-12 вв. в арабском мире и на 12-14 вв. в Европе. Получены серная, соляная и азотная к-ты, винный спирт, эфир, берлинская лазурь. Создано разнообразное оснащение мастерской-лаборатории - стаканы, колбы, фиалы, чаши, стеклянные блюда для кристаллизации, кувшины, щипцы, воронки, ступки, песчаная и водяная бани, волосяные и полотняные фильтры, печи. Разработаны операции с различными в-вами-дистилляция, возгонка, растворение, осаждение, измельчение, прокаливание до постоянного веса. Расширен ассортимент в-в, используемых в лаб. практике нашатырь, сулема, селитра, бура, оксиды и соли металлов, сульфиды мышьяка, сурьмы. Разработаны классификации в-в. Впервые описано взаимодействие к-ты и щелочи. Открыты сурьма, цинк, фосфор. Изобретены порох, фарфор. Бонавентура (13 в.) установил факт растворения серебра и золота в царской водке. В трактате Р. Бэкона Зеркало алхимии можно усмотреть неосознанное приближение к правилам стехиометрич. соотношений и принципу постоянства состава. Ему же принадлежит систематизированное описание св-в семи известных тогда металлов. Но успехи прикладного св-ва А. должна разделить с хим. ремеслом. [c.108]

    Эти две классификации дополняют друг друга. Комплекс обычно не является продуктом чисто ковалентного взаимодействия во многих комплексах ионный вклад может быть значительным или даже превосходить ковалентный вклад. Примером комплекса, который удерживается в основном ионными связями, является фторид алюминия А1Рз. [c.127]

    Характерная особенность всех теоретических исследований пространственного строения ангиотензина II [22, 47-50] - отсутствие какой-либо классификации конформационных состояний молекулы, не говоря уже о такой, которая была бы обоснована с физической точки зрения и охватывала все возможные структурные варианты, систематизированные в соответствии с субординационными взаимоотношениями по таксономическим категориям. Отсутствие классификации - объективный признак непонимания самых существенных свойств изучаемых соединений, определяющих их единство и различие. Без структурной классификации, четко сформулированных принципов общей теории и физической модели (также отсутствующих в обсуждаемых работах) невозможен объективный выбор конформационных состояний. Все оценки оптимальных конформаций в расчетах Галактионова, Шераги, Де Коэна и соавторов вьшолнены на основе относительных величин общей энергии, без количественного анализа вкладов от отдельных внутри- и межостаточных взаимодействий в структурных вариантах всевозможных форм различных типов основной цепи. Поэтому результаты подобных расчетов не гарантированы от случайных пропусков и от неправильных оценок полученных данных. Подтверждением такому заключению является табл, 111,9. Все структуры, найденные в обсуждаемых работах для ангиотензина II, автоматически входили в процедуру изложенного здесь расчета, но не попали в окончательный набор конформаций (см. табл III.9), так как оказались менее предпочтительными по энергии. В то же время найденные в [32] низкоэнергетические конформации молекулы вообще оказались не замеченными авторами работ [22. 47-50]. [c.282]

    Научный уровень отдельного исследования, как и целых областей естественнонаучных знаний, имеющих дело с множеством объектов или явлений, единичный анализ каждого из которых практически невозможен, определяется состоянием классификации изучаемых объектов или явлений, и не просто классификации, а естественной классификации, т.е. выполненной по совокупности самых существенных, внутренних признаков. К такому типу исследований, безусловно, принадлежит конформационный анализ пептидов и белков. Характерной особенностью всех рассматриваемых работ (см. табл. Ш.ЗЗ) является отсутствие какой-либо классификации конформационных состояний молекул этого класса, не говоря уже о такой, которая была бы обоснована с физической точки зрения и охватывала бы все возможные структурные варианты, систематизированные в соответствии с субординационными взаимоотношениями по таксономическим категориям. Отсутствие структурной классификации может служить объективным признаком принадлежности изучаемых соединений к чисто случайным образованиям (статистическому клубку) или непонимания самых существенных свойств их пространственной организации. Поскольку первое исключено, то справедливо альтернативное предположение. В этом причина того, что выполненные расчеты не гарантированы ни от случайных пропусков, ни от неправильных оценок получаемых результатов. Без структурной классификации, четко сформулированных принципов общей теории и физической модели (также отсутствующих в обсуждаемых работах) невозможен объективный выбор конформационных состояний. Все оценки оптимальных конформаций в расчетах Галактионова, Шераги, Де-Коэна и их сотрудников вьшолнены на основе относительных величин общей энергии, без количественного анализа вкладов от отдельных внутри- и межостаточных взаимодействий в структурных вариантах всевозможных форм различных типов. [c.401]

    На основании классификации молекул и адсорбентов но их способности к неспецифическим и специфическим молекулярным взаимодействиям, предложенной Киселевым [21], можно рассматривать модифицирование поверхности кремнезема как ослабление специфичности взаимодействия за счет уменьшения числа гидроксильных групп, а также как резкое ослабление неспецифического взаимодействия благодаря отодвиганию адсорбирующихся молекул от кремнеземного остова. Мерой вклада специфических локальных взаимодействий молекул с сосредоточенной электронной плотностью в общую энергию взаимодействия является, как это показано в работе [22], разность между теплотой адсорбции на специфическом адсор бенте и теплотой адсорбции этих же молекул на соответствующем песне цифическом адсорбенте. [c.153]

    Рассмотрена классификация адсорбентов и адсорбатов по типам межмолекулярных взаимодействий. Выделены случаи специфической (но вандерваальсовой) адсорбции и для этих случаев дан обзор по теоретическим и экспериментальным опенкам вклада энергии специфического взаимодействия. Рассмотрены также спектральные аспекты этой проблемы. Таблиц 2 иллюстраций 5 библ. 84 назв. [c.472]

    Идея классификации колебаний на структурно-чувствительные колебания внешних связей тетраэдров и структурно-нечувствительные колебания связей внутри отдельных тетраэдров оказалась плодотворной [13] справедливость ее подтвердили работы других исследователей. Эта классификация подобна используемой при исследовании молекулярных кристаллов и сложных ионных кристаллов, в которых колебания разделяются на межмолекулярные и внутримолекулярные [29,30]. В спектрах цеолитов проявляются многие особенности, характерные для молекулярных кристаллов, но кристаллы цеолитов построены из сложных ионов, или кластеров, и ионность связей в них выше. В типичных молекулярных кристаллах обычно наблюдается четкое различие между внутримолекулярными и решеточными колебаниями, поскольку силы, связывающие атомы в молекуле, обычно больше, чем силы взаимодействия между молекулами. Однако в бесконечно протяженном кристаллическом анионном каркасе цеолитов как внутримолекулярные, так и межмолекулярные, или решеточные, колебания вносят заметный вклад в структуру спектра. В рамках подхода к цеолитам как к молекулярным кристаллам необходимо учитывать не только трансляционные, но и либраци-онные колебания. [c.118]

    Неприменимость простых аддитивных схем для вычисления термодинамических свойств различных классов органических соединений обусловила поиски классификации типов связи. В методе Кла-геса [765] вклады за счет связей суммируются по тинам связей в молекуле. Этот метод был использован для оценки энергии резонансных колебаний. Уиланд ([1602], стр. 86) для этих целей предложил несколько улучшенный вариант метода расчета по аддитивной схеме. Лейдлер [838] пытался объяснить энергии связи в парафиновых углеводородах на основе трех типов связи С — Ни одного тина связи С — С. Татевский, Бендерский и Яровой [1468] в своих расчетах использовали три типа связи С — Н и 10 типов связи С — С. Глоклер [494—496], Фейлченфилд [414], Дьюар и Шмейсинг [326], [c.162]

    В начале своей научной деятельности проводил исследования, посвященные химической термодинамике и физико-химическим методам изучения органических соединений. Изучал (1934—(937) историю химической атомистики Дж. Дальтона, затем (с 1938) исследовал научное наследие Д. И. Менделеева. На основе изучения истории химии предложил классификацию научных открытий Внес больщой вклад в разработку вопросов теории научного позна-иня и философских проблем есте- [c.228]

    Адсорбент проявляе Т степь сильную специфичность по отношению к молекулярной адсорбции молекул групп В и D (по классификации [1,2, 4]) в том случае, когда на поверхность ионного кристалла выдвинуты катионы, особенно если это катионы с большим зарядом и малым радиусом, а отрицательный заряд рассредоточен в больших комплексных анионах. Сульфаты и цеолиты входят в число таких сильно специфических адсорбентов (адсорбентов П-го типа по классификации [1, 2]). В этом случае в теплоту адсорбции, наряду с песпецифическими взаимодействиями, большой вклад вносят специфические взаимодействия преимущественно с катионами адсорбента диполей, квадруполей и л-связей молекулы адсорбата. Этот вклад удобно выразить в виде разности теплоты адсорбции специфически адсорбирующейся молекулы группы В или D с теплотой адсорбции такой неспецифически адсорбирующейся молекулы сравнения группы А, которая при близкой геометрии имеет одинаковую теплоту адсорбции на неспецифическом адсорбенте [1, 2, 4]. Так, для квадрупольной молекулы азота молекулой сравнения может служить молекула аргона (теплоты адсорбции этих молекул на графитированной саже практически одинаковы), а для молекулы диэтилового эфира молекулой сравнения может служить молекула л-пентана, поскольку теплоты адсорбции этих молекул на графитированной саже также близки. Так как не всегда можно выбрать молекулу сравнения группы А, у которой теплота адсорбции на графитированной саже одинакова с теплотой адсорбции данной молекулы группы В или D, то удобно использовать интерполяционные методы, рассматривая зависимость теплоты адсорбции молекул сравнения от их поляризуемости [3, 37] или от числа содержащихся в них атомов углерода [3, 38]. Для -алканов эти зависимости линейны, что облегчает интерполяцию. [c.45]


Смотреть страницы где упоминается термин Классификация вкладов: [c.341]    [c.580]    [c.211]    [c.211]    [c.226]    [c.117]    [c.199]    [c.130]    [c.129]    [c.158]    [c.14]    [c.230]    [c.299]    [c.14]    [c.14]    [c.95]    [c.19]   
Смотреть главы в:

Локализация и делокализация в квантовой химии атомы и молекулы в основном состоянии -> Классификация вкладов




ПОИСК







© 2025 chem21.info Реклама на сайте