Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменения степени зацепления

    Изменения степени зацепления [c.277]

    Как было отмечено ранее, изменение степени сжатия материала достигается различными методами, в частности, уменьшением наружного диаметра червяка. Одновременно с уменьшением наружного диаметра червяков увеличивается диаметр сердечника, а это обеспечивает хорошее зацепление. По мере уменьшения глубины винтового канала по зонам уменьшается и шаг нарезки. Такие червяки обеспечивают степень сжатия 3—4. [c.249]


    Наряду с этим нет однозначной связи и между прочностью и ориентацией. Особенно наглядно это проявляется при сравнении влияния степени ориентации на упрочнение полимеров с различной молекулярной массой. Пример такой зависимости был дан на рис. IV. 12. В данном случае одинаковому изменению степени ориентации отвечает различное увеличение прочности, причем тем большее, чем выше молекулярная масса. Неоднозначность связи напряжения со степенью ориентации и степени ориентации с прочностью в терминах сеточной модели надмолекулярной структуры аморфных полимерных систем объясняется тем, что при растяжении происходит различная в зависимости от режима деформирования перестройка сетки. Прочность узлов сетки различна и характеризуется временем их разрушения и восстановления (релаксации). При низкой температуре (или высокой скорости деформации) неразрушающихся при деформировании узлов больше, а участки цепей между ними короче. При растяжении осуществляется деформация сравнительно коротких участков цепей, в то время как более длинные могут оставаться ненапряженными. Повышение температуры (снижение скорости деформации) ведет к разрушению части узлов сетка становится более редкой , а участки цепей между узлами — более длинными. Напряжения уменьшаются, а деформация по длине цепей становится более однородной. В то же время уменьшение числа узлов ведет к тому, что часть коротких цепей выходит из зацепления и дезориентируется (релаксирует). Увеличение молекулярной массы полимера приводит к уменьшению доли неориентированных цепей, более равномерному распределению нагрузки и более высокой прочности застеклованного полимера при одинаковой степени ориентации. [c.255]

    К периодическим работам технического обслуживания относятся и работы, связанные с контролем уровня масла в редукторе для обеспечения нормальной работы зубчатого зацепления и удалением газовых пробок. Уровень масла целесообразно контролировать с определенной периодичностью, а газовые пробки в зависимости от степени их влияния на теплопередачу. Периодичность изменения угла поворота лопастей вентилятора приурочивается к началу холодного и теплого периодов эксплуатации АВО. В зависимости от условий эксплуатации, особенно [c.158]

    В случае аморфных полимеров, отжиг которых производится при температуре, превышающей температуру стеклования, естественно ожидать, что разупорядочение молекулярных цепей, являющееся следствием существования внутри- и межмолекулярных зацеплений, приведет к изменению размеров образца. Поскольку процесс дезориентации представляет собой, по существу, процесс релаксации деформаций, его основной характеристикой является время релаксации, увеличивающееся с понижением температуры (см. рис. 3.17 и 3.18). Величина усадки для полностью законченного процесса восстановления оказывается связанной как со степенью ориентации аморфной фазы /ам, так и с уровнем замороженных напряжений в неотожженном образце [см. (3.9-19)]. [c.76]


    Между чисто механической теорией трения, связывающей сопротивление тангенциальному перемещению с зацеплением шероховатостей, и молекулярной теорией, по которой трение обусловлено взаимодействием атомов сближенных поверхностей (адгезией), существуют определенные противоречия. Они в значительной степени устраняются представлениями Крагельского о двойственной молекулярно-механической природе трения, согласно которой вследствие дискретности контакта на фактических малых площадях соприкосновения развиваются высокие давления, приводящие к сближению и взаимному внедрению контактирующих участков. При тангенциальном смещении происходят деформация и механические потери или даже разрушение микровыступов на срез. С одной стороны, это связано с механическим разрушением внедрившихся выступов, которые или срезаются, или оттесняются (упруго или пластически). С другой стороны, кроме преодоления механического сопротивления, связанного с перемещением выступа, необходимо преодолеть также и силы молекулярного взаимодействия между тесно сближенными элементами поверхностей. В настоящее время установлено, что на трение твердых тел влияют все свойства поверхностных слоев и любые их изменения, которые зачастую трудно контролируемы. [c.356]

    Поскольку движение коротких участков цепи осуществляется независимо от наличия зацеплений, связанные с этими движениями времена релаксации остаются для концентрированных растворов такими же, как и для разбавленных, причем они не зависят ни от концентрации раствора, ни от полной длины цепи (т. е от молекулярной массы полимера). Движение длинных участков цепи, приводящих к возникновению больших времен релаксации, в сильной степени чувствительно к наличию зацеплений и вызывает значительное увеличение больших времен релаксации. Это возрастание больших времен релаксации приводит, в частности, к сильной зависимости вязкости от молекулярной массы (г) М . ), поскольку вязкость системы в основном связана с вкладом медленных релаксационных процессов. Граница между областями неизменных и увеличивающихся из-за наличия зацеплений времен релаксации определяется критической молекулярной массой М,, поскольку именно при М — Мс происходит изменение характера зависимости г (М). [c.279]

    Многие из этих наблюдений, например более высокие меньшие значения сорбции, коэффициента диффузии и механических потерь (в некоторых случаях), согласуются с объяснением в рамках адсорбции полимерных сегментов на границе раздела фаз [515, 517]. Процесс адсорбции сопровождается уменьшением числа степеней свободы и, как следствие, понижением энтропии и подвижности цепей — отсюда общее использование термина упорядочение . Легко представить такой процесс в случае малых частиц, для которых даже тонкий слой адсорбированного и закрепленного за счет зацеплений полимера (скажем, толщиной в 10—100 А) может составлять значительную долю полимера, обладающего свойствами, отличными от свойств в блоке. Толщина слоя такого порядка величины, очевидно, совпадает с расстоянием, на которое распространяется действие типичных сил поверхностного поля. Некоторые исследователи считают, что зона влияния значительно больше (10 А или более [515, 517]) благодаря существованию кооперативных сегментальных эффектов, действующих далеко от поверхности. Существенная роль адсорбции подтверждается тем, что изменения Тд могут (по крайней мере, в некоторых случаях) коррелировать с теплотами адсорбции модельных соединений на поверхности наполнителей [1003]. Исследования такого типа могут помочь в объяснении имеющих- [c.380]

    Под действием сил теплового движения сегменты, петли и концы макромолекул пересекают фазовую границу, образуя флуктуационную сетку зацеплений разнородных макромолекул [4, с. 304]. Сродство однотипных сегментов макромолекул друг к другу выше, чем разнотипных, поэтому межфазный слой в смеси полимеров является участком с ослабленными связями. Выигрыш в энтропии за счет возникновения более вероятных конформаций компенсирует ослабление межфазного взаимодействия и обеспечивает образование широкой области, где и происходит значительное смешение компонентов (рис. 5 и 6). Ширина этой области и степень смешения в зависимости от параметра растворимости пока не рассчитаны. Сегментальная растворимость полимеров — явление поверхностное, оно определяется изменением поверхностного термодинамического потенциала [5, с. 25]. Поэтому возможна только качественная корреляция между растворимостью сегментов и взаимной растворимостью соответствующих олигомеров. Для получения такой качественной зависимости необходим учет изменения конформационного набора пограничных макромолекул. Наличие межфазного слоя, в который входит слой сегментальной растворимости, обнаружено методом электронной микроскопии. Образование флуктуационной сетки зацеплений оказывает влияние на свойства полимерных смесей, степень которого зависит от гибкости макромолекул. [c.16]


    Конформационные превращения — основа развития высокоэластических деформаций. Однако деформация в значительной степени зависит также от плотности флуктуационной сетки, которая в свою очередь определяется скоростью деформации. С изменением плотности флуктуационной сетки меняется эффективная длина участков цепей между соседними микроблоками или зацеплениями. При сдвиговом течении вследствие различия скоростей перемещения отдельных слоев жидкости внешнее усилие в виде напряжения сдвига передается через проходные участки макромолекул, в результате чего они начинают ориентироваться. Под действием этих же сил путем последовательного движения звенья цепи выходят из микроблоков, т. е. узлы флуктуационной сетки разрушаются и увеличивается средняя длина проходных участков, которые являются основным источником накопления мгновенной упругой и высокоэластической деформации. Разрушение узлов флуктуационной сетки измеряется числом элементарных переходов звеньев из одного положения в другое, следовательно, этот процесс протекает во времени. Поэтому чем больше плотность флуктуационной сетки в начале развития деформации, тем больше время запаздывания и наоборот при переходе от ориентированного состояния к равновесному время релаксации меняется в зависимости от степени ориентации цепи и способности макромолекул к образованию новых узлов флуктуационной сетки. Поскольку все конформационные переходы макромолекул взаимосвязаны, они зависят от межмолекулярного взаимодействия и гибкости цепи, а следовательно, в значительной степени определяются температурой. С изменением температуры весь релаксационный спектр смещается и деформируется. [c.57]

    Исследованы изменения ориентации и конформации линейного полиэтилена при очень больших степенях вытяжки (температура вытяжки равна 60 °С [521—524]. Кристалличность растянутых образцов остается постоянной вплоть до степени вытяжки 700% (кристалличность определяли по полосе лри 1894 см ). Ирг дальнейшей вытяжке степень кристалличности растет сначала быстро, а затем медленнее. В образцах с высокой начальной кристалличностью степень упорядоченности имеет минимальное значение при степени вытяжки 700%. Степень ориентации кристаллитов возрастает вплоть до степеней вытяжки 200% и затем остается постоянной. Также возрастает степень ориентации сегментов макроцепей в аморфной фазе полимера, при этом доля тракс-конформаций растет за счет уменьшения гош-конформаций Это следует из уменьшения значений относительных оптических плотностей полос при 1368, 1353 и 1303 см и постоянства оптической плотности полосы при 1078 см . Таким образом, на первых стадиях вытяжки разрушаются сферолитные структуры полимера, что ведет к исчезновению различий в исходных морфологических структурах. Доля зацеплений цепей (петель) становится меньше, в то время как число проходных цепей возрастает. В [525] исследовали ориентацию винильных и метильных концевых групп в цепи полиэтилена. В [1637] определяли ориентацию молекул полиэтилена низкого и высокого давления по полосе поглощения при 5782 СМ . Была определена концентрация кристаллитов, их ориентация и ориентация молекул в аморфной фазе. [c.212]

    Температура или время Показанный на рис. 1.1 характер изменения модуля упругости полимеров при растяжении и сдвиге по мере перехода из одного состояния в другое не зависит от переменного параметра температуры, времени или частоты. Наклон кривой температурной зависимости модуля упругости полимеров в высокоэластическом состоянии слегка положителен. Положения точек перехода из одного физического состояния в другое как по температурной, так и по временной шкале зависят от типа полимера. Снижение модуля при переходе полимера из твердого состояния определяется его температурой плавления или стеклования это явление наблюдается также при наличии растворителя или пластификатора. Длина участка кривой, соответствующая высокоэластическому состоянию, зависит от молекулярной массы полимера. Низкомолекулярные линейные полимеры, у которых длина цепи недостаточна для образования механических зацеплений, не имеют области высокоэластичности. Чем больше молекулярная масса, тем шире интервал времени и температуры, в котором полимер находится в высокоэластическом состоянии. Исключение составляют, естественно, сетчатые полимеры, так как они никогда не проявляют реологических свойств, характерных для расплавленного состояния, если не произошло разрыва поперечных связей. На рис. 1.1 переходная зона между состояниями показана широкой. В действительности полимер, находящийся в расплавленном состоянии, в той или иной степени должен проявлять высокоэластические свойства (т. е. упругость), что и является причиной химических превращений под действием механических сил. [c.14]

    Один вид структурных изменении, влияние которого успешно учтено в методе приведенных переменных, — это изменение степени зацепления цепей с температурой, которое, по-видимому, происходит в некоторых Л1етакрилатных полимерах [21]. Это явление проявляется в том, что в зоне [c.277]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    В условиях фазового разделения, сопровождающего реакции трехмерной полимеризации или поликонденсации, образование фейзонных систем связано с уменьшением в течение реакции величин коэффициента диффузии мономерных звеньев и отрезков цепей между зацеплениями. Вследствие этого степень сегрегации определяется величиной параметра термодинамического взаимодействия и скоростью изменения указанных характеристик. В результате система останавливается в развитии процессов фазового разделения в той или иной области фазовой диаграммы между химической и реальной спинодалью. [c.186]

    В данной работе поднят ряд важных для физической химии растворов полимеров вопросов относительно обобщенного представления зависимости вязкости tio от концентрации с и молекулярного веса М, формы концентрационной зависимости i и природы определяющих параметров, роли струк-турообразования в растворе. В самое последнее время был получен ряд новых результатов в этой области, существенных для понимания проблем, обсуждаемых в данной работе. Вопрос о возможности приведения концентрационных зависимостей вязкости полимеров разных молекулярных весов рассматривался для большого числа объектов в широком диапазоне составов в работах [1, 2]. Было показано, что использование вязкостной функции в форме, предложенной Симхой с соавторами (nsp/rf lOi а аргумента в виде (с[т]]) во всех исследованных случаях позволяет построить обобщенную концентрационную зависимость вязкости. При этом величина (с[т]]) во всем диапазоне составов при ее изменении от нз ля до нескольких сотен остается определяющим безразмерным параметром, характеризующим объемное содержание полимера в растворе и в том случае, когда молекулярные клубки перекрываются и образуют флуктуационную сетку зацеплений. Учитывая, что [т]] Л1 , нетрудно сделать вывод, что обобщенным аргументом рассматриваемой зависимости вязкости от с и AI является величина (сМ"), причем, конечно, а не может быть постоянной величиной, а зависит от природы системы полимер — растворитель. Поэтому возможность применения каких-либо конкретных значений а (как в данной работе, где а придавались значения 0,68 или 0,625) представляется частными случаями, так что не следует пытаться искать какого-либо универсального значения а, поскольку такое значение в лучшем случае будет иметь смысл не более чем грубого усреднения. В сущности именно этот результат дополнительно подтверждается пр имером, приводимым в данной работе на рис. 7, из которого следует, что при правильном выборе значения а, отвечающего показателю степени в уравнении Марка — Хоувинка, аргумент ( AI ) с успехом можно использовать для обобщения экспериментальных данных по зависимостям [c.244]

    Уменьшение вязкости при возрастании у в общем случае связывают с углубляющимся при возрастании напряжения разрушением структуры деформируемого матерпала. Конкретный вид этого разрушения зависит от природы взаимодействий в системе. Нек-рые авторы считают, что возможными причинами В. а. являются конкуренция между ориентацией и броуновским движением, упругая деформация и конформационные превращения макромолекул, абсорбция и стерич. иммобилизация растворителя или сегментов др. макромолекул. К этому следует добавить разрушение надмолекулярных структур в -расплавах и р-рах полимеров мехаиич. силами, что связано с уменьшением числа и прочности межмолекулярных контактов ( зацеплений ). Для оинсания В. а. нредложено большое число эмпирич. и теоретич. формул, из к-рых для расчетных целей наиболее широко применяют степенной закон или его обобщения в виде различных полиномов, а также формулу Эйринга и др. (см. Реология). Явление В. а. в полимерных системам связано со всем комплексом пх механич. свойств, нз к-рых особое значение имеют явления изменения релаксац. характеристик и развития высокоэластич. деформаций, сопровождающие уменьшение >)ф-фективной вязкости при возрастании напряжений сдвига. [c.283]

    При работе двух сопряженных зубчатых колес в результате погрешностей обработки и монтажа, деформаций зубьев под нагрузкой может возникнуть кромочное зацепление , т. е. зацепление кромок зуба одного колеса за кромку другого колоса, что может привести к ударной нагрузке и как следствие — к поломке зубьев. Для устранения кромочного зацепления боковые стороны зуба у его вершины срезаются посредством изменения профиля зубчатой рейкн под дополнительным углом, называемым углом фланкировки с высотой фланкирования равной 0,4-5т. Ниже приводятся значения угла фланкировки в зависимости от степени точности зубчатых колес, причем, чем ниже степень точности, тем больше угол фланкирования. [c.371]


Смотреть страницы где упоминается термин Изменения степени зацепления: [c.286]    [c.120]    [c.278]    [c.284]    [c.369]    [c.374]   
Смотреть главы в:

Вязкоупругие свойства полимеров -> Изменения степени зацепления




ПОИСК







© 2025 chem21.info Реклама на сайте