Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды конформации

    Л.-стабильный пептид, конформация к-рого не меняется в сильно кислой и щелочной средах, а также при нагр. до 50 °С. В молекуле имеются -изгибы и спирализованные участки. Длина последних значительно увеличивается в полярных р-рителях. [c.604]

    Со структурной точки зрения у белков различают первичную, вторичную, третичную и четвертичную структуры. Под первичной структурой, как и в случае пептидов, понимается точная последовательность отдельных аминокислотных остатков в макромолекуле. Вторичная структура определяется тем, что вследствие образования внутримолекулярных водородных связей макромолекулы предпочитают находиться в определенных конформациях (чаще всего это а-спираль — белковая цепь свернута в правовинтовую спираль, а расположенные друг [c.192]


    Вторая довольно редко встречающаяся конфигурация известна как р-структура. а- и р-конформации полипептидных цепей образуют вторичную структуру белка. Все аминокислоты, пептиды и протеины могут взаимодействовать с ионами металлов, образуя при этом координационные соединения. Некоторые протеины содержат в своем составе четыре прочно связанных пиррольных кольца. Эти ядра образуют скелет порфина. [c.565]

    Метод ЯМР использовался для определения конформации малых пептидов и полиэфиров [165—167] и структуры углеводов [168] и нуклеотидов. [c.187]

    Сигнальный пептид, состоящий обычно из 15 — 20 гидрофобных аминокислот, вступает через рибосомный рецепторный белок во взаимодействие с эндоплазматическим ретикулумом и начинает локально-специфический синтез белка. Еще до заверщения синтеза он отщепляется сигнальной пептидазой от остальной цепи. Полипептидная цепь секреторного белка выводится через систему каналов эндоплазматического ретикулума и вслед за этим сворачивается в нативную конформацию. [c.396]

    Монография посвящена рассмотрению существующих подходов к изучению принципов молекулярной структурной организации и механизма свертывания белка в нативную конформацию Книга состоит из введения и четырех частей В первой части изложена бифуркационная теория самосборки полипептидной цепи, физическая конформационная теория и метод априорного расчета пространственного строения белка по известной аминокислотной последовательности В других частях рассмотрены конформационные возможности простейших пептидов, сложных олигопептидов и белков Представлены результаты количественного анализа конформационных состояний большого числа пептидов и низкомолекулярных белков Изложен подход автора к решению обратной структурной задачи, позволяющей целенаправленно конструировать наборы искусственных аналогов, пространственное строение которых выборочно отвечает низкоэнергетическим, потенциально биологически активным конформациям природного пептида [c.4]

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    Наблюдаемая аналогия в распределении конформаций по энергии -Asn-Asp- (как -Asn-Asn-) и -Phe-Phe- указывает на то, что электростатические взаимодействия и водородные связи не вносят существенных изменений в величины относительных энергий. Таким образом, сте-реохимическая природа боковой цепи (общим для аспарагина, аспарагиновой кислоты и фенилаланина является плоское расположение валентных связей атома С определяет характер невалентных взаимодействий и специфику конформационного распределения. Стабилизирующие невалентные взаимодействия между соседними остатками уже приводят к заметной дифференциации конформаций дипептидных фрагментов, существенно не нарушаемой учетом электростатических взаимодействий и образованием водородных связей. Это может служить определяющим фактором при расчете более сложных пептидов. [c.216]

    Рассмотренный в 5 и 6 главах материал, касающийся конформационных возможностей разнообразных моно-, ди- и трипептидов, содержит минимум 1 х данных, которые необходимы для создания классификационной систе-всевозможных оптимальных конформаций пептидов и разработки етода априорного расчета их пространственного строения. [c.219]

    Количество реализуемых в белках состояний каждого природного аминокислотного остатка соответствует конформационным возможностям свободного монопептида, т.е. набору (как правило, представительному) его низкоэнергетических конформаций. Поэтому учет взаимодействий между остатками даже у небольших пептидов сталкивается с огромным объемом вычислительных работ. Таким образом, проблема средних взаимодействий не могла быть решена на той же методологической основе, что и проблема ближних взаимодействий. Разработка специального метода конформационного анализа требовала знания особенностей межостаточных взаимодействий и правил свертывания пептидной цепи. Однако таких знаний не было, и получить их с помощью имеющихся средств можно было только для самых простейших объектов - моно-, ди- и трипептидов, проследив в этом ряду молекул за средними взаимодействиями и их влиянием на ближние взаимодействия. Безусловно, ряд короток, но [c.220]

    Выше были отмечены выводы принципиального порядка, которые следовали из анализа простейших пептидов. Они оказались достаточными, как будет видно позднее, для обоснования поэтапного подхода к изучению конформационных возможностей природных олигопептидов и пептидных фрагментов в белках. Наряду с ними исследование ди- и трипептидов позволило сделать ряд менее принципиальных, но важных с практической точки зрения заключений. Их ценность в том, что они позволяют существенно сократить объем вычислительных работ без нарушения строгости расчета. Например, в анализе пептидных фрагментов можно не учитывать ряд конформаций основных и боковых цепей у N- и С-концевых остатков. Для N-концевого остатка достаточно рассмотреть R- и В-формы основной цепи с ориентациями боковой цепи при значениях -60 и 180°, а для С-концевого остатка - R- и L-формы основной цепи с ориентациями боковой цепи при %] —60 и 60°. Последствия неучитываемых у первого остатка фрагмента L-формы и угла % —60°, а у последнего - В-формы и угла Xi -180° можно заранее предвидеть. Отмеченные формы L и В отличаются соответственно от В- и R-форм основных цепей С- и N-концевых остатков положением (приблизительно на 180° по углу ф в первом случае и - во втором) крайних пептидных групп, что мало сказывается на результатах расчета. В этом можно убедиться, обратившись к таблицам предшествующей главы. [c.222]

    Цепи молекул белков и полипептидов построены из разнообразных остатков /-аминокислот. Помимо соединяющих их пептид )ых связей —СО—ЫН— аминокислотные остатки связаны большим числом водородных связей с удаленными остатками в результате их конформации. Условия максимального насыщения водородных, связей и максимальной плотности упаковки аминокислотных остатков приводят к свертыванию цени в предельное устойчивое состояние по типу а-спирали, обеспечивающему максимальное удаление боковых радикалов. Другим устойчивым предельным состояН 1см является неупорядочное свертывание — статистический клубок. [c.287]

    Конформация. — В 1951 г. Полинг и Kopи предложили конформацию полипептидной цепи, в частности фибриллярных белков. Эта конформация в настоящее время подтверждена множеством доказательств. Основанием гипотезы Полинга и Кори были точные рентгеноструктурные определения межатомных расстояний в простых пептидах, таких, как L-aлa(Hил-L-aлalHИн, данные для которого представлены на диаграмме а. Вследствие резонанса пептидных групп связь С—N укорочена, а связь С = 0 удлинена, амидные группы лежат в одной плоскости в грамс-положении. [c.709]

    При получении циклических пептидов приходится считаться с тремя дополнительными факторами, которые не играют роли при синтезе линейных полипептидов. Эти факторы следующие большая склоцрюсть к образованию линейных полимеров, чем циклических продуктов, нерастворимость исходного полипептида в подходящем растворителе и способность амидной связи су1цествовать в виде цис- или граяс-конформации [141]. [c.202]


    Существенное значение при замыкании циклов имеет пространственное расположение отдельных участков молекулы — так называед1ая конформация молекулы. Она выражается, например, в том, что пептиды различной длины циклизуются с разной легкостью. Особенно легко циклпзуются дипептиды, образуя дикетопиперазины. [c.499]

    Несмотря на все многообразие мономерных звеньев и типов их связывания, конформационные возможности углеводных цепей довольно ограниченны. Сахарное кольцо представляет собой жесткую структурную единицу, и соединение двух колец может быть описано двумя торсионными углами, ф и il), подобно тому как это делается для пептидов [48, 49]. Правда, четкие соглашения по поводу того, какой конформации полисахарида должны соответствовать значения ф и -ф, равные 0 , отсутствуют. Вообще говоря, имеется примерное общее правило такого рода для всех полимеров [18], но оно очень неудобно, когда речь идет о полисахаридах. По-видимому, лучше всего считать, что ф и а з равны 0°, если плоскости, разделяющие сахарные кольца пополам, копла-нарны  [c.118]

    Небольщие циклические пептиды особенно годятся для изучения конформаций, поскольку ограниченная молекулярная подвижность позволяет существовать только некоторым конформациям. Циклотрипептиды в кристаллах обладают только конформацией короны. В растворе же дополнительно появляется асимметричная конформация ванны в том случае, если в трипептиде присутствует хотя бы одна нехиральная аминокислота (саркозин, Ы-бензилглицин) [492а]. [c.203]

    По данным Рихардса [219], рибонуклеаза А при обработке бактериальной протеазой субтилизином расщепляется между остатками А1а-20 и Ser-21 на так называемый S-nenmud (1 — 20) и S-белок с последовательностью 21 — 124, содержащей 4 дисульфидных мостика. Оба компонента после разделения показывают ничтожную биологическую активность. Однако, если смешать их один с другим, биологическая активность восстановливает-ся, т. е. S-пептид и S-белок с помощью невалентных связей собираются в так называемую рибонуклеазу 5, обладающую пространственной структурой, близкой к нативной конформации. [c.403]

    По даииым Скоффоие и сотр. [222], синтезировавших большое число аналогов S-пептида, ои, будучи одии, образует статистический клубок. Спиральная конформация возникает лишь после соедннення с S-белком. Для связывания S-пептнда и S-белка существен остаток фенилаланина в положении 8. Для полного достижения биологической активности достаточно участка 1 — 14 S-пептнда. [c.404]

    Наряду с гидрофобными эффектами, существенное влияние на конформацию пептидных молекул оказывают водородное связывание и диполь-дипольное взаимодействие. Хорошей моделью для изучения такого рода взаимодействий являются глицинсодержащие пептиды. На рис. 4.4 изображена зависимость Л2 от числа атомов, разделяющих концевые группы для водных растворов глицинсодержащих пептидов при различных температурах. Зависимость должна быть линей- [c.198]

    Решающую роль в создании количественного метода сыграли положения о гармонии всех внутриостаточных и межостаточных взаимодействий и их преобладающем энергетическом влиянии над взаимодействиями белковой цепи с молекулами и ионами окружающей среды. Одно из этих положений позволило разделить проблему структурной организации белка на три менее громоздкие и поддающиеся последовательному решению частные проблемы ближних, средних и дальних взаимодействий. В результате специально разработанной классификации пептидных структур на конформации, формы и шейпы стало возможным получение достоверных количественных данных о конфор-мационных состояниях целых наборов структурных вариантов различных таксономических групп, ограничившись детальным анализом их отдельных представителей. Классификация настолько сократила объем вычислительных работ, что сделала реальным расчет трехмерных структур бе лков, на первых порах низкомолекулярных. Изложенные в книге результаты априорных расчетов структур трипсинового ингибитора, сложного фрагмента нейротоксина II и большого числа олигопептидов, состоящих из десятков аминокислотных остатков, свидетельствуют об адекватном отражении предложенными теориями (бифуркационной и физической) структурной самоорганизации белков и пептидов и реальности предсказания их нативных конформаций. [c.8]

    Конформация молекулы, как отмечалось, определяется взаимодействиями валентно несвязанных атомов. Поэтому при создании метода теоретического конформационного анализа, прежде всего, встал вопрос о способе количественной оценки энергии этих взаимодействий. Из двух альтернативных путей его решения - квантовомеханического и классического - первый должен быть исключен из-за громоздкости объектоп исследования, особенно если иметь в виду молекулы белка. Многочисленные попытки Б. Пульмана и А. Пульман использовать в конфор-мационном изучении пептидов полуэмпирические методы квантовой химии ограничились анализом лишь элементарных монопептидов [64]. Рассмотрим второй путь решения. [c.112]

    Другая серьезная проблема, возникающая при учете электростатических взаимодействий, связана с диэлектрической проницаемостью е. Выше отмечалось, что этот параметр характеризует макроскопическое свойство среды ослаблять взаимодействие зарядов, находящихся на большом расстоянии друг от друга. В конформационном анализе одной молекулы такая трактовка параметра е, строго говоря, теряет смысл. Тем не менее от использования диэлектрической проницаемости не отказались и вводят В расчет в виде эмпирического параметра, величина которого может существенно отличаться от величины известной физической константы. Определение е, используемой в конформационном анализе, связано с большими трудностями и вряд ли является однозначным. В отсутствие молекул растворителя в промежутке между близко расположенными атомами значение диэлектрической проницаемости определяется поляризуемостью взаимодействующих атомов и полем, создаваемым окружающими атомами и молекулами растворителя. Для неполярной среды Брант и Флори рекомендуют величину е = 3,5 [86]. Выбор был сделан при сопоставлении результатов конформационного анализа полипептидов с опытными данными. В работе Скотта и Шераги, посвященной конформационному анализу регулярных структур полипептидов, значение е варьируется от 1 до 4, что, однако, мало сказывается на профиле потенциальной поверхности [85]. Учитывая величину диэлектрической проницаемости в алкиламидах (е = 4), значения от 1 до 4 можно считать разумными при оценке электростатических взаимодействий атомов полипептидов в неполярных средах. В случае водных растворов значение зф должно быть больше, так как для самой воды е = 81 и, что весьма важно, вода при образовании водородных связей оттягивает на себя заряды атомов амидной группы. С. Кримм и Дж. Марк в расчете конформаций полипептидов с заряженными группами в водной среде использовали величину е, равную 10 [95]. В работе Е.М. Попова и соавт. [96] была рассмотрена возможность учета влияния растворителя на конформационное равновесие низкомолекулярных пептидов в рамках механической модели. Наилучшее совпадение с экспериментальными данными было получено при е = 4 для растворов в ССЦ, е = 6-7 - СНСЦ и е = 10 - Н2О. [c.119]

    Главная роль, определяющая стабильность транс- и 1<ис-конфигураций пептидной и сложноэфирной групп, отводится, как правило, стерическому фактору. Для решения вопроса о том, в какой степени предпочтительность той или иной формы обусловлена невалентными взаимодействиями, нами был выполнен расчет двух конформаций N-метилацетамида и метилацетата [19, 20]. Знание геометрических и термодинамических параметров обеих форм простейших молекул полезно при исследовании сложных пептидов и депсипептидов для оценки влияния соседних групп, воковых цепей, водородных связей, включения в цикл и т.д. В рассмотренных молекулах параметры транс- и цис-конфигураций отвечают Пептидной и сложноэфирной группам, не усложненным эффектом дальних взаимодействий. Результаты расчета вместе с экспериментальными ЯМными представлены в табл. II.2. [c.137]

    В табл. 11,15 даны теоретические значения валентных углов пептидной группы, усредненные по всем оптимальным конформациям трех моно-пептидов (Gly, А1а, Val). Средние значения практически полностью совпадают с рассчитанными нами валентными углами N-метилацетамида и в то же время несколько отличаются от известных параметров Полинга-Кори [40]. Последние, однако, не являются универсальными для пептидных соединений и, по существу, представляют собой экспериментальные значения, полученные Э. Хьюгэсом и В. Муром для Р-глицилглицина [103]. Более поздний анализ дал иные значения углов. Например, Дж. Пиментел и О. Мак-Клеллан [101] на основании многочисленных опытных данных получили среднее значение угла N O в амидах 122°, что совпадает с нашим расчетным значением (122,5°) и отличается от значения Л. Полинга и Р. Кори (125°). Для всех валентных углов при атоме С Полинг и Кори предлагают значение 109,5°. Эксперимент и наши расчеты противоречат такому предположению. Значения валентных углов при атоме С следует коррелировать по крайней мере с природой заместителя при С В последующих расчетах для длин связей были использованы параметры Полинга-Кори, а для валентных углов пептидной группы - значения, приведенные в табл. 11.15 углы при атоме С коррелировались с природой заместителя. Оставался неясным вопрос о зависимости этих углов от природы атомных фупп при атоме С , который и решался конформационным анализом метиламида ГЧ-ацетил- -фенилаланина. [c.176]

    Рассмотрение пространственного строения пептидов и метода их конформационного анализа начнем с изучения всех возможных конформаций у простейших молекул этих соединений, а именно A -Gly-Gly-NHMe (1) A -L-AIa-Z.-Ala-NHMe (II) и A -L-Val-L-Val-NHMe (III) [110, 111]. Можно полагать, что молекулы с выбранными аминокислотными остатками достаточно полно отражают конформационные возможности основных цепей дипептидов с любыми боковыми цепями стандартных аминокислот. Между тем конформационные задачи этих молекул наиболее просты, поскольку фактически сводятся к установлению оптимальных форм только основных цепей. В качестве переменных были выбраны углы вращения ф , Фг. 2, углы Xi и %2 У молекул II и III отвечали минимумам торсионных потенциалов и имели возможность изменяться при минимизации энергии (рис. 11.27). [c.194]

    Основой количественного метода конформационного анализа служат бифуркационная теория самосборки и физическая теория структурной Организации пептидов и белков (см. гл.2) Бифуркационная теория Исходит из представления о самопроизвольном свертывании белковой цепи Как о нелинейном неравновесном процессе, обусловленном и направляемом еобратимыми флуктуациями. Согласно физической теории нативная конформация белка считается плотно упакованной структурой, обладающей Минимальной внутренней энергией и согласованной в отношении всех 1утриостаточных и межостаточных взаимодействий валентно-несвязан- [c.219]

    Главный вопрос, на который требовался однозначный ответ, заключился в получении правильного количественного представления о конфор-йвционных возможностях пептида на основе ограниченных наборов предпочтительных конформаций составляюш их его фрагментов. Положитель-рый ответ позволяет избежать расчета пептида путем перебора всех возможных конформационных состояний его остатков и строить анализ на ооэтапном принципе, предваряя исследование всей молекулы расчетом ее фрагментов. Очевидно, этот принцип будет справедлив и окажется эф- ктивным только в случае избирательной согласованности ближних и дних взаимодействий, т.е. когда конформационные возможности пеп-описываются лишь некоторыми сочетаниями и только низкоэнерге- песких конформационных состояний фрагментов. [c.221]

    Пространственная классификация пептидных структур по конформациям, формам и шейпам построена по принципу "дерева". Все конформации делятся по формам основной цепи, а формы - по шейпам. Количество форм в каждом шейпе определяется числом возможных комбинаций R-. В-, L- и Н-формы остатков. Число конформаций каждой формы зависит от природы остатка. Все возможные формы основной цепи и шейпы пептидного скелета предполагаются равноценными. Предпо ггительность некоторых из них выявляется только в результате конформационного анализа, т.е. опробования на конкретной аминокислотной последовательности. В описанной структурной классификации возможна энергетическая дифференциация пространственного строения пептида на трех уровнях - шейпа, формы и конформации. [c.224]

    Выше рассмотрены в общем виде основные факторы, определяющие выбор пептидом того структурного типа или шейпа, который предоставляет наибольшие возможности для реализации средних взаимодействий. Обсудим теперь вопрос о том, каким образом происходит выбор формы основной цепи среди вариантов одного шейпа. Конформации с различными, но однотипными формами основной цепи, например В-В-В и B-R-L шейпа ее или R-R-R и R-B-L шейпа в принципе не обладают друг перед другом преимуществами в отношении средних взаимодействий, Так, в дипептиде Asn-Asn (см. табл. 11.30) у свернутых конформаций типа /R -R3, (i/ 6 = 0) и B21-L3, (. oбщ =1-6 ккал/моль) энергия межостаточных взаимодействий равна соответственно -5,2 и -5,4 ккал/моль. Предпочтительность первой конформации полностью обусловлена более низкой энергией (1,9 по сравнению с 3,7 ккал/моль) монопептидных взаимодействий, что является типичным случаем (ср. В21-В3) и Яп-Ьз) табл. П.ЗО). [c.230]

    Основные цепи, включающие остатки в L-форме, всегда проигрывают структурам того же шейпа с остатками в R- и В-формах по ближним взаимодействиям. Но это не единственная их слабость. На конформационных картах ф- 1/ монопептидов (см. рис. 11.10, 6) область L не только на -1,5 ккал/моль выше областей R и В, но и значительно уже. Следовательно, однотипные основные цепи с R- и В-формами остатков всегда энтропийно предпочтительнее основных цепей с L-формами остатков. Последние имеют более узкий диапазон разрешенных значений углов (ф, V) и, следовательно, меньшую возможность для образования компактных структур. Отмеченные соображения объясняют редкую встречаемость L-форм у остатков (за исключением Gly) в белках (см. рис. 11.23). Эти же соображения служат обоснованием одного методического приема, существенно упрощающего поиск низкоэнергетических оптимальных конформаций пептидов. У каждого шейпа имеется лишь одна форма основной цепи с остатками в R- и В-областях (точнее, их две, но они отличаются лишь формой С-концевого остатка, и поэтому, как уже отмечалось, 1фактически изоэнергетичны). [c.230]

    На первом этапе конформационного анализа пептида при выяснении энергетических соотношений между оптимальными структурами разных типов пептидного скелета достаточно рассмотреть все возможные структурные варианты только с R- и В-формами остатков. Варианты с L-формами остатков следует анализировать только у тех шейпов, которые обладают наиболее низкоэнергетическими структурами с R- и В-формами остатков. Если у свободного фрагмента все принадлежащие одному шейпу конформации с R- и В-формами остатков имеют высокую относительную энергию, то варианты с L-формами остатков того же шейпа будут еще более высокоэнергетичными. [c.230]

    Важным представляется вопрос о критерии отбора перспективных структурных вариантов. Коль скоро метод энергетической оценки пептидных конформаций является не строго теоретическим, а полуэмпири-ческим, то пороговое значение энергии при селекции структурных вариантов должно устанавливаться опытным путем. Однако этот путь фактически закрыт из-за отсутствия соответствующих экспериментальных количественных данных о конформационных возможностях линейных низкомолекулярных пептидов. Позднее эта тема будет рассмотрена подробнее. Сейчас лишь отметим некоторые факты, с помощью которых можно сделать ориентировочную оценку пороговой величины энергий. Так, в структурах белков практически отсутствуют остатки (кроме Gly) с Н-формой основной цепи и редко встречаются остатки с L-формой величины энергий этих форм уступают R- и В-формам всего лишь -2,0 и 1,5 ккал/моль соответственно. Почти не встречаются в белках остатки, стоящие перед Pro, с R-формой основной цепи, энергия которой в этом случае составляет 4,5-5,0 ккал/моль. Можно привести еще несколько аналогичных фактов, указывающих на порядок величины пороговой энергии. Тем не менее подобные оценки не формализуют метод и не освобождают его полностью от интуиции исследователя. [c.232]


Смотреть страницы где упоминается термин Пептиды конформации: [c.569]    [c.577]    [c.569]    [c.577]    [c.84]    [c.348]    [c.413]    [c.413]    [c.204]    [c.199]    [c.200]    [c.135]    [c.177]    [c.189]    [c.193]    [c.194]    [c.213]   
Общая органическая химия Т.10 (1986) -- [ c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Конформации пептидов в растворе

Конформации пептидов и белков

Конформация малых пептидов

Предсказание конформаций пептидов и белков

Растущий пептид конформация на рибосоме



© 2025 chem21.info Реклама на сайте