Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение молибдата железа

    Определение молибдата железа [c.170]

    Окись железа в описанных условиях в раствор не переходит и поэтому присутствие ее в исследуемом материале не влияет на результат определения молибдата железа. Если же в материале есть гидроокись железа, ее необходимо удалить перемешиванием с 200 мл 2%-ного раствора гидразина в течение 2,5 ч. Осадок отфильтровывают, промывают раствором гидразина, помещают в стакан и обрабатывают цитратом натрия, как описано выше. [c.171]


    ОПРЕДЕЛЕНИЕ МИКРОПРИМЕСИ ЖЕЛЕЗА В МОЛИБДАТЕ СВИНЦА [c.80]

    Результаты определения добавок железа к раствору молибдата свинца [c.83]

    При анализе обожженных молибденовых концентратов и отвалов помимо трехокиси молибдена, молибдатов железа и кальция необходимо определять и другие его окислы (низшие), а также молибденит. Для определения окисленных соединений применять кипячение с соляной кислотой нельзя, так как при этом некоторое количество молибдена восстанавливается и образуется молибденовая синь, что значительно искажает результаты. [c.168]

    Хорошо заметно, что конверсия падает, демонстрируя обеднение поверхности катализатора кислородом. Диффузия решеточного кислорода из объема катализатора к поверхности изучается по эффекту отдыха. Для этого после 15 последовательных импульсов пропилена катализатор остается при температуре опыта в атмосфере гелия на более длительное время (45 мин), а затем подвергается воздействию вторичных импульсов кислорода (импульсы 16 и 17). Конверсия пропилена на обоих катализаторах после отдыха возрастает по сравнению с 15 импульсом в 15 раз. По окончании восстановления при каждой температуре подводится баланс по кислороду. Восстановленные после 17 импульса образцы исследовались с помощью мессбауэровской спектроскопии для определения содержания восстановленных форм молибдата железа. На рис. 3.35 приведены мессбауэровские спектры катализатора в исходном состоянии и после 17 импульсов. [c.151]

    Высокозарядные ионы металлов способны восстанавливаться ступенчато и давать несколько полярографических волн. Это характерно, например, для анионов хромата, молибдата, вольфрамата, ванадата, катионов железа (П1), кобальта и др. На рис. 25.8 показано восстановление хромат-ионов в растворе гидроксида аммония. Первая волна соответствует восстановлению хромат-ионов до хрома (П1), вторая — переходу хрома(И1) в хром (И). Высшая степень окисления образует волну при более положительном потенциале, чем средняя (или низшая) степень окисления. Это явление иногда используют для устранения влияния посторонних ионов. Так, никель (И восстанавливается легче кобальта (И) и мешает определению последнего. В этом случае можно сначала окислить кобальт до трехвалентного, например пероксидом водорода в аммиачном растворе. Полярогра- [c.502]

    Приготовление из лабораторных молибденовых остатков (после определения фосфора гравиметрическим методом). Фильтраты (без промывных вод) упаривают в фарфоровой чашке до небольшого объема. Жидкость сливают, а к остатку, состоящему главным образом из нитратов и молибдатов, приливают немного горячей воды, растирая пестиком, переводят в коническую колбу и обрабатывают концентрированным аммиаком, избегая его избытка. Молибдат при этом растворяется, а выпавший осадок гидроксида железа Ре(ОН)з отфильтровывают и промывают два раза горячей водой. [c.18]


    Отбирают 25,0 мл основного раствора в мерную колбу вместимостью 100 мл, добавляют 1 мл 1 %-иого раствора нитрата железа (II) и аммиак (1 1) до появления первой мути гидроксидов, которую растворяют добавкой по каплям НС1 (1 1). Добавляют 2 мл 2%-ного раствора гидроксиламина солянокислого и кипятят 1 мин. После охлаждения добавляют 7 мл НС1 (1 1) и 4 мл 5 %-ного раствора молибдата аммония, далее ведут определение так же, как в ферромарганце. [c.212]

    Этот метод может быть применен лишь к таким колориметрическим реакциям, при которых окраска возникает сразу при добавлении исследуемого вещества и образование ее не связано с дополнительными химическими процессами, например образование красной окраски при взаимодействии железа (П1) с роданидом. Колориметрические определения, связанные с восстановлением и другими химическими процессами, как, например, колориметрирование кремния в виде комплекса с молибдатом аммония, не могут быть выполнены этим методом. [c.45]

    Определение малых количеств молибдена в свинце может быть проведено после предварительного отделения молибдена от свинца соосаждением молибдата свинца с какой-нибудь труднорастворимой солью в качестве коллектора. Этим коллектором может служить, например, присутствующий в свинце мышьяк, образующий труднорастворимый осадок арсената свинца. Если свинец является чистым (марки С-00, С-000) и не содержит больших количеств мышьяка, то в качестве коллектора можно использовать другие труднорастворимые соли свинца. Осаждение малых количеств молибдата свинца проводили фосфатом свинца. Для удержания в растворе висмута и железа использовали комплексон III. Осадок фосфата свинца вместе с молибденом захватывал также мышьяк и сурьму. Для их удаления осадок обрабатывали горячей соляной кислотой и затем проводили упаривание с серной кислотой. При этом мышьяк и большая часть сурьмы отгонялись в виде хлоридов. После отделения сульфата свинца в фильтрате колориметрически определяли молибден по окраске его роданидного комплекса, который извлекали изоамиловым спиртом. При содержании молибдена больше 0,0001 % для колориметрирования брали аликвотную часть с содержанием 0,04—0,1л г молибдена. При [c.275]

    Еще более заметно подобное внешнесферное влияние при некоторых других системах. Так, олово (IV) и железо (II) заметно влияют на спектр поглощения роданидного комплекса молибдена [84]. Значительные трудности возникают при определении молибдена в присутствии вольфрама [85]. В частности, установлено, что вольфрамовая кислота не выпадает в осадок в присутствии молибдата кроме того, вольфрам оказывает влияние на скорость восстановления молибдена до пятивалентного, который образует окрашенный роданид. Ионы алюминия, не образующие прочных комплексов с роданид-ионами, снижают оптическую плотность раствора роданида молибдена [86]. [c.364]

    Определению не мешают ионы ацетата, алюминия, аммония, бромида, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, бихромата, фторида, трехвалентного железа, двухвалентного свинца, двухвалентного марганца, молибдата, никеля, оксалата, перхлората, перманганата, калия, серебра, натрия, сульфата, ванадата и цинка. Мешают ионы силиката, арсената, арсенита, германата и нитрита их следует удалять перед первой экстракцией. Допустимо присутствие не более 200 мкг мл нитрата и 20 мкг мл вольфрамата. [c.22]

    Определению мешают бихромат, молибдат, перйодат, перманганат, тиосульфат, вольфрамат, ванадат, трехвалентные золото и железо, хлороплатинат, хлорат и сульфит. Анализируемый раствор также должен быть относительно свободен от органического вещества, которое может поглощать в ультрафиолетовой области. Ионы йодида, двухвалентной меди, уранила, цианида и двухвалентного железа допустимы в концентрации до 20 мг л. Максимально допусти- [c.133]

    Титан можно осаждать в присутствии железа (II и III), алюминия, цинка, кобальта, никеля, бериллия, хрома (III), марганца (II), кальция, магния, таллия, церия (III), тория, натрия, калия, аммония, а также фосфатов, молибдатов, хроматов, ванадатов, перманганатов, уранила и ванадила. Мешают определению ионы циркония, церия (IV) и олова. Перекись водорода также должна отсутствовать. На осаждение циркония влияют церий (IV), олово, большие количества фосфата, а также титан при отсутствии в растворе перекиси водорода. [c.156]

    Полученный плав обрабатывают водой при кипячении, фильтруют и промывают нерастворимый в воде остаток 1 %-ным раствором карбоната натрия. В остатке можно определить железо, титан и цирконий ранее описанными методами . В фильтрате можно определить колориметрически хром, если он присутствует в количестве достаточном, чтобы придать раствору заметную окраску (см. ниже, стр. 978). После этого, или тотчас же, если не проводили колориметрического определения хрома, прибавляют достаточное количество нитрата аммония, чтобы весь карбонат йог вступить с ним в реакцию, и нагревают на водяной бане, пока не будет удалена ббльшая часть карбоната аммония. При этом осаждается весь или почти весь алюминий вместе с фосфором и частью присутствующего ванадия. Осадок промывают разбавленным раствором нитрата аммония, пока желтый цвет хромата не исчезнет совершенно из промывных вод, после чего растворяют осадок в азотной кислоте и осаждают фосфор раствором молибдата аммония. Фильтрат от алюминия и фосфора, содержащий хром в виде хромата и большее или меньшее количество ванадия, может быть обработан, как описано ниже. j [c.977]


    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]

    На осаждении ионов молибдата в форме Ag2Mo04 основаны гравиметрический (стр. 162) и титриметрический (стр. 171) методы определения молибдена. При попытке отделять молибдат от железа осаждением в форме Ag2Mo04 из ацетатного буферного раствора [1056] не удалось получить удовлетворительные результаты [469]. Осадок Ag2Mo04 всегда загрязнен железом 469]. [c.19]

    Протокатеховый альдегид (водный раствор) взаимодействует с молибдатом при pH 6,6—7, давая при больших концентрациях молибдена оранжевое, а при малых концентрациях — бледно-желтое окрашивание раствора [357]. Обнаруживаемый минимум равен 0,2 мкг1мл Мо при предельном разбавлении 1 5000 000 [357]. Протокатеховый альдегид образует окрашенные соединения с трехвалентным железом, а также с ванадатом и трехвалентным церием. Молибденовая кислота образует с протокате-ховым альдегидом соединения, в которых на 1 моль МоОз приходится 1 или 2 моля реагента [681, 742]. Растворы соединения молибдена подчиняются закону Бера [357]. Протокатеховый альдегид применяют для фотометрического определения молибдена в сталях [357]. [c.41]

    При изучении влияния мышьяка на результаты определения молибдена [760] раствор молибдата в 1,5 N Н2804, содержащий различные количества мышьяка, восстанавливали жидкой амальгамой цинка, затем титровали его 0,1 N КМПО4. При этом для молибдена всегда получали слишком высокие результаты, а конечная точка титрования была неотчетливой. Таким образом, мышьяк мешает определению молибдена. При растворении сталей в соляной кислоте мышьяк, улетучивается в виде АзНз и, таким образом, не мешает определению молибдена. Но при высоком содержании мышьяка в сталях (более 0,16%) необходимо произвести отгонку его в виде АзНз перед тем, как отделять шестивалентный молибден от железа при помощи бЛ NH40H. [c.183]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Определение кобальта измерением оптической плотности экстракта в ультрафиолетовой области спектра [1011]. К анализируемому раствору, содержащему 0,2—10 мкг[мл Со и имеющему pH от 3,0 до 5,3 (устанавливают необходимое pH растворами хлорной кислоты и гидроокиси аммония), прибавляют 25 мл 44%-ного раствора роданида аммония, разбавляют водой до 50 мл и экстрагируют двумя порциями по 20 мл изоамилового спирта, насыщенного роданидом аммония. Экстракт разбавляют изоамиловым спирто.м до 50 мл и измеряют оптическую плотность экстракта на спектрофотометре При длине волны 312 ммк. Определенню не мешают 5 мкг никеля, 10 мкг ванадата илн меди, 25 мкг свинца, 50 чкг иодата, 75 мкг марганцп, 100 мкг молибдата, люминия и цинка в 1 мл раствора. Мешают ионы тре.хвалентного железа, уранила, трехвалентного и шестивалентного хрома, ферроцианида, олова, иит-рат-ионы и титан. [c.157]

    Ленч [9101 усовершенствовал метод определения фосфора в железе и сталях любой марки. Ингибирующее действие железа на осаждение оксихинолинфосфоромолибдата устраняют добавлением большого избытка осадителя или выдерживанием анализируемого раствора с осадком (после введения осадителя) при нагревании. Аз предварительно удаляют отгонкой из раствора, содержащего НВг. Осаждение хинолинниобо- и хинолинатантало-молибдатов предотвращают добавлением винной кислоты. Винная кислота предотвращает также осаждение вольфрамовой кислоты, с которой соосаждается фосфор. [c.33]

    При использовании в качестве экстрагента бутилацетата [808] рекомендуется проводить экстрагирование из 0,5 N НС1 в присутствии 0,5% NaaMo04, хотя, по мнению авторов, кислотность и концентрация молибдата мало влияют на экстракцию. Состав комплекса, экстрагируемого бутилацетатом, выражается соотношением Р Мо = 1 12, экстракт характеризуется максимумом светопоглощения при 310 нм. Свободная молибденовая кислота не экстрагируется. При 310 нм закон Бера соблюдается для концентрации до 30 мкг Р2О5 ь Омл бутилацетата. Молярный коэффициент погашения равен 23 ООО Si, As (III) и Ge не экстрагируются. Метод применим к определению фосфора в железе и стали. [c.90]

    Поскольку фосфор образует комплексные гетерополикислоты, то он может быть определен, подобно германию (см. Германий ), прп помощи нитрона в гликолевом буферном растворе Образованием фосфорномолибденовой гетерополикислоты пользуется Хлебовский предложивший чрезвычайно сложный метод косвенного определения фосфора в минералах и сплавах. После разложения пробы получают осадок гетерополикислоты, экстрагируют его изобутиловым спиртом водную фазу, содержащую избыток молибдата, примененного для осаждения фосфора, обрабатывают амальгамой цинка для восстановления молибдена (VI) до молибдена (III) и титруют последний раствором железа (III). Описанные операции сопровождаются, конечно, многократными промываниями и фильтрованиями, причем мышьяк надо удалять возгонкой, а ванадий восстанавливают до низшей валентности, чтобы он не участвовал в образовании гетерополикислоты. По нашему мнению, такой способ вряд ли может получить практическое применение не только вследствие исключительной громоздкости, но и потому, что точность его весьма сомнительна. [c.329]

    Рентгеноструктурные данные показали также, что ни в одном образце нет свободных окислов В], Мо и Ре. Таким образом, независимо от количества железа, вводимого в молибдат висмута, всегда образуется тройное соедаинение с определенными структурными [c.21]

    Для определения состояния ионов железа в молибдате висмута использовалн метод ГР-спектроскопии. На рис. 63 приведены спектры висмут-же-лезо-молибденовых катализаторов разного состава. Анализ спектров показал, что окружение иона Ре + кислородными ионами в указанных о-бразцах различно, и магнитные взаимодействия приводят к возникновению сверхтонкой структуры в спектре 1. [c.197]

    Анализ загрязнений вод — определение фосфатов. Одним из наиболее чувствительных методов определения фосфатов в воде является так называемый метод образования молибденовой сини. В этой методике фосфат реагирует с молибдатом аммония, образуя фосфоромо--либдат аммония (ЫН4)5Р(МозОю)4. В свою очередь, это соединение можно восстановить широким набором реагентов, включая гидрохинон, олово(II) и железо(II), с образованием интенсивно окрашенного вещества, называемого молибденовой синью. Концентрацию последнего можно измерять спектрофотометрически, что дает возможность определять содержание фосфата. Молибденовая синь является слож- [c.653]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Окрашенные ионы металлов — марганца, трехвалентного хрома, трехвалентного железа, кобальта, пятивалентного и шестивалентного молибдена — мало поглощают или совсем не поглощают свет при 765 ммк. С другой стороны, четырехвалентный и пятивалентный ванадий, двухвалентная медь и в меньшей степени никель поглощают при 765 ммк и мешают определению кремния, поэтому их надо удалить или скомпенсировать их влияние. Кроме того, трехвалентное железо, пятивалентный ванадий, шестивалентный молибден и двухвалентная медь мешают, окисляя хлористое олово, которое добавляют для восстановления кремнемолибденового комплекса. Трехвалентное железо в момент добавления ЗпСЬ может присутствовать в количестве не более 2—3 мг, в противном случае получаются заниженные для кремния результаты. Мешающее влияние железа можно устранить его восстановлением до двухвалентного состояния в серебряном редукторе перед добавлением молибдата аммония. Двухвалентное железо частично восстанавливает кремнемолибденовый комплекс до молибденовой сини, но не восстанавливает молибдат аммония. К сожалению, этого нельзя сказать о пятивалентном молибдене [c.46]

    Эти методы имеют ограниченное применение, так как многие ионы препятствуют определению. Помимо перечисленных, весовому опредёле-т нию мешают железо, висмут, сурьма (III), мышьяк (III), фториды, бромиды, иодиды, оксалаты, ацетаты, цитраты, родапиды, фосфаты, молибдаты, хроматы, вольфраматы и большие количества нитратов. На результаты объемного определения влияют все ионы, которые окисляют подид или восстанавливают иод. [c.156]

    Метод образования молибденовой сини Для приготовления применяемого в этом методе фосфоромолибденового реактива растворяют 20,6 з безводного молибдата натрия в 100 мл воды, к раствору прибавляют 3 г КааНР04 12Н2О, растворенного при нагревании в 25 мл воды, и добавляют по каплям разбавленную (1 1) азотную кислоту, пока раствор не станет золОтисто-желтым, что примерно соответствует pH = 3,0. Анализируемый раствор, содержащий 0,05—0,5 мг сурьмы, нейтрализуют, разбавляют до 25 мл, прибавляют 3 мл разбавленной (1 4) серной кислоты, 3 мл насыщенного раствора сернистого ангидрида и кипятят до удаления ЗОз- Снова разбавляют до 30 мл, приливают 1 мл указанного -фосфоромолибденового реактива и нагревают 10 мин на кипящей водяной бане. Затем охлаждают до комнатной температуры, приливают 8 мл разбавленной (1 4) серной кислоты для разложетия избытка реактива, оставляют на мин, периодически взбалтывая, и разбавляют в мерной колбе до 50 мл. Светопоглощение полученного синего раствора измеряют в фотоколориметре. Висмут определению сурьмы этим методом не мешает. Мешает присутствие даже малых количеств железа, поэтому сурьму рекомендуется предварительно выделять на медной фольге. [c.331]

    Осаждение в присутствии ванадия. Приготовляют раствор так же, как при определении в отсутствие ванадия (см. выше), охлаждают до 10—20° С, вводят достаточное количество сульфата железа (И), чтобы восстановить ванадий, а затем добавляют несколько капель сернистой кислоты. Если раствор не содержит железа, целесообразно прибавить около 1 г железа в виде нитрата железа (П1), свободного от фосфора, для предотвращения восстановления молибдена. Вводят 20—30-крат-ный избыток холодного раствора молибдата и встряхивают раствор 5 мин. Оставляют стоять в продо сжение ночи или, если заканчивают алкалиметрическим титрованием, не менее 30 мин. Фильтруют и в дальнейшем поступают, как указано в разделе Осаждение в отсутствие ванадия (см. выше). [c.784]


Смотреть страницы где упоминается термин Определение молибдата железа: [c.20]    [c.174]    [c.23]    [c.182]    [c.356]    [c.174]    [c.84]    [c.389]    [c.236]    [c.89]    [c.226]    [c.294]    [c.445]    [c.799]    [c.261]    [c.17]   
Смотреть главы в:

Фазовый анализ руд и продуктов их переработки -> Определение молибдата железа




ПОИСК





Смотрите так же термины и статьи:

Молибдаты



© 2025 chem21.info Реклама на сайте