Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование комплексов, константы диссоциации

    Устойчивость комплексов характеризуется константой диссоциации (нестойкости) /Собщ, или константой образования. Диссоциация координационной сферы происходит ступенчато. Каждая стадия диссоциации комплекса определяется ступенчатой константой диссоциации Ki, К2 Кп-Чем больше значение /Сдис. тем менее устойчива комплексная частичка. Общие и ступенчатые константы связаны между собой Кобщ=Кь Кз... /С .Так, комплекс [Ag( N)2] Кдио = 1-10-22 значительно прочнее [Ag(NH3)2]+ /(дис == 9,3-10 . Для разрушения комплексного соединения необходимо связать одну из частичек, образующихся при диссоциации комплекса, в менее диссоциированное соединение, что приводит к смещению равновесия в сторону диссоциации комплекса. Так, введение в раствор, содержащий [Ag(NH3)j]+, иодид-ионов приводит к разрушению комплекса и образованию осадка Agi, потому что ПРаех = [c.291]


    Константу К тп называют константой образования или константой устойчивости данного комплексного соединения. Обратную ей величину именуют константой нестойкости этого соединения. Чем больше численное значение константы устойчивости (чем меньше значение константы нестойкости), тем большие количества комплексных элементарных объектов при прочих равных условиях находятся в растворе, и наоборот. Следовательно, предпосылка существования в растворе комплекса — его низкая способность к диссоциации. Поэтому в растворах комплексные соединения могут быть определены как малодиссоциированные соединения. [c.73]

    Константа нестойкости есть мера прочности комплекса. Из двух приведенных комплексов более устойчив второй. Ему отвечают меньшая константа нестойкости и меньшая равновесная концентрация ионов серебра в растворе. Вместо константы нестойкости иногда пользуются величиной обратной, называемой константой устойчивости Куст= 1/К нест. применяется она для описания равновесия образования комплекса. Большей константе устойчивости соответствует большая концентрация комплексных ионов в состоянии равновесия. Более детальное изучение диссоциации комплексных ионов показывает, что этот процесс протекает ступенчато. Например, у комплекса [А (КНз)2]+ отщепляется сначала одна молекула аммиака  [c.150]

    Образование комплексов, константы диссоциации [c.594]

    Растворимость осадка зависит от характера химического взаимодействия между осаждаемым ионом и осадителем, В случае образования комплекса с избытком осадителя растворимость при некотором избытке осадителя может сильно повышаться. Если известна константа диссоциации соответствующего комплекса и произведение растворимости осадка, можно рассчитать ход кривой и условия минимальной растворимости .  [c.47]

    Для вывода уравнения стационарной скорости ферментативной реакции, в которой происходит обратимая изомеризация фермента с образованием неактивного конформера (схема 6.27), запишем уравнение материального баланса по ферменту (в случае [8]о [Е]о), а также выражения для скорости распада фермент-субстратного комплекса и для константы диссоциации фермент-субстратного комплекса  [c.138]

    Кт (называется константой Михаэлиса) — константа диссоциации в реакции образования комплекса фермент — субстрат. Как и все константы диссоциации, константа Михаэлиса имеет размерность концентрации и при V = величина [c.151]


    Таким образом, при образовании комплексов в растворе происходит последовательное (стадийное) внедрение лигандов во внутреннюю сферу комплексообразователя с соответствующим отщеплением молекул воды, так как исходный ион Си + был гидратирован (ои имел состав [Си (Н20)4] ). При диссоциации комплекса [Си (ЫНз). ]-+, наоборот, происходит соответствующая замена лигандов на молекулы воды. Поскольку концентрация воды при таких процессах не изменяется, ее не включают в выражение констант устойчивости или констант нестойкости. [c.206]

    Расчеты растворимости осадков при образовании комплексов связаны с некоторыми затруднениями. Обусловлено это тем, что для многих комплексных соединений пока не установлены константы диссоциации (константы нестойкости или устойчивости). Кроме того, комплексные ионы, аналогично многоосновным кислотам, образуются и диссоциируют ступенчато. Состояние равновесия между отдельными формами комплексных групп зависит от концентрации лиганда и кислотности раствора. [c.176]

    Хотя синтез аффинного сорбента с индивидуальной специфичностью при наличии одной из продажных активированных матриц и не представляет особого труда, он все же требует наличия достаточного количества очищенного аффинного лиганда, не инактивирующегося в условиях его посадки на матрицу. Заметим, что после посадки лиганда на матрицу прочность связывания с ним биоспецифического партнера может сильно уменьшиться по сравнению с тем уровнем, который наблюдался при образовании их свободного комплекса в растворе (иной раз константа диссоциации комплекса на сорбенте может оказаться на три порядка выше, чем в растворе). Это обстоятельство играет важную роль при осуществлении конкурентной аффинной элюции вещества с сорбента с использованием свободного лиганда (см. ниже). Тем не менее прочность аффинного связывания в большинстве случаев оказывается достаточной для удержания нужного вещества на матрице в условиях отмывки с нее всех сопутствующих ему примесей. Нередко прочность комплекса вещества с аффинным лигандом увеличивается, если последний имеет некоторую свободу ориентирования в пространстве, т. е. закреплен на матрице с помощью спейсера. [c.362]

    Здесь Е — Са—АТФаза, Ь — лиганд (АТФ или АДФ) /С д — кажущаяся константа диссоциации комплекса фермент — лиганд (ЕЬ), а к1 — константа скорости инактивации фермента. Считая, что скорость образования комплекса ЕЬ значительно выше скорости инактивации фермента, убыль немодифицированной формы фермента мож но описать следующим уравнением  [c.364]

    Работа 22. Определение колебательной постоянной и ангармонично сти для радикала СЫ в электронно-возбужденном состоянии. . Работа 23. Определение константы равновесия реакции образовани комплекса по электронно-колебательному спектру поглощения. Работа 24. Определение констант диссоциации слабых органически кислот но электронно-колебательным спектрам поглощения. . .  [c.491]

    В реакции (7.47) и в выражении для константы равновесия символ АТФ обозначает сумму различных ионизированных и комплексных форм, сосуществующих в равновесном растворе это же замечание относится и к символам АДФ и Ф. Поэтому значение /Снабл при данной температуре и концентрации электролита является функцией pH и концентрации ионов металла, связанных в комплексы с АТФ, АДФ и Ф. Поскольку /Снабл есть функция pH и концентрации ионов металла, значения различных термодинамических величин также являются функциями этих переменных. Связь константы равновесия такого типа с более привычными константами равновесия может быть найдена, если дополнительно рассмотреть соотношения, описывающие кислотную диссоциацию и образование комплексов с ионами металлов для АТФ и других входящих в систему соединений. [c.224]

    Константа равновесия этого процесса — константа диссоциации макроциклического металлокомплекса, ее величина определяется многими факторами Обратный процесс образования комплекса [c.13]

    Образовавшийся комплекс, называемый фермент-ингибиторным комплексом Е1, в отличие от фермент-субстратного комплекса Е8 не распадается с образованием продуктов реакции. Константу диссоциации комплекса Е1, или ингибиторную константу К, можно, следуя теории Михаэлиса—Ментен, определить как отношение констант обратной и прямой реакций  [c.149]

    Оригинальная методика определения констант диссоциации серьгой кислоты приведена в [227] данный процесс рассматривается с й образования сульфит-водородных комплексов по уравне- [c.63]

    Томас [97, 98] и Рафтери с сотр. [99—102] наблюдали уширение линий и изменение химических сдвигов сигналов метильных групп ацетамидных фрагментов этих ингибиторов и субстратов в присутствии лизоцима. Рафтери и сотр. изучили взаимодействие АГА, (АГА) 2, (АГА)з и (АГА) 4, а также а- и Р-метилглюкозидов с лизоцимом. Устанавливается равновесие Е+5 Е5, где Е и 5 — фермент и субстрат (ингибитор) соответственно, а Е8 — образованный ими комплекс. Константы диссоциации комплексов /Сз известны. Считается, что обмен свободных и связанных молекул происходит достаточно быстро. Поэтому наблюдаемый сигнал является усредненным. Его положение и полуширина — это средневзвешенные значения химических сдвигов и полуширин линий для обоих окружений в соответствии с молярным соотношением субстрат/фермент, которое всегда было не меньше 4. Однако в некоторых случаях приближение быстрого обмена не выполняется. Обмен оказывается слишком медленным, и его скорость зависит от pH и температуры. В частности, примечательно, что при медленном обмене сигнал ацетамидо-группы сильно уширен за счет не связанного с молекулярным движением вклада в кажущееся значение Тг. [c.389]


    Константы диссоциации тем больше, чем менее устойчиво данное соединение, чем больше оно распадается на составные части. В выражениях для констант диссоциации в числителе всегда стоят концентрации (активности) продуктов распада данного соединения, в знаменателе — концентрации нераспавшихся сложных частиц. К константам этого типа принадлежат так называемые константы диссоциации кислот н оснований, ПР (Кв) малорастворимых электролитов, ионное произведение воды, а также константы нестойкости комплексов, которые в настояшее время применяют мало. Следует иметь в виду, что константы образования и константы диссоциации для каждого данного равновесного процесса взаимно обратны  [c.92]

    Расчеты растворимости осадков при условии связывания катиона в комплекс несколько затруднены, так как для многих комплексных ионов неизвестны точные величины констант диссоциации (констант нестойкости). Кроме того, комплексные ионы, содержащие несколько координированных групп (обычно 4 или 6), образуются и диссоциируют ступенчато, подобно многоосноБным кислотам. Наконец, состояние равновесия образования многих важных групп комплексных соединений, как цианиды, виннокислые и другие комплексы, зависит от кислотности раствора (см. 22). [c.43]

    При взаимодействии а-химотрипсина е Ы-ацетил-Ь-трип-тофаном происходит быстрое образование равновесного комплекса фермент-кислота, за которым следует реакция ацилирования фермента свободной кислотой [11]. При низких значениях pH ([Н+] Жа, где /Са — константа диссоциации Ы-ацетил-Ь-триптофа-на) кинетическую схему этой реакции можно записать в виде [c.154]

    Растворение гидроксидов и солей слабых кислот в кислых растворах достигается в результате уменьшения концентрации аниона. Можно перевести труднорастворимую соль в раствор, уменьшая концентрацию катиона путем связывания его в комплексный ион с помощью подходящего лиганда. Например, можно растворить Ag l в растворе аммиака, связывая ион Ag B виде комплекса [Ag(NH3)2]. Для упрощения расчета не будем учитывать ступенчатый характер образования комплексного иона, т. е. будем принимать во внимание только равновесие А + 2NH 3 [Ag(NH 3)2] которое характеризуется константой диссоциации комплекса 9,3 10" М . При полном растворении получится раствор соли [Ag(NH 3) aJ l. Чтобы получить раствор этой соли с концентрацией, скажем, 0,01 М, нужно, чтобы концентрация Ag не превышала отношение ПР/0,01 = 1,8 10" /0,01 =1,8 10 М. Из условия [Ag ][NH3]V[Ag(NHs)2] = 9,3 10" следует, что концентрация NH3 должна быть не ниже чем] / - - - =0,227 М. [c.250]

    Рассмотрим результаты экспериментального исследования реакций образования комплексов серебра в водных растворах пептида триглнцина NH2 H2 ONH H2 ONH H2 OOH. Его протолитические свойства характеризуются следующими значениями ступенчатых констант рКа i = 3,13 0,04 и рКа2 = = 7,92 0,03. Диссоциация по первой ступени отвечает переходу НгА+ в цвиттерион НА , а вторая — переходу к аниону А-. [c.631]

    Рассчитаем, например, сколько хлористого серебра можно растворить в 1 л раствора, содерн ащего 1 моль NH3 (константа диссоциации диаммина серебра и произведение растворимости хлористого серебра соответственно равны 6-10 и 1,6-Ю" при 25°С). Равновесие образования комплекса запишется в виде [c.271]

    Пример 3. Молярный коэффициент поглощения комплекса e eXa состава МеХз равен 5-101 Исходная концентрация реагента С х = моль/л исходная концентрация металла = 6,6 10 моль/л константа диссоциации реагента Ка.нх = 10" pH = 2. Измеренная в этих условиях оптическая плотность для толщины поглощающего слоя J см равна 0,30, Оценить константу образования комплекса рз = [МеХз]/([Ме +] [Х"] )и выбрать условия эксперимента, отвечающие минимальной погрешности в оценке константы Рз. [c.136]

    Исследование взаимодействий ДНК (и РНК) с малыми молекулами важно для познания структуры ДНК и возможных ее изменений. Малые молекулы ряда соединений существенно влияют на биологическую функцию ДНК в качестве мутагенов (например, акридиновые красители, см. стр. 529) и ингибиторов транскрипции (например, актиномицин и другие антибиотики). Установлено, что это влияние определяется способностью антибиотиков образовывать медленно диссоциирующие комплексы с ДНК. [135—137]. Ингибирование транскрипции (см. стр. 565) создается как затруднениями для расплетания ДНК [89], так и практической необратимостью образования комплексов типа ДНК — актиномицин. Акридиновые красители (АК), имеющие примерно такую же константу связывания с ДНК, как и актиномицин при низкой ионной силе, и увеличивающие ДНК примерно на ту же величину [88], практически не влияют на транскрипцию [138]. Время диссоциации комплекса ДНК — профла-вин составляет по порядку величины 10 сек, время диссоциации комплекса ДНК—актиномицин — 260 сек. [c.528]

    Рассмотрим химическое превращение соединения 5, протекающее с константой скорости кы через стадию образования переходного состояния Т. Пусть — константа равновесия для образования Т. Предположим, что фермент Е образует комплекс с субстратом, характеризующийся константой диссоциации Кав, и комплекс с состоянием Т, характеризующийся 1Константой диссоциации /Сат  [c.49]

    Обозначим константы диссоциации для двух групп в ферменте через КаЕ и КьЕ, а соответствующие значения для комплекса Е5 — через /Сдез и ЛбЕ5. Константы скорости к-у, и кз характеризуют стадии образования и распада комплекса Е5. [c.58]

    Поскольку производные Р-таутомера (изомочевины) являются сильными основаниями, ионы мочевины в водных растворах имеют строение H2N ONH3 и H2N (NH)0 [3], что, по-видимому, предопределяет способность этого вещества к образованию комплексных ионных соединений (типа аддуктов). Однако из-за низкого значения константы диссоциации Kj = 1,5 10" (298 К), обусловленного преимущественным содержанием а-формы, система вода-мочевина в целом представляет собой слабоосновную среду, а составляющие ее гидратные комплексы - молекулярные (неионные) структурные образования. Следствием этого является и весьма слабая гидролизуемость мочевины при низких температурах. Полный гидролиз мочевины с образованием NH3 и СО2 возможен лишь в разбавленных растворах при Т 473 К [2]. [c.111]

    Определение тория с морином. Две молекулы морина с атомом тория образуют в слабокислых растворах устойчивый комплекс с константой диссоциации /С 2 10 °. На образовании указанного комплекса основаны колориметрический и флюориметрический методы определения следов тория. Чувствительность метода 0,1—0,2 ТЬОг в 50 мл раствора [792, 793, 1594а, 1606]. [c.82]

    Ацетатные комплексы. Потенциометрическим и спектрофотометрическим методами был установлен состав ацетатных комплексов кобальта в растворах при различных концентрациях реагирующих компонентов было доказано существование ионов Со (СНаШО)" , Со (СНзСОО)з и Со (СНзСОО) [11731. Константы диссоциации комплексов Со(СНзСОО)2 и Со (СНзСОО) были найдены соответственно равными 2,6-10 и 3,02-10 [1316] по данным других авторов, константа образования комплекса Со (СНзСОО)" " 2,1 [1400] или 0,91 [989]. [c.25]

    Нитрозо-2-нафтол-3,6-дисульфокислота (нитрозо-Я-соль) и 2-нцтрозо-1-нафтол-4-сульфокислота (нитрозо-Н-соль). Обе кислоты и их натриевые соли растворимы в воде, константы диссоциации обеих кислот по группам ОН равны соответственно 1 10 7 и 8,2[306]. При добавлении этих реагентов к водным растворам солей двухвалентного кобальта образуются окрашенные в красный цвет растворимые соединения, в которых кобальт трехвалентен. Компоненты реагируют при молярном соотношении 1 3. Оптимальная область pH образования обоих комплексов — от 5—6 до 8—10 [215]. Комплексы после своего образования не разрушаются сильными кислотами и их окраска устойчива при подкислеиии. Максимумы светопоглощения растворов окрашенных комплексов находятся при 420 и 520 ммк. [c.32]

    Спектрофотометрическим [16] и потенциометрическим [109] методами были определены константы диссоциации 8-оксициннолина и его 4-метильного аналога. 8-Оксициннолин является более сильной кислотой рКа 8,20 в воде) [109] и более слабым основанием рКа 2,74 в воде) [109], чем 8-оксихинолин (9,89 и 5,13). 4-Метильный аналог обладает более основными свойствами (рКа 3,18), в то время как кислотные свойства его ослаблены только в незначительной степени (/)/( 8,34). Была исследована способность этих оксициннолинов к образованию комплексов с ионами металлов [16, 109] и определены их коэффициенты распределения между олеиловым спиртом и водой [109]. [c.141]


Смотреть страницы где упоминается термин Образование комплексов, константы диссоциации: [c.77]    [c.156]    [c.403]    [c.306]    [c.193]    [c.38]    [c.245]    [c.421]    [c.138]    [c.76]    [c.248]    [c.348]    [c.79]    [c.132]   
Смотреть главы в:

Неорганическая биохимия Т 1 _2 -> Образование комплексов, константы диссоциации




ПОИСК





Смотрите так же термины и статьи:

Комплексы диссоциация

Комплексы константы

Комплексы образование

Константа диссоциации

Константа комплекса образовани

Константа образования комплекса

Определение общей формулы и констант диссоциации в случае образования одного комплекса

Уравнения диссоциации или образования некоторых комплекс- ных соединений и соответствующие им константы и показатели констант



© 2024 chem21.info Реклама на сайте