Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие реакции кислот

    Аь Аг — кислоты, Вь Вг — сопряженные основания, Н+—протон, ион водорода как таковой). Общая реакция кислоты и основания носит название реакции протолиза (протолитической реакции), равновесие этой реакции — протолитического равновесия. Протолиз кислоты (т. е. отдача ею протонов) иначе может быть назван диссоциацией (кислотной диссоциацией), протолиз основания (т. е. прием им протонов) —кислотной ассоциацией. Последний термин используют редко. [c.61]


    При рассмотрении общих реакций кислот, оснований, солей и свойств индикаторов вместо активностей мы буде 1 принимать в расчет концентрацию. Однако, следует подчеркнуть, что прп более точном изучении химических равновесий такого приближения нельзя допускать. В различных случаях, рассматриваемых ниже, активность снова будет применяться для интерпретации различных явлений, п поэтому в настоящей главе понятие об активности излагается, хотя и кратко. [c.10]

    ОБЩИЕ РЕАКЦИИ КИСЛОТ [c.212]

    Как же можно объяснить эти факты Прежде всего следует отметить, что в приведенных реакциях имеет место истинный катализ в том смысле, что катализатор не расходуется в химической реакции. Если учесть, что общим в поведении всех катализирующих частиц является способность к переносу протона, то естественно предположить наличие взаимодействия между реагирующей молекулой (или ее сопряженной кислотой или основанием) и катализирующей кислотой или основанием, включающего перенос протона. Наконец, так как в общей реакции ионы не принимают участия, следует полагать, что имеет место обратный перенос протона от этого последнего комплекса (субстрат плюс кислота или основание) с образованием конечного продукта. [c.481]

    Присоединение галоидоводородных кислот к олефинам является весьма общей реакцией, хотя имеется очень большая разница в скорости реакции олефинов разной структуры с HJ, НВг, НС1 и HF. В ряду галоидоводородных кислот иодистый водород реагирует наиболее легко, бромистый водород болео реакционноснособен, чем хлористый водород, а фтористый водород наименее реакционноснособен. Фтористый водород, является эффективным катализатором при алкилировании и применяется в промышленности для алкилирования, при этом образование алкил-фторидов идет в очень малой степени. [c.366]

    В 1887 г. Аррениусом была предложена теория электролитической диссоциации (см. гл. IV), которая по-новому решила вопрос о природе кислот и оснований. Согласно этой теории кислота — это вещество, диссоциирующее в растворе с образованием ионов Н . Все общие свойства кислот — кислый вкус, действие на металлы, индикаторы и т. п. являются свойствами ионов водорода. Основание—это вещество, диссоциирующее с образованием ионов ОН . Реакция нейтрализации сводится к взаимодействию водородных и гидроксид-ионов, приводящему к образованию недиссоциированных молекул воды. [c.232]


    Подводя итог, можно сказать, что теория кислот и оснований Аррениуса полностью применима лишь при условии, что вещества реагируют в водном растворе. Поэтому детальное изучение процессов, протекающих без участия растворителя, а также реакций в неводных средах, потребовало существенного дополнения и обобщения этой теории. Естественно, что любая более общая теория кислот и оснований должна включать теорию Аррениуса как частный случай. [c.233]

    В присутствии катализаторов, приготовленных путем пропитки пористых носителей фосфорной кислотой, катализ осуществляется в пленке этой кислоты, находящейся на поверхности носителя в жидком состоянии. На скорость протекания реакции большое влияние оказывает пористая характеристика носителя, которая определяет два фактора общее содержание кислоты в реакционном объеме и величину поверхности пленки нанесенной фосфорной кислоты, доступную для реагирующих молекул. Лучшие образцы силикагеля для процесса прямой гидратации этилена имеют удельный объем пор (1- -2,2) 10 м /кг, а удельную поверхность (0,2- -0,6) 10 м /кг. [c.227]

    Абсорбция. На стадии абсорбции олефины нужно как можно полнее превратить в диалкилсульфаты. При температурах выше 5 С диалкилсульфаты растворимы в углеводородах, тогда как кислые алкилсульфаты — нет. Предпочтительным олефином является пропилен, но можно использовать и н-бутилены. Пропиленовое сырье подвергали переработке в промышленных масштабах. Несмотря на то что исчерпывающих исследований проведено не было, использование бутиленового сырья, содержащего изобутилен, не принесло хороших результатов. Изобутилен обусловливает повышение расхода кислоты и сам расходуется нерационально. В абсорбере вступает в реакцию всего 10—25% от общего количества олефина, при этом расход кислоты составляет примерно 0,2—0,5%. Точное количество зависит от общего расхода кислоты или от количества свежей кислоты, загруженной в секцию алкилирования. [c.233]

    Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима. В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ионы. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства оснований. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония  [c.244]

    Рассмотренные выше представления о кислотах и основаниях, вытекающие из теории электролитической диссоциации Аррениуса, полностью применимы лишь для водных растворов. Детальное изучение обменных реакций, протекающих в неводных средах, а также без участия растворителей потребовало существенного дополнения и обобщения этих представлений. Естественно, что любая более общая теория кислот и оснований должна включать представления Аррениуса как частный случай. [c.288]

    Групповым реактивом катионов третьей аналитической группы является серная кислота. Общие реакции катионов третьей аналитической группы представлены в гл. II, 2. Индивидуальные реакции Ва ""-, 5г +-, Са "-ионов представлены в гл. И, 3, 4, 5. Схема систематического хода анализа изложена в гл. II, 9. [c.123]

    В приведенных примерах сначала записано сокращенное ионное уравнение в общем виде, а затем приведен один из конкретных примеров каждой из общих реакций. При написании подобных уравнений следует учитывать реальные свойства веществ — растворимость, силу кислот. Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из стадий падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые, например  [c.242]

    Вторая группа реакций кислот связана со специфическими особенностями различных кислот и подразделяется на два типа реакции, приводящие к образованию нерастворимых солей, и окислительно-восстановительные превращения. Если реакции первой группы, связанные с наличием иона Н+, были общими для всех кислот (качественные реакции для обнаружения кислот вообще), то реакции второй группы могут служить качественными на отдельные кислоты  [c.243]

    Для сильных кислот и щелочей, у которых степень диссоциации равна единице, активная реакция будет соответствовать общей концентрации кислоты или щелочи. [c.58]


    Исследование взаимодействия кислот со щелочами привело химиков к открытию общей реакции получения солей. [c.22]

    Общие реакции азотной и азотистой кислот и их солей [c.257]

    Хлороводород НС1 — бесцветный газ с резким апа-хом, в воде хорошо растворяется, при О °С в 1 л воды растворяется более 500 л НС1. Раствор хлороводорода в воде имеет кислую реакцию и называется хлороводородной, или соляной кислотой. Соляная кислота явл [ется сильной кислотой, обладает всеми общими свойствами кислот. Диссоциация H l выражается уравнением  [c.346]

    Чтобы устранить этот недостаток, были предложены и другие подходы к определению кислот и оснований. Например, более общее определение кислоты и основания дано Г. Льюисом. Согласно его представлениям, кислотой (ее обычно называют к и с л о т о й Льюиса) является частица, принимающая электронную пару, т. е. является акцептором. Основанием (основанием Льюиса) называется частица, которая отдает электронную пару, т. е. служит донором. Например, в реакции [c.102]

    При низкой концентрации минеральной кислоты нитрозирующим агентом является азотистый ангидрид, образующийся из азотистой кислоты на стадии 4, определяющей скорость общей реакции  [c.255]

    Растворение меди в горячей концентрированной серной кислоте иллюстрирует общую реакцию — растворение неактивного металла в кислоте при одновременном действии окислителя. Активные металлы окисляются до катионов под действием иона водорода, который при этом восстанавливается до элементарного водорода, например 2п + 2Н+-+ Н, (г.) [c.220]

    При 0 = О не могут быть полностью исключены реакции образования карбоната и р-аминоэтилкарбоновой кислоты. Астарита [12] приблизительно подсчитал, что вклад вторичных реакций повышается лишь при величине хш 5400 л г-мол сек) при 21,5° С. Астарита, Марруччи и Джойя [14] объяснили механизм общей реакции (XII), которая протекает при 0 >0,5. [c.147]

    Реакция олефипов с формальдегидом известна со времени открытия ее Припсем в 1919 г. [37]. Это весьма общая реакция она может быть осуществлена в ледяной уксусной кислоте при добавлении серной кислоты, в умеренно разбавленной сернокислотной среде и при помощи гидратированного трехфтористого бора. Реакция идет также при нагревании нараформальдегида с олефипом при 150—230°. Как отмечено Принсам, при проведении реакции в уксусной кислоте, содержащей серную кислоту, основными продуктами являются диацетат 1,3-диола и циклический фор-маль  [c.382]

    Во-вторых, Аррениус установил, что прибавление нейтральной соли, не имеющей общего иона с катализирующей реакцию кислотой, также приводит иногда к увеличению каталитического действия кислоты. Например, скорость инверсии тростникового сахара в присутствии уксусной кислоты возрастает на 30% при прибавлении 10% (мольных) Na l. Это явление называется первичным солевым эффектом. [c.287]

    Здесь можно также пршменшъ общую реакцию гидрирования по Вертело (июдистоводородная кислота), восстановление цинковой 1 лъю и т. д. Необходимо о 1>1етить, что в то время как фенол легко восстана- [c.37]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Отделение серной кислоты от сульфокислот, образ тощихся в ре- зультате гидролитических реакций, основано на растворимости их солей бария в воде. Поэтому исследуемый водный раствор отработанной кислоты титруется —1/5-норм, щелочью для определения общего содержания кислот в присутствии фенолфталеина. В другой порции этого же раствора НгЗОд определяетбя в виде BaSOi. Сернистая кислота при этом определяется вместе с сульфокиалотами. Сульфокислоты обыкновенно рассчитываются как серная кислота. [c.346]

    О (С2Н5) 2 является общей реакцией и обусловлено наличием атома кислорода у эфиров, повышающего их способность образовывать с фтористым бором молекулярные соединения, в которых активация молекулы эфира идет не по двойной связи, а по углерод — кислородной связи. В результате расщепление по кислородной связи идет легче, чем присоединение кислот по двойной связи. [c.16]

    Гораздо более общей реакцией является так называемая а л ь-дольная ко нденсация альдегидов, протекающая под действие.м небол-ьших количеств щелочи (бикарбонатов, карбонатов и ацетатов щелочных металлов, разбавленных растворов щелочей и алкоголятов) иногда реакция протекает в присутствии разбавленных кислот. Эта конденсация состоит в том, что один из атомов водорода перемещается от углеродного атома, находящегося рядом с альдегидной группой, к ато.му кислорода другой молекулы альдегида, причем обе молекулы альдегида соединяются друг с другом углеродной связью с образованием димерного продукта  [c.206]

    Исключительная способность растворять жиры, масла и смолы обусловливает техническое применение сероуглерода в качестве растворителя. Кроме того, сероуглерод используется для получения четыреххлористого углерода (стр. 282), роданистых соединений и тиомоче-вины, для вулканизации каучука и в качестве яда для борьбы с вредителями растений. Однако наибольшее применение сероуглерод нашел в производстве искусственного шелка—вискозы. Получение вискозного шелка из целлюлозы основано на общей реакции взаимодействия сероуглерода со спиртами. Сероуглерод в ирнсутствгш щелочей соединяется со спиртами, причем образуются к с анто генат ы, соли эфиров д и т и о у г о л ь н о й кислоты, которые легко растворимы в воде  [c.285]

    Галогенид-ионы можно рассматривать как корреспондирую-1щие основания галогеноводородных кислот. Образование ковалентной связи Между основанием и протоном соответствует ре--акции нейтрализации. Этот тип реакции представляет частный случай более общих реакций. Если катион не является прото-.ном, то реакцию такого типа называют реакцией координирования (или упорядочивания). Известны нормальные реакции оррдинирования, в которых осуществляется комбинация двух [c.500]

    Окончание этой реакции устанавливается по изменению цвета метилового оранжевого. Если V2 — общий объем кислоты, израсходованный на титрование (по метиловому оранжевому), то разность V2— V] равна объему кислоты, затраченному на реакцию (10.23). Так как на реакции (10.22) и (10.23) расходуется одно и то же количество кислоты, то 2(1 2 —.V ) равно всему объему кислоты, израсходованному на реакцию с Na2 0a. Следовательно, на реакцию с NaOH приходится объем V2 — 2(1 2 — [c.212]

    Третий пример, который ставит под сомнение ценность классификации по Льюису, это каталитическая способность кислот Льюиса. Оказалось, что в некоторых случаях кажущееся каталитическое действие кислот Льюиса было вызвано загрязнениями, приводившими к образованию ионов водорода . И вообще, было установлено, что реакции, на которые оказывают каталитическое действие кислоты Льюиса, не катализируются протонными кислотами. Это надо учитывать, так как Льюис считал каталитическое действие одним из четырех критериев кислотного характера. Недавно были найдены реакции, в которых кислоты Льюиса служили лучшими катализаторами, чем протонные кислоты. Так, Белл и Скиннер проводили каталитическую деполимеризацию параль-дегида в эфире с помощью и кислот Льюиса, и протонных кислот. В общем кислоты Льюиса оказались лучшими катализаторами, чем протонные кислоты. Тем не менее Белл указывает, что эта реакция единственная в своем роде и что в ней требуется перераспределение электронов, а не перемещение атомов. Все же нет сомнения, что во многих реакциях кислоты Льюиса ведут себя как катализаторы. [c.335]

    Общая методика кислотиого расщепления а-ацилкетонов ) (табл. 124), 0,1 моля а-ацилциклогексанона (в реакции можно использовать неочищенный продукт) прн 100 С прн перемешивании смешивают с трехкратным молярным количеством горячего 60%-ного раствора едкого кали и выдерживают при указанной температуре еще 15 мин. Застывшую реакционную смесь после охлаждения растворяют в 300 мл воды, к раствору по каплям прибавляют такое количество концентрированной соляной кислоты, чтобы среда осталась чуть щелочной. Затем экстрагируют эфиром, водный слой сильно подкисляют соляной кислотой и извлекают хлороформом. После отгонки растворителя перегоняют в хорошем вакууме. [c.170]

    Эта общая реакция, рассмотренная в работе [1], имеет, однако, лишь ограниченное применение для синтеза, что объясняется образованием значительных количеств орто-, мета- и арл-замещенных анилинов при реакции с монозамещенными производными бензола, умеренными выходами, получающимися в большинстве случаев, и довольно большой трудоемкостью процесса. Образование орто-, мета- и яра-изомеров дает основание предполагать участие реакционноспособного промежуточного соединения MRa или какого-то его комплекса. Тем не менее иногда этот метод синтеза вполне заслуживает внимания (примеры а и в./). Среди других применявшихся азотсодержащих реагентов находится гидроксиламин-О-судьфокис-лота и соли гидроксиламина [2] и азотистоводородная кислота [3]. Для этих реагентов наблюдается нормальная ориентация замеще- [c.544]

    До недавнего времени считали, что эти перегруппировки ограничиваются сильно замещенными альдегидами и кетонами, чему способствует образование стабильного промежуточного карбоний-иона. Однако в настоящее время показано, что перегруппировка является гораздо более общей реакцией, если в качестве катализатора, способствующего осуществлению перегруппировки, применять сильную кислоту, например хлорную. При перегруппировке пента-нона-3 не происходит миграции кислорода, а лищь ряд смещений алкильной группы [421 [c.158]

    Реакция трет-буптового спирта с соляной кислотой (НС1) является Зк1-про-цессом. Продуктами этой реакции являются т/)ет-бутилхлорид и вода, а) Напишите общее уравиенпе этой реакции, б) Напишите отдельные стадии механизма, используя изогнутые стрелки для иллюстрации передвижения электронных пар на каждой отдельной стадии, в) Нарисуйте энергетический профиль общей реакции, г) Какая из стадий является лимитирующей д) Какими уравнениями выражается скорость этой реакции е) Можно ли ожидать, что введение в реакционную смесь хлорид-иона (в виде Na l) будет оказывать заметное влияние иа скорость реакции Объясните ваш ответ. [c.189]


Смотреть страницы где упоминается термин Общие реакции кислот: [c.150]    [c.245]    [c.271]    [c.213]    [c.434]    [c.59]    [c.418]    [c.427]    [c.182]    [c.225]   
Смотреть главы в:

Анализ органических соединений Издание 2 -> Общие реакции кислот




ПОИСК





Смотрите так же термины и статьи:

Реакции общие



© 2025 chem21.info Реклама на сайте