Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роль сдвига

    В. Роль сдвига и пропахивания. Объяснение закона Амонтона [c.343]

    В этом разделе книги детально изложены требования к отвержденному полимерному связующему и размещению в нем армирующих волокон. Естественно, что для видов нагружения, при которых полимерное связующее играет самостоятельную роль (сдвиг между волокнами и межслойный сдвиг, растяжение перпендикулярно волокнам), важно, чтобы оно обладало высокими упругими и прочностными свойствами. Это требование должно быть дополнено другими, связанными с расположением [c.91]


    В работе >20], посвященной каталитическим превращениям углеводородов в присутствии Р1-черни, авторы также пришли к заключению о двух механизмах изомеризации— циклическом с промежуточным образованием циклопентанов и механизме сдвига связей. Важная роль при активации катализатора в обсуждаемой работе отводится кислороду, который в незначительных количествах присутствует в зоне реакции. В работах [121, 122] исследованы превращения алканов в присутствии напыленных Р1—КЬ- и Р1—8п-пленок, а также на нанесенных и ненанесенных 1г- и 1г—Аи-катализаторах. Пути протекания реакций Сз-дегидроциклизации — скелетной изомеризации обсуждены с позиций циклического механизма и механизма сдвига связей. [c.225]

    Аналогичные явления могут наблюдаться при изоляции трубопроводов. Обычно на поверхность металла вначале наносят слой маловязкого битума. После того как слой затвердеет, наносят следующий слой значительно более твердого битума. Если битум второго слоя имеет более высокий потенциал экссудации, на поверхности контакта битумов образуется тонкий слой экссудата, играющий роль смазки, т. е. он способствует сползанию или вращательному сдвигу верхнего слоя битума. Это ускоряет разрушение покрытия трубопровода. [c.21]

    Вопрос об истинной роли реакции 9 — это вопрос о том, какой из процессов преобладает — рекомбинация или диссоциация, т. е. куда сдвинута реакция в целом. Этот вопрос решается достаточно просто прямым численным моделированием и анализом сдвига К по стадиям 9, 12, 14, 20, 21. [c.271]

    Подгонка протонных контактных сдвигов должна давать некоторую уверенность в волновых функциях, полученных в расчетах по методу МО. Если это условие выполняется, то исходя из результатов определения контактных сдвигов можно сделать некоторые выводы [20] относительно связывания, например 1) расстояние между молекулярными орбиталями в2д И а1д в комплексах бис-бензолов больше, чем в комплексах бис-циклопентадиена, что говорит о большем обратном связывании в первом случае 2) степень электронной делокализации по МО не обязательно связана с рассчитанными порядками связей, поэтому по величине контактного сдвига нельзя судить о стабильности 3) а-МО цикла играют важную роль в связывании в обоих типах комплексов, 4) 4 -и 4р-орбитали металла характеризуются значительными порядками свя- [c.181]


    В некоторых ситуациях (см. далее) необходимы системы с исключительно псевдоконтактным вкладом в изотропный сдвиг. N-окись пиридина относится к числу именно таких лигандов, которые обеспечивают псевдоконтактный вклад в сдвиг [28]. Если в комплексе определяющую роль играет а-делокализация и контактная и псевдоконтактная части сдвигов меняются одинаковым образом, то отсутствие контактных вкладов установить трудно. Однако при использовании такого лиганда, как N-окись пиридина, альтернирование протонных сдвигов, обусловленное узлами в я-системе, свидетельствует об определяющей роли контактного сдвига. [c.185]

    Пассивная пленка электропроводна и играет роль катода, в то время как анодный процесс протекает в порах пленки (рис. 2П, а) под воздействием очень большой плотности тока, приводящей к сдвигу потенциала в положительную сторону, что создает условия для перехода в раствор в небольшом количестве ионов металла высшей валентности (например, Ре +, Сг +, рис. 2П, б). [c.307]

    Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]

    Модель сплошной пластически деформируемой среды недостаточно отражает действительный механизм деформации зернистого слоя. Упомянутые выше визуальные наблюдения и инструментальные измерения выявляют весьма сложную картину этого процесса. Главная его особенность состоит в том, что деформация слоя происходит в виде прерывистых сдвигов агрегатов частиц, каждый из которых в период его существования выполняет роль структурного элемента. При дальнейшем выпуске эти агрегаты теряют свою индивидуальность, границы между ними исчезают, образуются новые агрегаты другой формы и размеров. [c.74]

    Следует отметить специфичность действия катализаторов — каждая реакция ускоряется какими-то определенными катализаторами и не ускоряется другими и, наоборот, каждый катализатор ускоряет какие-то определенные реакции и ие ускоряет других. Это дает возможность, применяя разные катализаторы, получать различные продукты из одних и тех же исходных веществ. Далее, следует отметить, что катализатор в равной мере ускоряет как прямую, так и соответствующую ей обратную реакцию. Это значит, что катализатор никак ие влияет на состояние химического равновесия, не сдвигает его. Роль катализатора, по существу, сводится к тому, что он ускоряет наступление состояния равновесия. Естественно, что практическое использование катаЛ иза целесообразно в тех случаях, когда стремятся именно к достижению состояния равновесия в реакционной системе. [c.96]

    При динамометаморфизме, или так называемом дислокационном или тектоническом метаморфизме, главную роль в изменениях ископаемых топлив и обогащении их углеродом играло давление. Однако в процессе тектонических сдвигов всегда происходит значительное повышение температуры вследствие сжатия и трения земных пород, а также опускания части этих пород на значительную глубину, где температура повышается из-за геотермического градиента. [c.48]

    Природные соединения кальция находят широчайшее применение (производство строительных материалов, извести, карбида, удобрений и т. д.). Особую роль играют кальций и магний при эксплуатации водных ресурсов. От содержания в воде ионов Са + и + зависит жесткость воды. Если концентрация этих ионов велика, воду назьшают жесткой, если мала — мягкой. Карбонатная жесткость связана с присутствием гидрокарбонат-иона НСОГ. При кипячении такой воды равновесие реакции сдвигается в сторону образования нерастворимого карбоната кальция или магния  [c.149]

    Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтингообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Ре + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала питтингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических [c.342]


    Из сказанного выше следует, что прочность коагуляционных структур значительно ниже прочности структур с непосредственным сцеплением частиц между собой. Прослойки среды в местах контактов, играя роль смазочного материала, обеспечивают подвижность отдельных элементов структуры. Материалы с такой структурой обладают высокой пластичностью и способностью к, ползучести при небольших напряжениях сдвига. Таким образом, увеличивая или уменьшая толщину прослоек среды в местах контакта частиц или изменяя их гидродинамические свойства с помощью некоторых добавок (модификаторов), можно в широки.ч пределах регулировать механические свойства коагуляционной структуры материала. [c.384]

    Роль наполнителей. Наиболее полно изучен и опубликован п печати материал об увеличении продолжительности службы и стойкости к атмосферным условиям битумных покрытий при введении в них минеральных наполнителей. Самые ранние опыты показали способность наполнителя повышать прочность битума и регулировать его текучесть. При добавлении наполнителей повышается сопротивление битума ударным нагрузкам, сдвигу и сжатию, снижается его хрупкость. Наполнители дают возможность регулиро- [c.195]

    Усиление смеси под влиянием наполнителей, вследствие чего повышается сопротивление смеси растрескиванию. Основные силы, вызывающие растрескивание, — тепловое расширение и сжатие, усадка битума в результате физических и химических изменений под действием атмосферных условий, а также сдвиг с поверхности подложки, роль которой может играть испытательная панель, [c.199]

    Эти мешалки долгое время применяли для периодического перемешивания вязких жидкостей, особенно при осуществлении процессов теплопередачи в аппаратах с рубашками. Якорь устанавливают в аппарате так, что между его стенками и якорем остается небольшой зазор таким образом якорь выполняет роль скребка. Напряжение сдвига, развиваемое якорными лопастями у стенки аппарата, способствует непрерывному обмену жидкости между основной ее массой и пленкой, располагающейся между лопастями и стенками аппарата. Поэтому якорные мешалки особенно эффективны в процессах с теплопередачей. Эффект скребка можно повысить, если оборудовать якорь гибкими [c.70]

    Но, + 2-I Н., - -Н обратима равновесие реакции сдвигается в сторону дегидрогенизации с уменьшением давления и повышением температуры. Обычно каталитическая дегидроге-низация проводится при температуре 450—550" С и атмосферном или пониженном давлении. Все же и при каталитической дегидрогенизации не удается избежать реакций распада. Чтобы уменьшить их роль, глубину дегидрогенизации за один пропуск сырья над катализатором ограничивают глубиной превращения 20—40 /о.  [c.128]

    Давление. В процессах гидрогенизации вне зависимости от характера перерабатываемого сырья значительную роль играет парциальное давление водорода, которое с учетом давления паров и газов, полученных в процессе гидрогенизации, на 5-8 МПа ниже общего давления в системе. Повышение давления водорода сдвигает обратимые реакции гидрирования, несмотря на то что они протекают при относительно высоких температурах (440-480 С), в сторону образования соединений, наиболее насыщенных водородом. Это обстоятельство используют на практике с целью обогащения водородом исходного сырья, для гидрирования высокомолекулярных соединений, а также веществ, содержащих серу, кислород и азот. При повышенном давлении водорода уменьшается образование продуктов уплотнения. В конечном итоге давление водорода в системе, влияющее на глубину превращения исходного сырья, нужно определять с учетом химического состава исходного сырья, активности катализатора, продолжительности его работы и стои.мости, а также принимая во внимание характер получаемых продуктов. [c.131]

    Второй причиной условности структурного застывания масла является зависимость самой величины прёдёльногб напряжения сдвига при данной температуре от многих внешних факторов, в частности от условий подготовки образца -масла к испытанию, от техники и способа испытания и дрХ Большую роль играет скорость охлаждения масла, условия приложения к нему смещающих усилий нри испытании и т. д. И только при строгом и разностороннем регламентировании условий онределения предельного напряжения сдвига масла или температуры его структурного застывания данный показатель качества может получить однозначное и воспроизводимое числовое значение. [c.11]

    В большом цикле работ Го и сотр. [71—73, 82, 83, 86—93] исследованы превращения насыщенных углеводородов (Сб-дегидроциклизация, скелетная изомеризация, гидрогенолиз циклопентанов, гидрокрекинг) в присутствии различных платиновых и других металлических катализаторов. Подробно изучены [73] изомеризация 2-метил-2- С-пентана, З-метил-З- С-пентана и гидрогенолиз метил- С-циклопентана при 270 °С в присутствии (10% Pt)/АЬОз. Состав продуктов превращения существенным образом отличался от состава катализатов, полученных ранее в присутствии (0,2% Pt)/Al203. Анализ полученных результатов привел к заключению, что перемещение и распределение метки С в продуктах реакции обусловлено рядом последовательных перегруппировок в адсорбированном на поверхности катализатора углеводороде перед стадией его десорбции в объем. Исходя из начальных концентраций продуктов реакции, в каждом случае обсуждается вероятность циклического или стадийного механизма сдвига связей. При этом важную роль играет дисперсное состояние активной металлической фазы — в данном случае платины. [c.203]

    Чтобы реакция по уравнению (16) проходила с оптимальной скоростью и равновесие было сдвинуто возможно больше вправо, необходимо исполь-зоиать активатор — растворитель для реагента (метиловый спирт или метилэтилкетон), который, по-видимому, играет важную роль в создании гомогенного раствора мочевины и м-парафина, как это следует из- уравнений (14) и (15). Однако природа и концентрация активатора не должны сдвигать влево равновесие в уравнении (17). Для получения количественных выходов весьма важно подобрать условия, обеспечивающие максимальный сдвиг равновесия вправо на всех стадиях реакции. [c.221]

    В работе Шварца и Смита сделана попытка теоретически обосновать форму профиля скоростей в сечении трубы. Основой послужила теория Прандтля, определяюшая величину напряжения сдвига при течении потока он должен распределиться ио сечению таким образом, чтобы радиальный иереиад давления в трубе был постоянен. Важную роль играет порозность слоя, [c.52]

    При деформации среды в условиях активного бокового давления характер и интенсивность сдвигов определяются суммарным действием напряжений внутреннего и внешнего полей, относительная роль которых изменяется по мере развития процесса. На первой стадии в большей степени проявляется действие напряжений внешнего поля. Затем пpqи xoдит перестройка полей напряжений, что проявляется в изменении пространственного распреде-144 [c.144]

    Все, что связано с явлениями сдвига, возникающими <в жидкости в результате работы импеллера, разработано в течение последних нескольких лет. Было бы полезным в связи с этим оценить роль этих явлений в процессе алкилироваиия. Для иллюстрации рассмотрим открытый импеллер турбинного типа. На рис. 2 приведена эпюра скоростей (их средние значения) в точке отрыва пограничного слоя от края лопатки. Провещя касательную в любой точке, можно получить градиент скорости, который представляет собой скорость сдвига в данной точке. Ее можно рассчитать в любой точке емкости, если измерить скорости и построить их эпюру. При умножении скорости сдвига на вязкость жидкости получают надряжение сдвига. [c.192]

    В случае когда эмульсия должна перетекать неотстоявшейся из ступени в ступень, проблем с отстаиванием не возникает, вплоть до отстойника получаемого продукта. Это значит, что при разных уровнях энергии, подводимой для перемешивания, оптимальными могут быть различные комбинации переменных пара- метров. Например, при общем низком уро вие энергии требуются большие соотношения диаметров импеллера и емкости, чтобы достичь нужной производительности и поддержать однородность эмульсии. По мере увеличения количества подводимой энергии общая эффективность процесса обычно возрастает, и здесь более важную роль играют меньшие соотношения диаметров импеллера и емкости, так как та же производительность при том же числе оборото1В и при более высоких уровнях энергии может быть достигнута при меньших соотношениях диамет1ров импеллера и емкости. При дальнейшем росте количества подводимой энергии большая ее часть может быть израсходована на создание скоростей сдвига, так как для достижения однородности перемешивания и эмульгирования требуется меньше энергии. В некоторой точке эффективность процесса, зависящая от количества подведенной энергии, проходит через максимум и начинает падать. Здесь вмешивается экономический фактор, и он определяет практическое значение необходимого уровня энергии. [c.197]

    Замещение атомов водорода метильной группы на алкильные радикалы вызывает или слабый сдвиг максимума, или его сглаживание, величина экстинкции в области максимума изменяется в пределах 130—170л/моль-см. Алкильные радикалы,таким образом, играют роль ауксохромов при хромофоре С—S—Н. Замыкание углеводородной цепочки в цикл у циклоалкилмеркаптана не приводит к заметному изменению спектра по сравнению со спектрами поглощения алкилмеркаптанов, т. е. практически они не различимы (табл. 2). [c.163]

    Согласно (25.1) увеличение давления алкана М должно способствовать усилению реакций изомеризации по сравнению с распадом. Так как энергия активации изомеризации радикалов меньше, чем энергия их распада, понижение температуры будет усиливать роль реакций изомеризации. Для изопропильных радикалов это усиление будет большим (в 40 раз), чем для пропильных радикалов (в 5 раз). Это приведет к накоплению изопропильных радикалов, что при более интенсивном расходе пропильных радикалов вследствие их распада вызовет смещение равновесия в реакции изомеризации вправо, т. е. к увеличению концентрации пропильных радикалов. Следовательно, инициированный крекинг по сравнению с обычным крекингом должен сопровождаться не только сдвигом равновесия в сторону деметанирования [346], но также синтезом бутана, изомерных гексанов и др. [c.204]

    Адсорбционно-сольватные слон и диснерсионная среда НДС пг()ают роль смазочных слоев и определяют вместе с тем подвижность ССЕ, пластичность и ползучесть НДС даже ири малых напряжениях сдвига. Медленно развивающиеся и спадающие после снятия нагрузки обратимые деформации сдвига характерны не для ССЕ, а для образованной из ССЕ решетки (или каркаса) с тонкими прослойками среды по участкам контакта. Такие пространственные структуры (решетки) обладают тиксотропными свойствами, т. е. способны к обратимому восстановлению после механического разрушения. [c.129]

    В случае амфотерных металлов (например, алюминия, цинка, свинца, олова) избыток щелочи, образующийся на поверхности перезащищенных конструкций, приводит к увеличению агрессивности среды, а не к подавлению коррозии. На примере свинца было показано [21 ], что катодная защита достижима и в щелочной области pH, но критический потенциал полной защиты (см. ниже) сдвигается в область более отрицательных значений. Алюминий может быть катодно защищен от питтинговой коррозии, если обеспечить его контакт с цинком [22 ], который выполняет роль протектора. Контакт с магнием может привести к перезащите с последующим разрушением алюминия. [c.224]

    Аустенитные нержавеющие стали, содержащие более 45 % N1, стойки к КРН в кипящем растворе Mg l2, а также, по-видимому, и в других хлоридных растворах (рис. 18.8) [61 ]. Эделеану и Сноуден отметили [48], что нержавеющие стали с высоким содержанием никеля более устойчивы к растрескиванию в щелочах. Увеличение содержания никеля в аустенитных нержавеющих сталях приводит к сдвигу в положительную сторону критического потенциала КРН в растворе МёС , причем этот сдвиг значительнее сдвига соответствующего коррозионного потенциала. Вследствие этого повышается стойкость сплава [62]. Когда содержание никеля в сплаве достигает и превышает 45 %, его стойкость к КРН перестает зависеть от окислительно-восстановительного потенциала среды, а более важную роль начинают играть факторы, определяемые не средой, а структурой сплава, такие как вредное влияние дислокаций или уменьшение растворимости азота внедрения. [c.320]

    Разбавленные дпсперсные системы с ровноосны.ми частицами обычно представляют собой ньютоновские жидкости. К исев-доиластпческим жидкостям относятся суспензии, содержаише асимметричные частицы, и растворы полимеров, подобные производным целлюлозы. С возрастанием напряження сдвига частицы суспензии постепенно ориентируются своими большими осями вдоль направления потока. Хаотическое движение частиц меняется на упорядоченное, что ведет к уменьшению вязкости. Дилатантные жидкости в химической технологии встречаются редко, в то же время их свойства характерны, например, для некоторых керамических масс и др. Дилатантное поведение наблюдается у дисперсных систем с большим содержанием твердой фазы. При малых нагрузках дисперсионная среда при течении системы играет роль [c.367]

    Покрытия стальных трубопроводов. При покрьпчш стальных труб на поверхность металла вначале наносят тонкий слой маловязкого битума. После его высыхания сверху наносят второй слой расплавленного битума, значительно более твердого, чем первый. Битум второго слоя может иметь более высокий эксудативный потенциал, при этом на поверхности контакта между обоими битумами образуется тонкий слой эксудата. Тем самым создается опасность сползания или вращательного сдвига верхнего слоя битума по периметру трубы, и тонкий слой эксудата играет роль смазки. Такие явления вызывают ускоренное разрушение битумного покрьггия трубопровода. [c.97]

    Помимо этого, вязкости дисперсной фазы ("Пф) и дисперсионной среды (т1с) также играют определенную роль. Теоретические расчеты показывают, что значение уд несколько уменьшается при увеличении отношения Лф/т ,. На это указали Павлушенко с сотрудниками, но Роджер, а также Салливан и Линдсей (1962) нашли противоположную зависимость. Такое увеличение может происходить, если Т1ф возрастает настолько, что препятствует коалесценции и, следовательно, сдвигает равновесие в сторону образования большего числа капель и большего значения 5уд. Однако имеются определенные трудности в объяснении экспериментальных результатов. Вязкость дисперсионной среды может отличаться от вязкости чистого растворителя из-за присутствия эмульгатора. Роджер, Трайс и Раштон (1956) нашли приближенное количественное соотношение [c.25]


Смотреть страницы где упоминается термин Роль сдвига: [c.220]    [c.220]    [c.220]    [c.51]    [c.129]    [c.415]    [c.341]    [c.272]    [c.347]    [c.311]    [c.52]    [c.198]    [c.200]    [c.224]    [c.162]   
Смотреть главы в:

Реакции полимеров под действием напряжений -> Роль сдвига




ПОИСК





Смотрите так же термины и статьи:

Симбатность между скоростью реакции и концентрацией разветвляющего продукта, сдвиг максимума скорости, роль формальдегида и изменение порядков в окислении метана

Сравнительная роль ориентации и деформации макромолекул в области малых напряжений сдвига. Характеристические углы ориентации



© 2024 chem21.info Реклама на сайте