Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы двумерного разделения в геле

    III. МЕТОДЫ ДВУМЕРНОГО РАЗДЕЛЕНИЯ В ГЕЛЕ [c.76]

    Зоны можно также сфокусировать в результате наложения молекулярно-ситового эффекта, например, если электрофорез ведется в полиакриламидном геле, то в результате влияния градиента плотности. При проведении электрофореза биополимеров все чаще используются принципы аффинности и иммунной преципитации. Контролировать ход электромиграционного разделения с высоким разрешением удобно с помощью метода двумерного электрофореза и иммунной преципитации. [c.283]


    Другой тип двумерного разделения с применением изоэлектрической фокусировки — это метод, в котором используется иммунодиффузия. В этом методе разделение проводят изоэлектрической фокусировкой на полиакриламидном геле, а затем фрагмент геля вводят в агарозу, содержащую антисыворотку. После этого проводят электрофорез в направлении, перпендикулярном первому разделению. Белки перемещаются в агарозу, и в ней появляются зоны миграции антигенов-антител [419]. [c.177]

    При двумерном разделении белков и пептидов возможны различные комбинации методов электрофорез с градиентным гелем и изоэлектрической фокусировкой [212], гель-фильтрация с изоэлектрической фокусировкой [213], гель-фильтрация с электрофорезом [214], двумерный электрофорез с различными буферными системами [215—218], двумерная хроматография с различными растворителями [219—221] и хроматография в сочетании с электрофорезом или изоэлектрической фокусировкой. Райт и др. [222] оценивали результаты одно- и двумерного разделения сложных смесей белков, подсчитывая число разделенных полос, и установили, что двумерный электрофорез на геле акриламида дает большее число полос, чем периодический или непрерывный градиентный электрофорез на геле акриламида, изоэлектрическая фокусировка или изоэлектрическая фокусировка, сопровождаемая непрерывным градиентным электрофорезом на геле. [c.518]

    Одно из серьезных ограничений гель-электрофореза как метода выделения специфических фрагментов ДНК заключается в том, что молекулы, имеющие примерно одинаковую массу, но различную нуклеотидную последовательность, обладают, как правило, одинаковой электрофоретической подвижностью. Один из возможных подходов к решению этой проблемы основан на использовании предложенного в работе Фишера и Лермана [115] метода двумерного гель-электрофореза фрагментов ДНК. Сначала смесь фрагментов ДНК разделяют в соответствии с их размерами с помощью обычного гель-электрофореза, а затем в перпендикулярном направлении проводят электрофорез в 4%-ном полиакриламидном геле в градиенте концентрации формамида (от 4 до 30%) и мочевины (от 0,7 до 5,25 М). Разделение проводят при повышенной температуре. В этой методике использован эффект резкого уменьшения электрофоретической подвижности в результате денатурации или плавления части нативной молекулы ДНК. В ходе электрофореза во втором направлении фрагменты ДНК подвергаются воздействию все более жестких денатурирующих условий, и плавление части молекулы двухцепочечной ДНК сопровождается скачкообразным изменением ее подвижности. Связь между подвижностью фрагментов ДНК и их нуклеотидной последовательностью носит сложный характер и до сих пор окончательно не выяснена [115], [c.185]


    Известно, что близко расположенные полосы в геле могут перекрываться. Этот эффект препятствует выявлению большого количества белков (не больше 50) с помощью одномерных методов их разделения. Метод двумерного гель-электрофореза, в котором объединены две различные процедуры разделения, позволяет идентифицировать более 1000 белков. Результаты при этом получают в виде двумерной белковой карты. [c.216]

    Использование метода электрофореза в полиакриламидном геле для анализа и разделения сложных смесей белков и нуклеиновых кислот значительно расширило наши знания о многих клеточных и вирусных системах. Электрофорез в полиакриламидном геле имеет ряд преимуществ перед другими аналитическими методами он отличается простотой в исполнении, хорошей воспроизводимостью результатов и не требует сложного оборудования. В комбинации с двумерным разделением и изоэлектрофокусированием он может быть использован не только для аналитических, но и для препаративных целей. [c.118]

    Получил (1942) точное решение двумерной задачи Изинга, предсказывающее логарифмическую зависимость теплоемкости от т-ры вблизи критической точки. Предложил теорию квантовых вихрей в сверхтекучем гелии. Разработал (1940—1942) теоретические основы метода газовой термодиффузии д/ш разделения урана-235 и урана-238. [c.329]

    Комбинированное использование тонкослойной гель-фильтрации с электрофорезом или иммунодиффузией до настоящего времени представляет собой один из наиболее тонких методов микроанализа белков. Хансон и др. [10] разработали метод двумерного разделения, используемый для анализа белков. На первом этапе белки подвергают гель-фильтрации в тонком слое сефадекса G-200 или G-100, а на втором — электрофорезу. Они предложили прибор, в котором хроматографическую пластинку можно закреплять под углом для гель-фильтрации и горизонтально для электрофореза. В описанных экспериментах использовали стеклянные пластинки размером 30 x 30 см и толщиной 1 мм, на которые наносили слой геля сефадекса толщиной 0,5 мм. Для набухания сефадекс оставляли в 0,05 М вероналовом буферном растворе pH 8,6. Сначала проводили гель-фильтрацию, а затем в направлении, перпендикулярном первому, в течение 3 ч вели электрофорез при градиенте напряжения 10 В/см. Этот метод весьма успешно был применен для анализа сывороток крови человека, спинномозговой жидкости и гормона роста. [c.240]

    В настоящей главе дается общий обзор ряда методов тонкого аналитического разделения белков и гликопротендов. Все это методы двумерного разделения, которое включает два последовательных этапа, основанных на использовании разных биохимических и биофизических свойств. По крайней мере одни из этих этапов — электрофорез в полиакриламидном геле. [c.72]

    Электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия — это основная процедура во всех обсуждаемых ниже методах двумерного разделения. Описание прибора и основных принципов разделения было сделано ранее (Taka s, 1979). Ниже будет сказано лишь об особых деталях метода, которые применяются в нашей лаборатории и дополняют процедуру, описанную в упомянутой статье. [c.73]

Рис. 6. Двумерное разделение лиофилизованного гормона роста человека сочетанием методов гель-фильтрации и электрофореза на сефадексе 0-200. Разделение позволило обнаружить значительную гетерогенность препарата, а—лиофилизованный гормои роста б—сывороточный альбумин человека 150], Рис. 6. <a href="/info/249824">Двумерное разделение</a> лиофилизованного <a href="/info/200008">гормона роста человека</a> <a href="/info/1635793">сочетанием методов гель</a>-фильтрации и электрофореза на сефадексе 0-200. Разделение позволило обнаружить значительную гетерогенность препарата, а—лиофилизованный гормои роста б—<a href="/info/75684">сывороточный альбумин</a> человека 150],
    Двумерные разделения в настоящее время выполняются почти исключительно на бумаге, хотя известны подобные разделения на геле и комбинированные — на бумаге и геле. Ниже мы кратко опишем процедуру двумерного разделения на бумаге, не касаясь принципов методов хроматографии и электрофореза (см. соответствующие статьи настоящего сборника, а также работы [1, 2]), а затем приведем примеры применения двумерных методов разделения на бумаге. При разделении пептидов обычно используется Whatman 3 ММ или хроматографическая бумага с номи- [c.234]

    Те же авторы [359] проводили на сефадексах 0-100 и 0-200 двумерное разделение соединений, входящих в состав сыворотки крови человека. При этом в одном направлении проводили разделение методом гель-фильтрации, а в перпендикулярном направлении — разделение методом электрофореза. Моррис [360, 361] разделял на сефадексах 0-100 и 0-200 белки с молекулярной массой до 180 000. Он кондиционировал сефадекс в течение 48 ч, а затем выдерживал пластинки в про-явительной камере 18 ч для достижения равновесия. В 1962 г. Доун и Краузе [357] применили сефадекс для тонкослойного электрофореза белков. Сефадекс 0-50 ( тонкий ) смешивали с избытком буферного раствора (1 7,5) и выдерживали в нем 24 ч, после чего буферный раствор отфильтровывали и полученный гель, который был пластичным, но не жидким, переносили на стеклянные пластинки, снабженные бортиками. Фей-зелла и сотр. [362] описали разделение белков на сефадексах 0-25, 0-100 и 0-200. Сефадекс выдерживали при перемешивании 30 мин в подходящем буферном растворе, затем давали смеси отстояться и сливали жидкость. Эту операцию повторяли пять-шесть раз, с тем чтобы общее время контакта с буферным раствором было не менее 48 ч для сефадекса 0-25 и не менее 72 ч для сефадексов 0-100 и 0-200. Вендрили и сотр. [363] увеличивали твердость слоев сефадекса для электрофореза, добавляя к ним агарозу. Для этого 1,25 г агарозы растворяли в 65 мл буферного раствора и осторожно добавляли 4 г сефадекса 0-200, 5 г сефадекса 0-100 или 6,5 г сефадекса 0-75, предварительно приведенных в равновесие с буферным раствором. [c.80]


    Изоэлектрнческое фокусирование является важным дополнением к другим методам разделения белков многочисленные ссылки, касающиеся этого метода, приведены в гл. V, разд. 5. Ригетти и Драйсдейл [204] в общем обзоре по изоэлектриче-скому фокусированию в гелях также приводят примеры работ с тонкими слоями, особенно при двумерном разделении. [c.517]

    Вначале при разработке метода ЭИЗ электрофоретическому разделению подвергали очищенные и гомогенные белкн или же белковые смесн, а затем для ориентировочной локализации молекул с разным зарядом применяли иммунодиффузию. Перед электрофорезом с изменением заряда ие рекомендуется проводить ДСН-ПАГЭ, поскольку при этом белки могут подвергаться денатурации с обнажением внутренних гидрофобных областей. Чтобы повысить разрешающую способность электрофоретического анализа, мы сначала проводили ЭИЗ, а затем, вырезав нужные участки геля, элюировали белки и подвергали их иммунопреципитации и ДСН-ПАГЭ. Иными словами, мы сочетали фракционирование нативных образцов по гидрофобно-сти в ЭИЗ с иммунопреципитацией и разделением по величине молекул в ДСН-ПАГЭ, что позволяет отнести всю процедуру к методам двумерного электрофоретического разделения. [c.85]

Рис. 24.8. Двумерное разделение нуклеокапсидных белков вируса гриппа. Сначала проводят изоэлектрофокусирование в полиакриламидном геле, а затем бедки разделяют методом элект)рофореза в сильно денатурирующих условиях (додецилсульфат натрия и восстанавливающий агент). Белки мигрируют к ано-ду (+) тем быстрее, чем меньше молекулярная масса. (Из работы [32а], с изменениями.) Рис. 24.8. <a href="/info/249824">Двумерное разделение</a> <a href="/info/1351662">нуклеокапсидных</a> <a href="/info/1310374">белков вируса гриппа</a>. Сначала проводят изоэлектрофокусирование в <a href="/info/105837">полиакриламидном геле</a>, а затем <a href="/info/138452">бедки</a> <a href="/info/444957">разделяют методом</a> элект)рофореза в сильно денатурирующих условиях (<a href="/info/32904">додецилсульфат натрия</a> и восстанавливающий агент). Белки мигрируют к ано-ду (+) тем быстрее, чем меньше <a href="/info/532">молекулярная масса</a>. (Из работы [32а], с изменениями.)
    В то время как обычный электрофорез белков в тонком слое сефадекса, по-видимому, не представляет особого интереса, сочетание тонкослойной гель-фильтрации с последующим электрофорезом существенно расширяет возможности метода, поскольку наряду с более высоким разрешением здесь удается провести электрофоретическую идентификацию разделяемых компонентов. Методика двумерного фракционирования белков была разработана Иоханссоном и Римо [49] и подробно изложена в работе Хансона и сотр. [14]. Согласно этой методике, первой стадией разделения является гель-фильтрация в слое сефадекса (0-200 или 0-100) толщиной 0,5 мм на пластинках размером 30-30 см. Затем в перпендикулярном направлении в течение 3—4 ч ведут электрофорез при градиенте напряжения 10 В/см. В качестве электролита используют 0,05 М вероналовый буфер с pH 8,6. При электрофорезе пластинку необходимо охлаждать. Относительно простой и удобный прибор показан на рис. 5. [c.269]

    ТОГО, с ПОМОЩЬЮ ТСХ можно контролировать результаты разделения, проведенного другими способами, например перегонкой, колоночной хроматографией, рекристаллизацией и т. п. Можно также использовать ТСХ для предварительной оценки структуры хроматографируемого соединения. Область применения ТСХ, которая с самого начала ее развития была достаточно широкой [38, 76], еще более расширилась благодаря универсальности метода (непрерывное и двумерное элюирование, электрофорез и гель-фильтрация в тонком слое). Благодаря своим преимуществам метод ТСХ часто вытесняет, а во многих случаях уже вытеснил бумажную хроматографию, в которой также используется плоскостное расположение хроматографической системы. Одпако в последнее время количество опубликованных статей, посвященных ТСХ, несколько уменьшилось, несмотря на то что разработаны новые модификации метода, увеличивающие его разрешающую способность и чувствительность [22а, 54а]. [c.86]

    Этот вариант ТСХ, широко применяемый в бумажной хроматографии, в сущности можно рассматривать как один из способов многократного или ступенчатого элюирования в двумерном пространстве. Однако двумерная хроматография более универсальна, чем оба эти метода. Первыми двумерное элюирование в ТСХ применили Кирхнер и сотр. [57]. Согласно разработанному ими методу, пробу наносят на угол квадратной хроматографической пластинки и элюируют обычным способом, после этого извлекают пластинку из камеры, дают растворителю испариться и помещают в другой растворитель таким образом, чтобы элюирование шло в направлении, перпендикулярном первому. Следует обратить внимание на то, чтобы линия пятен разделенных при первом элюировании веществ после поворота пластинки на 90° не оказалась ниже уровня второго элюента. Данный метод позволяет модифицировать адсорбент перед вторым элюированием. Изучая разделение мононенасыщенных жирных кислот, Бергельсон и сотр. [124] проводили первое элюирование на силикагеле, пропитанном додеканом, а перед вторым элюированием в перпендикулярном направлении дополнительно пропитывали слой адсорбента нитратом серебра. Иоханссон и Раймо [125] сочетали тонкослойную гель-фильтрацию на [c.151]

    Сефадекс выполнял роль среды при разделении белков [125, 349—351]. Ферменты, которые нельзя разделить методом электрофореза на бумаге или тонких слоях крахмала без потери их активности, можно выделить без потери активности после электрофореза на сефадексе [349]. Иоханссон и Реймо [125] и Фазелла и сотр. [350] использовали сефадекс для двумерного тонкослойного разделения, в котором в одном направлении проводили тонкослойную гель-фильтрацию, а в другом — электрофорез. При приготовлении тонких слоев сефадекса сухой порошок смешивают с избытком подходящего буферного раствора (1 7,5) и оставляют на 24 ч. После этого удаляют избыток жидкости, полученный гель наносят на стеклянную пластинку и выравнивают слой стеклянным прутком, перемещая его по направляющим полоскам. Чтобы предотвратить потерю влаги в процессе электрофореза, слой геля можно покрыть стеклянной пластинкой. [c.169]

    Плоскостной электрофорез имеет те же преимущества, что и плоскостная хроматография, т. е. позволяет на одной элект-рофореграмме сравнивать одновременно несколько образцов. Методом электрофореза можно, как и в двумерной бумажной или тонкослойной хроматографии, разделять вещества в двух направлениях, в частности в буферах с различным значением pH. Возможен и другой вариант, когда для разделения в двух взаимно перпендикулярных направлениях используют различные носители. Например, сначала проводят электрофорез в узкой полоске агарозного геля, в котором подвижность молекул определяется их зарядом, а затем — в пластинке агарозного геля, в котором вещества разделяются в соответствии с размерами их молекул. Способы качественного и количественного анализа электрофореграмм сходны с используемыми в бумажной и тонкослойной хроматографии. Белки можно обнаруживать также с помощью моноспецифических антител (иммунофиксация). [c.29]

    Изоэлектрическое фокусирование обладает наивысшей разрешающей способностью, когда-либо достигавшейся при разделении белков цо зар5 дам [58—64, 92]. Этот метод позволяет разделить белки, велйчины р/ которых различаются всего на 0,01 ед. pH. Иногда Для такого разделения бывает достаточно различия между двумя структурами на одну заряженную группу. При помощи метода изоэлектрофокусирования можно также обнаружить другй различия в зарядах, которые, строго говоря, не связаны с макроскопической егомогенностью белков. Вот некоторые из факторов, обусловливающих такие различия посттрансляционная модификация первичной структуры (например, дезамидирование), связывание лигандов, химическая модификация, вариации в небелковых компонентах, например липидах, углеводах и других простетических группах, ассоциация и диссоциация, изменения окислительно-восстановительного состояния металлоферментов. Если при анализе картины изоэлектрофокусирования иметь в виду эти факторы, то полученные данные могут приобрести дополнительную ценность, поскольку в принципе они позволяют обнаружить микрогетерогенность белковых структур. В настоящее время метод изоэлектрического фокусирования применяют в сочетании с другими электрофоретическими методами, например в сочетании с электрофорезом в полиакриламидном геле в присутствии додецилсульфата натрия, для получения двумерных карт разделяемых компонентов. В одном направлении производят разделение белков в соответствии со значениями их рД а в другом — в соответствии с размерами их молекул, т. е. в соответствии с их молекулярными массами. При помощи этих методов можно охарактеризовать смеси, содержащие тысячи белков [94]. Еще несколько лет тому назад разделение с таким высоким разрешением было просто немыслимо, а в настоящее время этот метод анализа находит все более широкое и все более успешное применение в различных биохимических исследованиях. [c.126]

    Для фракционирования олигорибонуклеотидов может быть также использован двумерный гель-электрофорез [127]. В ходе первой стадии электрофореза, которую проводят в 0,025 М лимонной кислоте, содержащей 6 М мочевину, происходит разделение олигомеров в соответствии с их размерами и нуклеотидным составом, а вторая стадия представляет собой обычный электрофорез при pH 8 [127].С помощью этого метода можно разделить олигомеры длиной до 80 нуклеотидных остатков. Путем сравнения картин распределения пятен ( отпечатков пальцев ), отвечающих разделенным с помощью двумерного электрофореза [и (или) гомохроматографии] олигорибонуклеотидам двух РНК, нуклеотидная последовательность одной из которых известна, можно оценить степень структурной гомологии этих РНК, а затем отобрать для дальнейшего анализа лишь такие олигорибонуклеотиды второй РНК, которые по подвижности не совпада-чют ни с одним из фрагментов РНК с известной структурой (рис. 10.11). [c.190]

    Двумерный ИЭФ Электрофоретическое разделение АГ в двух направлениях при этом второй раз разделенные белки заставляют диффундировать в содержащем АТ геле с образованием пиков преципитации Поликлональные, преци-питирующие, предпочтительно Ig-фpaкция очень эффективны антитела барана Зависит от систем АГ—АТ Разносторонняя характеристика АГ оценка степени родства между АГ, Применение ограничено АГ, мигрирующими К аноду. Полуколичествен-ный метод. Необходима охлаждаемая пластина для геля [c.24]

    В 34 главах изложены методы определения, выделения и очистки антител (включая дансилироваиие, двумерную хроматографию, изоэлектрофокусирование, электрофорез в полиакриламидном геле и изотахофорез) методы определения констант равновесия (равновесный диализ, равновесная фильтрация и седиментация) способы маркировки реагентов изотопами и флуоресцентными красителями и определение компонентов клеточной поверхности меры предосторожности при работе в изотопной лаборатории методы химической модификации белков, гаптенов и нерастворимых носителей приемы получения аитн-сывороток к аллотипам и антигенам гистосовместимости и получения антител доминирующего клонотипа методы оценки гистосовместимости и реакций в смешанной культуре лимфоцитов методы разделения клеток на гелях, несу- [c.7]

    Такую же последовательность разделений использовали для двумерного фракционирования сложной смеси белков фибро-бластов почки хомячка [Тизгупзк е а1., 1979]. Белкн экстрагировали в присутствии 2% ДДС-Ма н фракционировали в первом направлении на пластине толщиной 1,5 мм классическим методом Лэммли с использованием градиента концентрации ПААГ (7—13%). Исходный материал для ИЭФ на втором этапе разделения на этот раз поставляла полоска геля, вырезанная продольно вдоль ПОЛЯ, т. е. один из треков пластины первого направления. Фокусирование, как и в предыдущем случае, проводили в приборе Мультнфор на горизонтальной пластине 4,5%-ного ПААГ в присутствии 8,5 М мочевины и 2,5% МР-40, но в более узком диапазоне pH (5—7). По-вндимому, для более быстрого фракционирования кислых белков авторы накладывали полоску геля первого направления на пластину со стороны катода. Кроме того, равномерность перехода белков из полоски в пластину могла пострадать от того, что концентрация ПААГ менялась от 7 до 13% вдоль полоски. Из-за этих двух обстоя- [c.59]

    К электрофорезу в геле эти методы, разумеется, прямого отношения не имеют, так как являются примерами электрофореза в свободной жидкости. Именно с этого начиналось применение электрофореза для фракционирования биополимеров. Однако за последнее десятилетие, во всяком случае для аналитических целей, электрофорез в свободной жидкости был полностью вытеснен электрофорезом в гелях или на твердых носителях (бумаге, различных производных целлюлозы, полиамидных пленках и т. д.), который широко применялся при фракционировании пептидов, аминокислот и других сравнительно низкомолекулярных биологически важных молекул, в том числе и в высоковольтных вариантах. В свое время, например, очень важную роль сыграл метод фракционирования олигонуклеотидов гидролизата РНК двумерным электрофорезом. В первом направлении разделение вели на полосках ацетатцеллюлозы в пиридин-ацетатном буфере (pH 3,5) с добавлением 7 М мочевины, во втором — на ДЭАЭ-бумаге в 7%-ной НСООН [Brownlee, 1972]. Ввиду малой емкости ацетатцеллюлозы общая загрузка не превышала 0,1 мг гидролизата РНК, поэтому использовали препараты, меченные радиоактивным фосфором. [c.119]

    Двумерный гель-электрофорез широко используется как аналитический метод. Он заключается в том, что полоску геля, содержащую белки, разделенные, например, с помощью изоэлектрического фокусирования, накладывают на кромку пластины другого геля, содержащего ДСН. Электрофорез проводится в направлении, перпендикулярном длинной оси полоски первого геля (рис. 9.5). Окончательные результаты разделения зависят от того, что в первом направлении белки разделяются в соответствии с их изоэлектрическими точками, а во втором — в соответствии с размерами субъединиц. Неочищенные клеточные экстракты в двумерных системах могут давать до 1000 индивидуально детектируемых белковых компонентов. Однако для анализа очищенного фермента необходимо проводить лишь одномерный электрофорез в каждой из двух систем (изоэлектри- [c.324]


Смотреть страницы где упоминается термин Методы двумерного разделения в геле: [c.27]    [c.27]    [c.27]    [c.82]    [c.82]    [c.271]    [c.153]    [c.177]    [c.512]    [c.6]    [c.6]    [c.373]    [c.136]    [c.119]    [c.217]    [c.197]    [c.217]   
Смотреть главы в:

Иммунология Методы исследований -> Методы двумерного разделения в геле




ПОИСК





Смотрите так же термины и статьи:

Двумерные

Методы разделения



© 2024 chem21.info Реклама на сайте