Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Самосборка структур

    Построение биологических молекулярных и надмолекулярных структур всегда происходит в два этапа биосинтез соответствующих больших и малых молекул и самосборка структуры. И биосинтез, и самосборка основаны на молекулярном узнавании, осуществляемом благодаря слабым взаимодействиям. [c.108]

    Делаются попытки объяснить некоторые процессы, протекающие в живых организмах с помощью теории жидких кристаллов. Протоплазма живой клетки по ряду свойств близка к жидкокристаллическому состоянию. Распространение импульса возбуждения по нерву может быть описано переходами различных жидкокристаллических состояний. Возникновение жизни на уровне самосборки надмолекулярных структур, возможно, по своему механизму близко к образованию жидкокристаллических структур. [c.167]


    Эти же отношения в еще более тонкой форме наблюдаются при образовании мультиферментных комплексов. Такой комплекс может состоять, например, из семи различных ферментов, причем каждый из них представляет собой большую белковую молекулу. Собираясь вместе, эти молекулы испытывают определенные изменения формы, так что в итоге образуется высокоактивная структура. Подобные процессы относятся к явлениям самосборки , в которых точное взаимное структурное и энергетическое соответствие фрагментов приводит к созданию динамических структур, наделенных новыми свойствами, отличными от свойств фрагментов. Если проследить, что зто за новые свойства, то можно заметить, что они обеспечивают развитие новых кодовых связей, как правило, имеющих меньший термодинамический эквивалент. [c.341]

    Нуклеиново-белковые взаимод. в Н. бывают специфическими, когда белок связан с участком нуклеиновой к-ты строго определенной нуклеотидной последовательности (такие взаимод. наз, также нуклеиново-белковым узнаванием), и неспецифическими, когда с белком взаимодействует любая нуклеотидная последовательность. Специфические нуклеиново-белковые взаимод. лежат в основе обнаруженной для нек-рых Н. (напр., рибосом, вируса табачной мозаики) способности к самосборке, когда структура природного Н. может быть полностью реконструирована из его отдельных компонентов-нуклеиновых к-т и белков. Процесс образования Н. всегда сопровождается сильными изменениями конформации нуклеиновых к-т, а иногда и белков, причем в составе Н. нуклеиновая к-та имеет, как правило, существенно более компактную структуру, чем в изолир. виде. [c.304]

    Поскольку межмолекулярные взаимодействия слабы, молекулы способны достаточно прочно связываться друг с другом, только если есть соответствие между их поверхностями, а во взаимодействии участвует большое число атомов. Для образования прочного комплекса соответствие должно быть достаточно точным, т. е. поверхности молекул должны быть комплементарными. Так, если на поверхности одной молекулы имеется выступ (например, группа —СНз), то на комплементарной ей поверхности другой молекулы должно быть углубление напротив положительного заряда должен быть расположен отрицательный. Группа, способная отдавать протон, может образовать водородную связь только в том случае, если есть комплементарная группа, содержащая неподеленные электроны. Для образования гидрофобных связей неполярные (гидрофобные) группы должны располагаться одна против другой. Один из наиболее важных принципов биохимии гласит две молекулы, поверхности которых комплементарны, стремятся взаимодействовать и соединяться друг с другом, тогда как молекулы, не содержащие комплементарных поверхностей, не взаимодействуют. Уотсон назвал это принципом избирательной слипаемости молекул [1]. Он лежит в основе самосборки нитей, трубочек, мембран и полиэдрических структур из взаимно комплементарных биологических макромолекул. Принцип комплементарности ответствен также за специфическое спаривание оснований в процессе репликации ДНК. [c.242]


    Ж. Самосборка макромолекулярных структур [c.326]

    Наиболее ярким примером самосборки служит процесс сборки Т-чет-ных фагов (дополнение 4-Д) [101—103]. Результаты тщательного генетического анализа (гл. 15, разд. Г.2) показали, что для образования головки требуется по крайней мере 18 генов, для образования отростка— 21 ген, а для образования нитей — 7 генов. Большинство этих генов кодирует белки, которые непосредственно включаются в зрелую вирусную частицу, однако несколько генов детерминируют специфиче- ские ферменты, необходимые для процесса сборки. Получены мутантные штаммы вируса, способные синтезировать все структурные белки, кроме одного. В этом случае все синтезированные белки скапливались внутри хозяйской бактериальной клетки и не агрегировали. Однако при добавлении недостающего белка (синтезированного бактерией, инфицированной вирусом другого штамма) быстро осуществлялась сборка полноценных вирусных частиц. Эти н другие данные позволили сделать вывод, что белки присоединяются к растущей структуре в строго определенной последовательности. Присоединение одного белка формирует связывающий участок для следующего. [c.327]

    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]

    Важнейшая особенность белковой цепи, определяющая существование необратимых флуктуаций и, следовательно, возможность спонтанного возникновения высокоорганизованной структуры из хаоса, заключена в специфической конформационной неоднородности природной аминокислотной последовательности. Можно утверждать, что суть рассматриваемого явления состоит в наличии четкой взаимообусловленности между химическим строением, конформационными свойствами и необратимыми флуктуациями. Гетерогенность аминокислотной последовательности ответственна за различие в конформационных возможностях ее отдельных участков, что, в свою очередь порождает термодинамическую неоднородность флуктуаций, дифференциацию их на обратимые равновесные и необратимые неравновесные. Сочетание последних и порядок их следования определяют содержание и направленность механизма быстрой и безошибочной самосборки белковой цепи. Отмеченная связь присуща только эволюционно отобранным аминокислотным последовательностям. В случае же гомогенных, регулярных или даже гетерогенных синтетических полипептидов со случайным порядком аминокислот тот же беспорядочный по своему характеру процесс не имеет развития и не выводит цепь из состояния статистического клубка. Сказанного, однако, недостаточно для объяснения высокой скорости сборки трехмерной структуры белка при его биосинтезе или ренатурации. Чтобы беспорядочно-поисковый механизм мог действительно привести к свертыванию цепи, селекция бифуркационных флуктуаций не должна представлять собой перебор возможных комбинаций всех случайных изменений целой полипептидной цепи, количество которых невероятно велико, и сборка структуры даже такого низкомолекулярного белка, как БПТИ, должна была бы продолжаться не менее 10 ° лет. [c.474]

    Согласно предложенной феноменологической бифуркационной теории, самосборка белка осуществляется в неравновесной термодинамической системе, состоящей из двух подсистем - одиночной полипептидной цепи и водного окружения. Возникновение в такой системе процесса свертывания белковой цепи и его самопроизвольное развитие от беспорядка к порядку без нарушения второго начала термодинамики обусловлены неоднородностью случайных изменений флуктуирующей белковой цепи - наличием наряду с множеством обратимых равновесных флуктуаций также необратимых (неравновесных, бифуркационных) флуктуаций, определяемых конкретной аминокислотной последовательностью и текущим конформационным состоянием. Последовательная реализация специфического для данной аминокислотной последовательности набора бифуркационных флуктуаций завершается созданием трехмерной структуры белка. Вызванное спонтанным процессом свертывания уменьшение энтропии одной подсистемы - гетерогенной полипептидной цепи - компенсируется повышением энтропии другой подсистемы - окружающей среды (см. разд. 2.1). [c.586]


    Решение проблем самосборки означало бы, например, возможность предсказания макроскопической структуры мышцы по данным о химическом строении ее белков. Объяснение строения молекулярных кристаллов на основе знания строения образующих эти кристаллы молекул решает проблемы самосборки в гораздо более простом случае. [c.104]

    Применительно к белкам проблема самосборки является кардинальной. Генетически кодируется биосинтез (гл. 8), т. е. формирование первичной структуры белка. Однако биологически функциональна нативная пространственная структура белковой молекулы, возникающая в результате самосборки. Естественный отбор белков идет по пространственным — третичным и четвертичным — структурам. Молекулярная биология, молекулярная генетика не имели бы смысла, если бы между генетически предопределенной первичной структурой белка и его пространственным строением не было однозначного или вырожденного соответствия (см. 7.1). [c.108]

    Поистине поразительна легкость самосборки структуры такой степени сложности, которую авторы цитируемой работы не без оснований сравнивают с хорошо известным, но малопонятным явлением самосборки сложнейших молекулярных систем в живой клетке. Тот же принцип направляемой предварительным комплексообразованием самосборки был столь же успешно использован в синтезе аналога катенана, содержащего в полиэфирном Щ1кле 1,5-нафтиленовые фрагменты вместо 1,4-фениленовых [19Ь]. Группа Стоддарта, кроме того, проверила возможность использования того же принципа для синтсза [3]катенана, т. е. системы, содержащей два цикла на общем центральном макроцикле (механический аналог — трехзвенная цепь). [c.423]

    Эти результаты представляют очень выразительный пример критической роли матричного э екта как главного фактора, ответственного за самосборку сложной трехмерной структуры с высокой степенью предорганиза-ции многокомпонентного реакционного ко ушлекса. [c.505]

    Термин четвертичная структура относится к макромолекулам, в состав к-рьк входит неск. полипептидных цепей (субъединиц), не связанных между собой ковалентно. Такая структура отражает способ объединения и расположения этих субъединиц в пространстве. Между собой отдельные субъединицы соединяются водородными, ионными, гидрофобными и др. связями. Изменение pH н ионной силы р-ра, повышение т-ры или обработка детергентами обычно приводят к диссоциации макромолекулы на субъединицы. Этот процесс обратим при устранении факторов, вызывающих диссоциацию, может происходить самопроизвольная реконструкция исходной четвертичной структуры. Явление носит общий характер по принципу самосборки функционируют многие биол. структуры. Способность к самосборке свойственна и отдельным фрагментам Б.-до-меиам. Более глубокие изменения конформации Б. с нарушением третичной структуры наз. денатурацией. [c.250]

    Образование В.с. и молекулярных комплексов в значит, степени определяет сольватацию ионов и электрич. проводимость рьров, поляризацию сегнетоэлектриков обеспечивает механизм молекулярного распознавания при самосборке биол. структур, напр, синтез РНК с использованием в кач-ве матрицы ДНК при трансляции, структурное соответствие молекул нуклеиновых к-т или их участков (см. Комплементарность). Роль В с. существенна во мн. процессах хим. технологии, в частности при адсорбции, экстракции, кислотно-основном катализе [c.404]

    Г. в. между неполярными атомными группами (углеводородными, гало гену глеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние иа их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Г. в. обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Г. в.-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами ( маслами , гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С Г. в. связана неустойчивость водиых пленок между неполярными фазами, коагуляция и структуро-образование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.). [c.568]

    К. лежит в основе мн. явлений биол. специфичности, связанных с узнаванием на мол. уровне,-ферментативного катализа, самосборки биол. структур, высокой точности передачи генетич. информаили и др. [c.443]

    Близким к инкапсулированию методом иммобилизации можно считать включение водных растворов ферментов в липосомы, представляющие собой сферические или ламеллярные системы двойных липидных бислоев. Впервые данный способ был применен для иммобилизации ферментов Дж. Вайсманом и Дж. Сессом в 1970 г. Для получения липосом из растворов липида (чаще всего лецитина) упаривают органический растворитель. Оставшуюся тонкую пленку липидов диспергируют в водном растворе, содержащем фермент. В процессе диспергирования происходит самосборка бислойных липидных структур липосомы, содержащих включенный раствор фермента. [c.90]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    Существующие представления о принципах структурной организации белка и путях многостадийного процесса самосборки полипептидной цепи можно отнести к трем альтернативным точкам зрения. Каждой из них отвечает свой специфический набор экспериментальных и теоретических методов, свой особый подход к изучению этого уникального природного явления и своя возможность в достижении конечной цели - количественного описания механизма сборки и расчета координат атомов нативной трехмерной структуры и динамических конформационных свойств белковой молекулы по известной аминокислотной последовательности. Обсуждению современного состояния и перспектив развития трех направлений исследований структурной самоорганизации белка, условно названных эмпирическим, теоретическим (аЬ initio) и генетическим, уделено в этой книге основное внимание. [c.6]

    Ответственными за свойства соединений являются структурные организации молекул. "Поскольку окружающий нас мир никем не построен, - полагают И. Пригожин и И. Стенгерс, - перед нами возникает необходимость дать такое описание его мельчайших "кирпичиков" (т.е. микроскопической структуры мира), которое объяснило бы процесс самосборки" [22. С. 47]. Следовательно, наличие у так называемой живой материи специфических черт следует ожидать уже в организации биологических молекул. Если специфика живой материи, действительно, проявляется не только в комбинации определенного набора соединений (что очевидно), но и в особом, отсутствующем у неорганических веществ качестве биологических молекул (что не очевидно), то проблема живого и неживого трансформируется в проблему структурной организации молекул одушевленной и неодушевленной природы. Такая формулировка, однако, страдает неопределенностью, поскольку понятия "живая и неживая материя", "мельчайшие кирпичики" и им подобные лишены необходимой конкретности и скорее могут быть отнесены к собирательным, фило- [c.49]

    Основой количественного метода конформационного анализа служат бифуркационная теория самосборки и физическая теория структурной Организации пептидов и белков (см. гл.2) Бифуркационная теория Исходит из представления о самопроизвольном свертывании белковой цепи Как о нелинейном неравновесном процессе, обусловленном и направляемом еобратимыми флуктуациями. Согласно физической теории нативная конформация белка считается плотно упакованной структурой, обладающей Минимальной внутренней энергией и согласованной в отношении всех 1утриостаточных и межостаточных взаимодействий валентно-несвязан- [c.219]

    Теоретической основой метода априорного расчета глобальных конформаций являются представление о механизме свертывания белковой цепи как о нелинейном неравновесном процессе, обусловленном и направляемом необратимыми флуктуациями (бифуркационная теория самосборки белка) (см. разд. 2.1) и представление о нативной конформации белка как о плотно упакованной структуре, обладающей минимальной югутренней энергией и согласованной в отношении всех внутриостаточных межостаточных взаимодействий валентно-несвязанных атомов белковой молекулы (физическая теория структурной организации белка) (см. разд. 2.2). [c.247]

    В Советском Союзе молекулярная биология имела свою предысторию с серьезными научными заделами и традициями. Первые конкретные идеи о матричном механизме воспроизведения макромолекулярных хромосомных структур как носителей наследственности были высказаны еще в 1928 г. Н. К. Кольцовым. В 1934 г. в Московском государственном университете им. М. В. Ломоносова на кафедре биохимии растений под руководством А. Р. Кизеля были начаты исследования нуклеиновых кислот. Эти работы затем возглавил его ученик А. Н Белозерский, трудами которого была доказана универсальность распространения ДНК в живом мире и связь количественного содержания нуклеиновых кислот в клетках с интенсивностью роста и размножения. К моменту официального рождения молекулярной биологии в 1953 г., когда Дж. Уотсоном и Ф. Криком был сформулирован принцип структуры и воспроизведения ДНК, у нас в стране существовала собственная школа специалистов по нуклеиновым кислотам, готовая воспринять тенденции развития этой новой науки. Поэтому уже в ранний период становления молекулярной биологии, несмотря на определенные трудности и недостаток кадров, советскими учеными был сделан ряд принципиальных научных вкладов, среди которых обнаружение специальной фракции РНК. в последующем названной информационной РНК (мРНК), открытие временной регуляции синтеза информационных РНК на ДНК, тонерские исследования информационных РНК эукариотических клеток, расшифровка полной первичной структуры одной из тРНК, демонстрация возможности самосборки рибосом и т. д. [c.4]

    Условиями для самосборки служат умеренная ионная сила (ниже 0,5), достаточная концентрация Mg2+ (от 10 до 30 мМ) и повышенная температура. М. Номура с сотр., осуществившие полную реконструкцию биологически активных 30S субчастиц Е. соН из индивидуальных РНК и белка, использовали 0,3—0,3 J М КС1 с 20 мМ Mg b, инкубируя смесь при 40°С в течение 20 мин. Они нашли, что оптимальной является ионная сила около 0,4. Очевидно, более высокие ионные силы подавляют взаимодействия белков с РНК, а при более низких ионныу силах возрастает вклад конкурирующих неспецифических взаимодействий основных белков с отрицательно заряженным полинуклеотидом. Относительно высокая концентрация Mg2+ необходима, по-видимому, прежде всего для поддержания третичной и вторичной структуры РНК, служащей каркасом для размещения белков. Вообще, следует отметить, что так называемый буфер для реконструкции Номура служит в то же время средой, в которой рибосомная РНК достаточно компактна в изолированном состоянии и поддерживает свою специфическую форму. Повышенная температура оказывается также очень важной для реконструкции и требуется, как считают, для облегчения структурной перестройки промежуточного рибонуклеопротеидного комплекса от менее компактной к более компактной конформации. [c.130]

    Заверщение трансляции С-цистрона первыми рибосомами приводит к тому, что в системе появляются свободные молекулы белка оболочки. По мере трансляции этот белок накапливается и в будущем будет вовлечен в самосборку готовых вирусных частиц. Однако он оказался обладающим также и другой функцией он имеет сильное специфическое сродство к определенному участку MS2 РНК между С- и S-цистронами, включающему инициирующий кодон S-цистрона. Соответственно, он присоединяется к этому участку и репрессирует инициацию трансляции S-цистрона. Вероятно, репрессия происходит вследствие стабилизации лабильной вторичной структуры, показанной на рис. 11, белком оболочки фага и получающейся отсюда недоступности инициирующего кодона S-цистрона. Следовательно, через сравнительно короткое время после того, как трансляция S-цистрона была разрешена трансляцией предшествующего цистрона, происходит репрессия инициации трансляции S-цистрона вследствие накопления белкового продукта трансляции предшествующего цистрона. В этих условиях рибосомы, уже начавшие трансляцию, продолжают ее и в конце концов заканчивают синтез соответствующего количества молекул субъединиц синтетазы. Ограниченного количества этого белка достаточно, чтобы образовать активные молекулы РНК-репликазы, которые начнут репликацию MS2 РНК. В то же время репрессия дальнейшего синтеза этого белка позволяет избежать ненужной суперпродукции фермента. Белок оболочки фага, являющийся репрессором S-цистрона, [c.235]

    Хорошим примером дискретной системы, которую можно выделить и которая содержит тесно ассоциированные друг с другом белки и нуклеиновые кислоты, является вирус. Вирус простейшего типа состоит из РНК или ДНК, одно- либо двухцепочечной, окруженной белковой оболочкой, состоящей из идентичных или различных субъединиц, организованных в симметричную структуру. В более сложных типах вирусов имеется также внешний слой, состоящий из липидов и гликопротеинов. Между нуклеиновой кислотой и белком (белками) оболочки существует тесная взаимосвязь, генетическая информация для биосинтеза этого белка закодирована в нуклеиновой кислоте, и в то же время белок предохраняет нуклеиновую кислоту от действия нуклеаз клетки-хозяина. Еще более тесная физическая связь имеет место между белковыми субъединицами. Такая связь была продемонстрирована в результате разрушения вируса табачной мозаики, за которым следовала спонтанная самосборка белка в отсутствие нуклеиновой кислоты. Пустая оболочка, или капсида, была, однако, менее стабильна, чем содержавшие нуклеиновую кислоту реконструированные вирусные частицы. Этот результат указывает, что взаимодействия белок-ну-клеиновая кислота играют важную, хотя, вероятно, не столь значительную роль, по сравнению с белок-белковыми взаимодействиями. Вирусы, таким образом, как бы образуют смысловой мостик между предыдущим разделом и рассматриваемым ниже взаимодействием гистонов с нуклеиновыми кислотами. [c.567]

    РНК (см. главу 3) и 2130 белковых субъединиц, масса каждой из которых составляет 17500. Длина вируса примерно 300 нм, ширина—около 17 нм. РНК вируса имеет спиралеобразную форму. Вокруг РНК нанизаны белковые частицы, образующие гигантскую надмолекулярную спиральную структуру, в которой насчитывается около 130 витков (рис. 1.26). Удивительной особенностью вируса является то, что после разъединения соответствующими приемами (добавление детергента) РНК и белковых субъединиц и последующего их смешивания (с предварительным удалением детергента) наблюдаются полная регенерация четвертичной структуры, восстановление всех физических параметров и биологических функций (инфектив-ная способность вируса). Подобная точность процесса спонтанной самосборки вируса обеспечивается, вероятнее всего, информацией, содержащейся в первичной структуре молекулы РНК и белковых субъединиц. Таким образом, последовательность аминокислот содержит в себе информацию, которая реализуется на всех уровнях структурной организации белков. [c.70]

    Характер структуры на каждом уровне организации определяется геометрическими свойствами структур предыдущего уровня, силами взаимодействия их элементов и взаимодействием с окружающей средохь Возникновение высшей структуры происходит как бы автоматически в результате самосборки системы. [c.104]

    Белковая цепь может иметь громадное число конформащ1Й. Нахождение уникальной конформации, отвечающей абсолютному минимуму свободной энергии, путем перебора всех возможных конформаций невозможно. Эта задача, по-видимому, обходится и природой, так как такой перебор потребовал бы очень большого времени, а самосборка белковой глобулы происходит за время порядка 1 с. Основная идея современных работ, посвященных предсказанию структуры глобулы, исходя из знания первичной структуры цепи, состоит в том, что нативная глобула есть конечный результат самосборки, не обязательно отвечающий абсолютному минимуму свободной энергии. При нахождении нативной глобулы надо исходить из определенной иерархии структур. Белок может быть разделен на спиральные или вытянутые структурные сегменты, соединенные разнообразными изгибами или петлями. Два или три соседних по цепи структурных сегмента образуют элементарные комплексы шпильки из антипараллельных а-спиралей, антипараллельные -шпильки и параллельные р-шпильки, прикрытые а-спиралью. Далее возникает домен, т. е. компактная структура, построенная из нескольких соседних элементарных комплексов и структурных сегментов. Глобулы малых белков состоят из одного домена, больших — из нескольких. Эта иерархия структур показана схематически на рис. 4.14. Таким образом, предполагается блочный механизм сворачивания белка — более простые структуры нижнего иерархического уровня служат блоками для формирования высших структур (Пти-цын). [c.109]

    Проблема самосборки есть проблема физической динамики. Вторичная структура может служить блоком в самосборке, если, во-первых, она формируется значительно быстрее, чем третичная, во-вторых, если она существует достаточно долго и, в-третьих, если она достаточно велика и гидрофобна, чтобы включиться в сильное гидрофобное взаимодействие. И а-спирали, и -формы удовлетворяют этим требованиям. Для расчета вторичной структуры необходимы параметры равновесия (величины я, с. 100) между различными возможными структурами для всех остатков. Соответствующий математический аппарат, использующий модель Изинга (с. 101), развит в работах Птицына и Финкельштейна. Гидрофобные остатки стабилизуют а- и -формы, короткие гидрофильные, а также Гли и Про — дестабилизуют. Удается найти пространственную структуру ряда белков. Расхождение между вычисленным и наблюдаемым распределениями а- и -участков не превышает 20% (рис. 4.15). Самосборка глобулы происходит двумя путями формирование плоской -структуры с последующим прилипанием к ней а-спирали и формирование -шпильки или пары а-спиралей с последующим изломом. Распределенгив гидрофобных групп, благоприятствующее формированию а- или [c.109]


Смотреть страницы где упоминается термин Самосборка структур: [c.95]    [c.95]    [c.282]    [c.189]    [c.110]    [c.536]    [c.327]    [c.53]    [c.54]    [c.55]    [c.83]    [c.86]    [c.126]    [c.240]    [c.88]   
Смотреть главы в:

Физиология растений -> Самосборка структур




ПОИСК





Смотрите так же термины и статьи:

Самосборка



© 2025 chem21.info Реклама на сайте