Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламя над волнами

    Пламя (волна горения или дефлаграции) - волна распространения взрывных реакций в пространстве со скоростью меньше скорости звука в результате теплопроводности или диффузии активных центров. [c.195]

    При взрыве на людей могут воздействовать ударная волна, пламя, разлетающиеся осколки оборудования, коммуникации, конструкции зданий и сооружений, образующиеся или выходя- [c.19]


    В отличие от несветящегося пламени светящееся сажистое пламя излучает и поглощает энергию во всех областях спектра абсолютно черного тела. Поэтому в отличие от трехатомных газов интегральная степень черноты светящегося пламени при большой толщине слоя может бытЕ близка к единице. Излучательная и поглощательная способность светящегося пламени зависит от длины волны X и возрастает с ее уменьшением. [c.17]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Одна часть монохроматического излучения элемента от лампы с полым катодом проходит через пламя 5 и фокусируется на входной щели 7 монохроматора. Другая часть светового потока минует пламя и затем совмещается с первой с помощью тонкой. пластинки 6. Выделенное монохроматическое излучение попадает на фотоумножитель или фотоэлемент 10. Ток усиливается в блоке 11 и регистрируется измерительным прибором 12. Раствор поступает в пламя через горелку (атомизатор) 4. Важнейшей проблемой в атомной адсорбции является отделение резонансного излучения элемента в пламени при данной длине волны от аналитического сигнала. Для этого падающее на поглощающий слой и контрольное (не проходящее через пламя) излучение модулируют или с помощью вращающегося диска 2 с отверстиями, или путем питания лампы с полым катодом переменным или импульсным током. Усилитель 11 имеет максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода. Лампы с полым катодом обычно одноэлементны и чтобы определить другой элемент, нужно сменить лампу, что увеличивает время анализа. Многоэлементные лампы, которые используют в атомно-абсорбционных многоканальных спектрофотометрах, позволяют одновременно определять несколько элементов. Атомно-абсорбционный метод может быть полностью автоматизирован, начиная от подачи проб до обработки результатов измерений. При этом производительность метода составляет до сотен определений в 1 ч. [c.50]


    Метод анализа по фотометрии пламени основан на измерении интенсивности излучения атомов, возбужденных нагреванием вещества в пламени. Для этого вводят раствор исследуемого вещества в виде аэрозоля в пламя газовой горелки при помощи сжатого воздуха. Легко возбуждаемые элементы при этом излучают лучи определенной длины волны и окрашивают пламя. В некотором интервале концентрации интенсивность из-лучения атомов пропорциональна концентрации атомов в растворе, который вводят в пламя (рис. 92). На прямолинейном участке АВ кривой зависимость интенсивности излучений (/) от концентрации (С) излучающего элемента в растворе выражается уравнением  [c.241]

    Если внести в пламя горелки какую-нибудь летучую при нагревании соль натрия, оно окрасится в желтый цвет, при внесении летучих соединений меди —в сине-зеленый цвет и т. д. Каждый. химический элемент при достаточном нагревании испускает лучи определенных, характерных для него длин волн. [c.41]

    Цвет света зависит от длины волны наибольшая длина волны видимого света соответствует красному цвету, наименьшая — фиолетовому. Невооруженному глазу наблюдателя, при внесении в пламя соединений различных элементов, представляется окрашивание пламени горелки в разные цвета в желтый, синий, красный и т. д. Окрашивание пламени горелки соединениями натрия в желтый цвет, калия — в фиолетовый, меди — в зеленый и т. д. объясняется тем, что в спектре натрия преобладают ли- [c.473]

    Как показывают наблюдения, холодные пламена распространяются как волны в реакционной газовой смеси это весьма сложное явление, в котором участвуют многочисленные физические и химические процессы. Прохождение одного фронта холодного пламени часто не приводит к завершению реакции в отдельных случаях наблюдалось до пяти холодных пламен, возникавших и затухавших периодически [10, 103, 132]. Периодичность возникновения холодных пламен пытались объяснить [103, 135], принимая, что здесь имеется термически нестойкая система, в которой саморазогрев приводит к повышению температуры рабочего заряда до области с отрицательным температурным коэффициентом, где реакция прекращается. [c.196]

    Выше были рассмотрены условия применимости уравнений (18) и (19). Эти два уравнения описывают структуру детонационной волны ЗНД в том случае, когда в волне протекает произвольная одноступенчатая реакция и выполнены предположения (1) — (8) из 3 главы 5 ). Однако при использовании определяемых формулами (18) и (19) решений возникают некоторые неясности. При математическом рассмотрении ударная волна занимает область от = —оо до I = +оо, в то время как пламя занимает область от некоторого конечного значения I до = +00 (для функций Аррениуса). Следовательно, две волны перекрываются, и для того, чтобы получить единственное решение задачи о структуре детонационной волны, необходимо в некоторой точке оборвать ударную вол-ну и сшить ее с началом волны горения. Точка обрыва может быть определена как точка, в которой выполняется условие [c.212]

    В работе Таккера [ ] представлена линейная теория, в которой учитывается статистическая суперпозиция волн бесконечно малой интенсивности, и принимается, что зависимостью скорости ламинарного пламени 8 от возмущений фронта пламени можно пренебречь. Из последнего предположения следует, что в данном случае оказывается верным результат, полученный Ландау, т. е. рассматриваемое Таккером ламинарное пламя неустойчиво по отношению ко всем возмущениям, и следовательно, возможность применения линейного анализа вызывает сомнения Однако это исследование демонстрирует [c.248]

    Согласно работам [Л. 2, 3], взаимодействие волны сжатия с пламенем не носит одностороннего энергетического характера пламя не только ускоряется, взаимодействуя с волной сжатия, но и разрушается. Это разрушение приводит к оригинальной структуре горящего факела в свежую смесь распространяется столб горящего газа, а по краям образуется тороидальный огненный вихрь. Рассматриваемый здесь механизм явления относится к вибрационному распространению пламени в трубах и должен, несомненно, иметь общие черты со стационарным пульсирующим горением, так как процесс в обоих случаях имеет идентичный характер, основывающийся на общности начальных процессов, динамики развития колебаний и условий интенсификации горения. [c.276]

    В этой главе мы рассмотрим ламинарные пламена (волны дефлаграции), определение которых было дано в главе 2. Будет более подробно исследован вопрос о структуре и скорости этих пламен. Основанием для более детального изложения теории ламинарного пламени служит тот факт, что проблема ламинарного пламени по крайней мере по двум причинам является центральной проблемой теории горения. Во-первых, это наиболее доступная из проблем горения, решение которых требует одновременного учета движения среды и химической кинетики во-вторых, знание основных представлений и результатов теории ламинарного пламени oкaзьfвaeт я существенным при исследовании многих других проблем горения. [c.135]


    В СССР районировано около 40 сортов сои. Половина посевов занята сортами Янтарная, Амурская 310, Смена, Приморская 529, Ранняя 10, Амурская 41. Значительные площади приходятся на сорта ВНИИС 2, ВНИИС 1, Кировоградская 4. Все большее распространение получают новые сорта Аурика, Чол-пон, Белоснежка, Кировоградская 5, Пламя, Волна, Лумина и др. [c.103]

    Особенностью некоторых нефтепродуктов является их способность к образованию тепловой волны (прогретого слоя) при поверхностном горении в резервуарах. В случае горения нефтепродуктов с узкой областью выкипания тепло пожара проникает только в тонкий поверхностный слой. При горении сырых нефтей и жидких углеводородов с широкой областью выкипания низкокнпящие фракции углеводородов уходят с поверхностей и подпитывают пламя, а высококипящие углеводороды устремляются вниз через прогретый слой, образуя нагретый фронт более глубоко расположенных слоев жидких углеводородов. Это явление называют тепловой волной. Тепловая волна растет вследствие подвода тепла и ухода паров, пока не выкипят все более легкие углеводороды или пока она не достигнет водяного или эмульсионного слоя. В последнем случае возникает паровой взрыв с выбросом горящего продукта. [c.143]

    Неизвестно, что действительно происходит при детонации. Однако спектрографическими и фотографическими исследованиями было установлено, что при нормальной вспышке в двигателе внутреннего сгорания возникает узкая идеально выпуклая волна горения, которая движется вдоль камеры сгорания в направлении от свечи зажигания волны имеют практически постоянную скорость (до 75 м1сек на величину скорости влияют различные факторы). При детонации фронт пламени изменяется только во время сгорания последней части сырья. Кроме того, пламя передвигается гораздо быстрее — со скоростью около 300 м сек. Очевидно также, что детонация возникает только после того, как большая часть горения завершена. [c.405]

    Необходимо выяснить, может ли произойти детонация в промышленных условиях, если процесс будет инициироваться источником энергии низкого уровня, каковым является открытое пламя, зажигалка или электроискровой разряд 200 - 400 В. Согласно общей точке зрения, в таких условиях детонация наименее вероятна. Сошлемся на работу [Р1кааг,1984] "Анализ случаев аварий показал, что имевшиеся разрушения не соответствуют разруихениям, вызванным детонацией. Кроме того, согласно теориям развития процесса быстрых превращений облака, связывающим изменение давления со скоростью пламени,. ..давление порядка 0,03 МПа является достаточным, чтобы соответствовать разрушениям, наблюдавшимся в реальных случаях аварий, и может возникать при скорости пламени порядка 150 - 200 м/с. Итак, круг научных интересов постепенно переместился с вопросов, связанных с последствиями детонации, на исследование причин ускорения пламени и оценку длительности ударной волны..." [c.293]

    В третьей графе — Метод определения — приводится последователь[[ость прибавления реактивов и получаемый результат (образование осадка, окрашенного соединения, окрашивание пламени, люминесценция под действием ультрафиолетового света). В некоторых случаях указывается, что реакция проводится на фильтровальной бумаге (капельные реакции) или выполняется микрокристаллоскопическим методом (на предметном стекло). Сведения о микрокрнсталлоскопических реакциях см. также в таблице Микрохимический анализ (стр. 235). В случае проб на пламя указывается окраска пламени и длина волны наиболее характерных спектральных линий (более слабые линии даны в скобках). В таблице приведены лишь наиболее характерные люминесцентные (флуорометрические) определения. Более подробные сведения можно найти на стр. 461. [c.191]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    Источником возбуждения является пламя горючей смеси пропан— бутан—воздух. Для выделения спектральных линий (На, К), полосы (СаОН) применяют интерференционные светофильтры с шириной пропускания 13 нм, коэффициентом пропускания 7 20% и со следующими длинами волн в максимуме пропускания для измерения эмиссии натрия Хмаис = 589 5 нм, калия Хмакс = 768 5 нм, кальция Я,макс = 622 5 нм (рис. 8). Мешающее излучение поглощают абсорбционные светофильтры. Детектором излучения является фотоэлемент [c.23]

    Измеряют излучение кальция пря длинах волн 624 нм (молекулярная полоса) и 423 нм (атомная полоса), распыляя в пламя 10 М раствор СаСЬ в смеси с растворами Н2504 с концентрацией 10 10 ,, 10- и 2-10 М. Строят зависимость интенсивности излучения от содержания сульфата в растворе. [c.382]

    Исследуемое вещество атомизируют, распыляя его раствор в пламя газовой горелки. Через полученный пар обычно пропускают излучение, соответствующее атомному спектру определяемого элемента. В качестве источника излучения используют радиочастотные лампы. Световой поток, прошедший через поглощающий слой и монохроматор, выделяющий резонансную линию, регистрируют фотоэлектрически. В соответствии с законом Бугера мерой концентрации элемента служит поглощающая способность, которая зависит от строения атомов, агрегатного состояния вещества, его концентрации и температуры, толщины слоя, длины волны, поляризации падающего света и других факторов. По положению линий в спектре можно сделать вывод о строении атомов или идентифицировать их. Достоинствами метода являются высокая избирательность, низкие пределы обнаружения (10 —10 мкг/мл) и высокая воспроизводимость. [c.241]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]

    В пламя горелки вносится анализируемый растнор (например, распыляется в форме аэрозоля), содержащий соединение открываемого или определяемого химического элемента (натрия, калия, кальция и т. д.). В пламени горелки при высокой температуре частицы анализируемого образца разлагаются и атомизируются. Через это пламя пропускают луч света от источника возбуждения, содержащий резонансное излучение открываемого или определяемого элемента. В качестве источника позбу-ждения применяют лампьг с полым катодом, в состав светящейся плазмы которых входят возбужденные (находящиеся в возб>жденном электронном состоянии) атомы данного элемента, способные излучать свет с длиной волны резонансного перехода. Атомы открываемого или определяемого элемента, образовавшиеся в пламени горелки при термическом раз- [c.522]

    Атомно-абсорбционная спектрометрия — метод атомной абсорбции. Ои основан на измерении поглощения света определе([ной длины волны, излучаемого специальным источником, невозбужденными атомами определяемого элемента. Источник дает так называемое резонансное изJ[yчeниe, т. е. излучение, соответствующее переходу электронов на наинизшую орбиталь с наименьшей энергией с ближайшей к ней орбитали с более высоким уровнем энергии. Кванты света резонансной частоты переводят электроны атомов определяемого элемента в пламени в возбужденное состояние, т. е на ближайший к основному более высокий энергетический уровень. Уменьшение интенсивности света п])и прохождении его через пламя пропорционально количеству невозбужденных атомов в нем. Поэтому п )едел обнаружения в методе атомной абсорбции значительно ниже, чем у двух предыдущих методов анализа. [c.31]

    Экстракционно-атомноабсорбционный метод. Экстракт вводят в пламя, где происходит процесс атоми-зации, т. е. распад (после сгорания органического разбавителя) извлеченного соединения на атомы. Затем измеряют поглощение света определенной длины волны атомами элементов, находящихся в пламени. Поглощение света пропорционально содержанию атомов элемента в пламени, а следовательно, и в первоначальном экстракте. [c.567]

    Если источником света является разрядная трубка, содержащая некоторый элемент в газообразном состоянии, то возникает спектр, состоящий из линий различного цвета на черном фоне. Такой спектр называют атомным спектром испускания (эмиссии) или линейчатым спектром (рис. 2.1,6). Спектры испускания можно получить для любого вещества, если тем или иным способом возбудить его, например, с помощью электрического разряда или нагревая вещество в пламени. Атомные спектры испускания лежат в видимой и ультрафиолетовой областях спектра. Если внести в пламя горелки натрий или его соединение, то излучается свет с длиной волны 590 нм, и пламя окращи-вается в желтый цвет. У водорода, помещенного в трубку и возбуждаемого с помощью электрического разряда, цвет свечения красновато-розовый. [c.36]

    Металлы группы 1А имеют объемноцентрированную Тип криета,1.и1Ч1ч 14011 кубическую решетку, бериллий и магний—гексаго-отруктуры нальную плотно упакованную структуру, барий — объемноцентрированную кубическую решетку, а кальций и стронций — гранецентрированную (разд. 6.2.2). Внешний электрон или электроны могут быть возбуждены на более высокие энергетические уровни. При обратном переходе на низший уровень выделяется энергия в виде электромагнитных колебаний. Для этих металлов энергии переходов невелики, так что длина волны излучения соответствует видимой части спектра. Поэтому рассматриваемые элементы окрашивают пламя  [c.384]

    В зависимости от числа характеристических точек на кривой. аналитические сигналы цодразделяются на одно- и многокомпонентные. Так, атомно-абсорбционный метод анализа пригоден для определения по крайней мере 50 элементов, но сам принцип его использования в большинстве современных приборов предполагает получение одноэлементных аналитических сигналов атомного поглощения. Поскольку регистрируемое излучение монохрома-тично, развертка аналитического сигнала проводится не по длинам волн, а во времени, что позволяет усреднять сигнал и улучшать его воспроизводимость. На рис. 3 приведен пример многократного. аналитического сигнала, полученного при определении меди методом пламенной атомизации при периодической подаче дозированных порций пробы в воздушно-ацетиленовое пламя. [c.11]

    При работе с насадкой 1 шкалу длин волн 2 надо установить по. заранее известному спектру. Для этого можно использовать натриевые, ртутные, кадмиевые лампы и другие монохроматические источники. Если таких источников нет, то для этого следует применить натриевое пламя, которое легко получить, помещая в пламя спиртовки или газовой горелки кусочек асбестового картона, пропитанного насыщенным раствором хлористого натрия. Установку шкалы 2 в этом случае удобно вести по характерной желтой линии натрия, размером 590 мкм, соответствующей делению шкалы 0,59 . При этом получают результаты с вполне приемлемой точ-яостью. [c.90]

    Ниже сначала кратко обсуждаются эксперименты и основные физические особенности явления. Затем формулируются основные дифференциальные уравнения, описывающие структуру волн горения. Далее, на примере детального исследования пламени с моноыолекулярной реакцией Я Р Н — реагент, Р — продукт реакции) выясняются основные особенности математической задачи о расчете скорости распространения одномерной волны лалшнарного пламени. Такой выбор реакции можно оправдать тем, что рассмотрение более сложных ила-мен обычно проводится путем обобщения результатов, полученных для мономолекулярных реакций. В последнем параграфе обсуждаются особенности проблемы в случае ценных реакций, в частности, устанавливается критерий возможности использования стационарного приближения для промежуточных реакций. Из изложения (см., например, пункт 2 3 пункт и, 4 пункт а, 2 5) станет очевидным, что до сих нор не разработаны удовлетворяющие всем требованиям математические методы, позволяющие проводить исследование плам н с учетом сложных явлений переноса и сложной химической кинетики. [c.136]

    Вернемся к эксперименту, описанному в начале пункта а 2 главы 5. Если труба, содержащая горючую газовую смесь, достаточно длинная, то пламя, пройдя расстояние, равное (весьма приблизительно) пяти — десяти диаметрам трубы, начинает заметно ускоряться. Наблюдается переходная область с неустановившимся движением, затем появляется высокоскоростная ( 3-10 сде/сек) плоская волна горения, распространяющаяся с постоянной скоростью в оставшейся горючей смеси к концу трубы. Эта высокоскоростная волна является волной детонации, которая, как твердо установлено, распространяется со скоростью, соответствующей верхней точке Чепмена — Жуге (см. главу 2). [c.193]

    Так как детонация распространяетсясо сверхзвуковой скоростью, а пламя — со скоростью малой дозвуковой, то массовая скорость детонации много больше, чем массовая скорость пламени. Отсюда следует, что безразмерная скорость реакции (х, ф), определяемая уравнением (5.34), имеет более низкие значения в случае детонации. Так, в пламени обычно выполняется неравенство Рг (т, ф) 10, а в детонационной волне неравенство [c.204]

    Предположение об одноступенчатой реакции можно устранить, залгенив уравнение (19) уравнением (21) детонационные волны ЗНД с цепными реакциялш анализировать легче, чем рассмотренные в 3 главы 5 пламена с цепными реакциями. [c.212]

    Нестационарные сферические пламена [ 5-48] Рас пространение пламени в почти изотропном турбулентном потоке исследовалось в условиях, когда горючая смесь пропускалась через решетку, за которой смесь поджигалась через некоторые промежутки времени при помощи искры. Наблюдался рост сферической волны горения, которая сносилась потоком. Скорость увеличения радиуса волны, которая измерялась по фотографиям и при [c.232]

    При абсолютно строгом исследовании гидродинамической устойчивости ламинарного пламени следует отбросить приближенное представление о пламени как о разрыве и рассматривать распространение возмущений в реакционной зоне. Такие исследования отличаются от исследований, основанных на рассмотрении модели искривленного ламинарного пламени, но будут здесь упомянуты с той целью, чтобы указать, какое место среди других исследований занимают работы Ландау и Маркштейна. Ричардсон [ 1 впервые исследовал устойчивость пламени, рассмотрев распространение возмущений в зоне пламени затем вопрос в такой постановке изучался рядом других исследователей в работах [м-99,99а] большей части этих работ, в отличие от исследований искривленных пламен, развивается теория одномерного пламени, поэтому в рассмотрение не входит длина волны возмущения. Некоторые из авторов пришли к выводу [93,94,98,99,99а] о адиабатические ламинарные пламена абсолютно устойчивы по отношению к возмущениям рассматриваемого типа, т. е. структура пламени оказывает стабилизирующее влияние, что полностью противоположно результату Ландау. Другие исследователи нашли, что у пламеп есть области [c.245]


Смотреть страницы где упоминается термин Пламя над волнами: [c.152]    [c.260]    [c.267]    [c.496]    [c.421]    [c.329]    [c.129]    [c.155]    [c.16]    [c.648]    [c.222]    [c.245]    [c.245]   
Смотреть главы в:

Энергия океана -> Пламя над волнами




ПОИСК





Смотрите так же термины и статьи:

Анализ с помощью пламени. Чувствительность определений и длины волн аналитических линий и полос

Длины волн спектральных линий и кантов молекулярных полос, возбуждаемых в пламени (в порядке возрастания)

Пламя — стационарная бегущая волна второго рода



© 2025 chem21.info Реклама на сайте