Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция синтеза жирных кислот

    В результате гормональной регуляции синтез жирных кислот активируется в абсорбтивный период (после еды) и ингибируется при голодании и физической работе. [c.196]

    Регуляция синтеза жирных кислот [c.157]

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, которое носит название сахарный диабет повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. Мышечная ткань при этом утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы—наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Следует отметить, что индукторами [c.359]


    Регуляция метаболизма липидов представляет интерес прежде всего в контексте регуляции энергетического потока и пути интеграции его с другими источниками энергии в тканях. Внутриклеточная регуляция процессов окисления и синтеза жирных кислот организована таким образом, что обеспечивает первоочередное использование в качестве энергетических субстратов углеводов и лишь по мере их исчерпания начинается окисление жирных кислот (рис. 23.18). [c.355]

Рис. 23.18. Схема регуляции окисления и синтеза жирных кислот пунктиром показаны положительные (+) и отрицательные (—) эффекты Рис. 23.18. <a href="/info/25482">Схема регуляции</a> окисления и <a href="/info/155404">синтеза жирных кислот</a> пунктиром показаны положительные (+) и отрицательные (—) эффекты
    Как ферменты синтеза жирных кислот, так и аце-тил-СоА-карбоксилаза являются адаптивными ферментами количество их возрастает при усиленном питании и уменьшается при голодании, потреблении жира и диабете. Важную роль в индукции биосинтеза этих ферментов играет гормон инсулин. Обусловленная ( номеном адаптации ферментов регуляция липогенеза развивается медленно и проявляется полностью только через несколько дней, усиливая прямое и немедленное действие жирных кислот и таких гормонов, как инсулин и глюкагон. [c.289]

    Регуляция синтеза и распада жиров в печени. В клетках печени есть активные ферментные системы и синтеза, и распада жиров. Регуляция обмена жиров в значительной мере определяется регуляцией обмена жирных кислот, но не исчерпывается этими механизмами. [c.306]

    Долговременная регуляция опосредуется изменениями скорости синтеза и деградации ферментов, участвующих в синтезе жирных кислот. Этот тип регуляции известен также как адаптивный контроль. У животных, получающих в течение нескольких дней после голодания богатую углеводами и бедную жиром диету, наблюдается резкое увеличение количества ацетил-СоА-карбоксилазы и синтетазы жирных кислот в печени. [c.157]

    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]


    Эта внутренняя регуляция распада и синтеза, накопления энергии и ее потребления сама по себе заслуживает отдельной главы. Но пока нас интересует другое. Мы хотим сейчас отметить то главное, что характерно для всех превращений в клетке. В принципе эти превращения могут протекать и вне живой клетки, но слишком медленно. Дело здес (помимо всего прочего) в том, что реакции органических соединений, т. ё. соединений углерода, протекают с низкой скоростью — этим органические соединения резко отличаются от неорганических ионов. Последние реагируют друг с другом мгновенно. Если к раствору поваренной соли добавить каплю раствора нитрата серебра, то сейчас же выпадет нерастворимый осадок хлорида серебра. Если же слить вместе глицерин и жирные кислоты (это вещества, из которых состоят жиры), то даже спустя несколько дней мы не обнаружим в смеси никакого жира. [c.20]

    После приема пищи (низкая величина отношения глюкагон/инсулин) глюкоза в цитоплазме превращается в пируват, а затем в митохондриях через ацетил-СоА — в цитрат. Это соединение транспортируется обратно в цитоплазму и расщепляется там до ацетил-СоА далее происходит синтез длинноцепочечных жирных кислот. Процесс. начинается с превращения ацетил-СоА в малонил-СоА, катализируемого ацетил-СоА—карбоксилазой. Для функционирования данного фермента абсолютно необходим цитрат [58] — это еще один пример активации по типу опережающей связи, аналогичный рассмотренным выше примерам регуляции гликогенсинтазы с помощью Г6Ф или пируваткиназы с помощью Фр1,6Ф. [c.92]

    В этой книге основное внимание уделено сложным биохимическим процессам (например, синтезу белков, мышечному сокращению), в том числе и различным метаболическим путям. Метаболический путь—это совокупность реакций, ответственных за синтез сложных соединений из более простых и за распад соединения до конечных продуктов. Тот или иной сложный биохимический процесс или метаболический путь иногда проявляется на уровне целого организма. Примером такого рода может служить сокращение мышц. Мы знаем, что глюкоза является источником энергии для человека и других животных, а это означает, что в организме человека она должна распадаться (подвергаться метаболизму) с выделением энергии. Однако для того, чтобы получить полное представление о том, каким образом происходит метаболизм глюкозы в клетке—а мы такого представления (в частности, о механизме регуляции) пока не имеем,—необходимо провести исследования на других уровнях. На рис. 2.3 представлены различные типы наблюдений и анализа, которые позволяют полностью охватить весь биохимический процесс, такой, например, как распад глюкозы и высвобождение энергии (этот процесс известен как гликолиз). Эта схема в общих чертах применима ко всем основным биохимическим процессам, обсуждаемым в этой книге, и, таким образом, иллюстрирует общую стратегию изучения биохимических процессов об этом следует помнить, рассматривая любой биохимический процесс (гликолиз, окисление жирных кислот и т.д.). [c.18]

    Регуляция синтеза и распада жирных кислот. В печени возможен как синтез, так и распад жирных кислот, и здесь мы вновь встречаемся с проблемой [c.295]

    Механизмы увеличения продукции АТФ. Многие процессы, обеспечивающие работу мышц энергией, рассмотрены в предыдущих разделах. К ним относится увеличение снабжения мышц окисляемыми субстратами мобилизация гликогена печени и мышц, глюконеогенез из молочной кислоты (цикл Кори и глюкозо-аланиновый цикл), мобилизация депонированных жиров и поступление жирных кислот и кетоновых тел в мышцы. Увеличиваются также легочная вентиляция и скорость кровотока, а следовательно, и снабжение мышц кислородом. Эти процессы вместе с механизмами аллостерической регуляции, повышающими активность ключевых ферментов катаболизма, многократно увеличивают скорость синтеза АТФ. [c.527]

    Синтез жирных кислот комплексными системами. Возможность регуляции микросо-мами. (Анализ метиловых эфиров жирных меченых к-т в микросомах печени крыс.) [c.185]

    Полиеновые жирные кислоты — линолевая и линоленовая не синтезируются, а поступают с пищей (незаменимые). Остальные — полиненасыщенные — синтезируются из них. Особенно важен синтез арахидоновой кислоты, являющейся предшественником эйкозаноидов. Скорость синтеза жирных кислот регулируется кратковременными и долговременными механизмами контроля. Кратковременная регуляция осуществляется аллостерически на уровне аце-тил-КоА-карбоксилазы (цитрат — активатор, пальмитат и другие жирные кислоты — ингибитор). Долговременная регуляция осуществляется через синтез ферментов и их деградацию при участии гормонов. Инсулин активирует ацетил-КоА-карбоксилазу путем дефосфорилирования фермента (кратковременно) и способен вызывать долговременную индукцию синтеза фермента. Глюкагон и адреналин оказывают противоположное действие. [c.224]


    Кроме того, важную роль в регуляции общего пути катаболизма в целом играет регуляция первого звена этого процесса — пируватдегидрогеназного комплекса. Комплекс может быть в двух состояниях — нефосфорилированном (активная форма) и фосфорилированном (неактивная форма). Протеинкиназа, фосфорилирую-щая комплекс, является одной из его субъединиц. Протеинфосфатаза, дефосфо-рилирующая комплекс, также связана с комплексом. На рис. 8.12 представлены наиболее существенные регуляторные связи пируватдегидрогеназного комплекса. Главное назначение этого механизма — поддерживать скорости образования пирувата и ацетил-КоА, соответствующие их расходованию. При этом пируват и аце-тил-КоА расходуются не только как источники энергии для синтеза АТФ в цитратном цикле, но и в анаболических процессах при определенных состояниях организма и в определенных органах пируват используется для синтеза глюкозы и аминокислот, а ацетил-КоА — для синтеза жирных кислот (эти процессы подробнее рассматриваются в последующих двух главах). При мышечной работе [c.241]

    Синтез жирных кислот и жиров активируется при пиш еварении, а их распад — в постабсорбтивном состоянии и при голодании. Кроме того, скорость использования жиров пропорциональна интенсивности мышечной работы. Регуляция обмена жиров тесно сопряжена с регуляцией обмена глюкозы. Как и в случае обмена глюкозы, в регуляции обмена жиров важную роль играют гормоны инсулин, глюкагон, адреналин и процессы переключения фосфорилирования-дефосфори-лирования белков. [c.306]

    Биосинтез и расщепление почти всегда осуществляются различными путями. Например, путь синтеза жирных кислот отличается от пути их расщепления. Точно так же гликоген синтезируется и расщепляется в результате различных последовательностей реакций. Благодаря такому разделению пути синтеза и расщепления постоянно оказываются термодинамически выгодными. Чтобы какой-либо путь биосинтеза был экзергоническим, он должен быть сопряжен с гидролизом достаточного количества молекул АТР. Например, на превращение пирувата в глюкозу в процессе глюконеогенеза затрачивается на четыре высокоэнергетические связи Р больше, чем образуется в процессе превращения глюкозы в пируват в ходе гликолиза. Эти четыре дополнительные связи Р обусловливают экзерго-ничность глюконеогенеза при любых существующих в клетке условиях. Принципиально важная особенность метаболических путей состоит в том, что их скорость определяется не законом действующих масс, а активностью ключевых ферментов. Разделение путей биосинтеза и расщепления имеет особенно важное значение для эффективной регуляции метаболизма. [c.282]

    Компартментация. Общая картина метаболизма в разных пространственно разграниченных участках (компартментах) эукариотических клеток сильно различается. Гликолиз, пентозофосфатный путь и синтез жирных кислот происходят в цитозоле, а окисление жирных кислот, цикл трикарбоновых кислот и окислительное фосфорилирование - в митохондриях. Некоторые процессы, например глюконеогенез и синтез мочевины, зависят от взаимодействия реакций, протекающих в обоих компартментах. Судьба некоторых молекул определяется тем, где они находятся-в цитозоле или в митохондриях. Это делает возможным регуляцию их потока через внутреннюю митохондриальную мембрану. Например, жирные кислоты, будучи перенесенными в митохондрии, быстро расщепляются, тогда как в цитоплазме они этери-фицируются или выделяются во внеклеточное пространство. Напомним, что жирные кислоты с длинной цепью переносятся внутрь митохондриального матрикс.а в виде эфиров карнитина - переносчика, благодаря [c.283]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]

    Важнейшим этапом регуляции синтеза липидов служит активация ацетил-СоА — карбоксилазы цитратом (гл. 8, разд. В,2 рис. 11-1). Помимо этого, синтез и распад триглицеридов, накапливающихся в печени и жировой ткани, находятся под сложным гормональным контролем. Так, адреналин и глюкагон, стимулируя образование с АМР, вызывают активацию липаз, которые расщепляют триглицериды таким путем происходит мобилизация жировых депо. С другой стороны, инсулин способствует накоплению жиров этот эффект обусловлен не только увеличением активности ферментов липогенеза, и в первую очередь АТР-зависимого цитратрасщепляющего фермента [уравнение (7-70)], но также ингибированием образования с АМР и, как следствие, подавлением липолиза в клетках. Наконец, сывороточная липопротеидлипаза. (называемая также осветляющим фактором ) расщепляет липиды, входящие в состав сывороточных липопротеидов, в процессе прохождения последних через мелкие капилляры. Освобождающиеся при этоМ жирные кислоты поступают в клетки, где вновь включаются в состав-липидов [44]. [c.556]

    На приведенном рис. 27.1 отчетливо видна метаболическая специализация отдельных органов, которая определяется в первую очередь наличием в них специфической метаболической регуляции. Метаболизм в мозгу, мышцах, жировой ткани и печени сильно различается. Мышцы, например, использ тот в качестве источника энергии глюкозу, жирные кислоты, кетоновые тела и синтезируют гликоген в качестве энергетического резерва, в то время как мозговая ткань в качестве энергетического источника использует исключительно глюкозу. Специализация жировой ткани — синтез, запасание и мобилизация триацилглицеролов. Исключительно велика роль печени в обмене практически всех органов. Это мобилизация гликогена и глюконеогенез, которые обескровь [c.441]

    СоА—эпимераза, превращающая D-сте-реоизомеры соответствующих 3-гидрок-сиацил-СоА в L-стереоизомеры. Жирные кислоты с нечетнь(м числом атомов углерода окисляются по тому же основному пути, но при их окислении получается одна молекула пропионил-СоА, которая затем карбоксилируется с образованием метилмалонил-СоА. Последний превращается в сукцинил-СоА в результате очень сложной реакции изомеризации, катализируемой метилмалонил-СоА— мутазой, для действия которой необходим кофермент Bj2. Образующиеся в печени кетоновые тела-ацетоацетат, D-P-гидроксибутират и ацетон-доставляются к другим тканям, превращаются здесь в ацетил-СоА и окисляются через цикл лимонной кислоты. Окисление жирных кислот в печени регулируется скоростью поступления ацильных групп в митохондрии. Специфическая регуляция достигается при помощи малонил-СоА, вызывающего аллостерическое ингибирование карнитин-ацилтрансферазы I. Малонил-СоА-первый промежуточный продукт биосинтеза жирных кислот, протекающего в цитозоле. Когда животное получает пищу, богатую углеводами, окисление жирных кислот подавляется, а их синтез усиливается. [c.568]

    Глюконеогенез. Аденилаты АТР, ADP, АМР и СоА-производные жирных кислот оказывают регулирующее воздействие на многие реакции, участвующие в катаболизме гексоз, в промежуточном обмене и в синтезе запасных веществ. Регуляция фосфофруктокиназы служит, по-видимому, тем главным клапаном, с помощью которого регулируется поток субстрата, направляемый по фруктозобисфосфатному пути. Соответствующий фермент, контролирующий у некоторых бактерий расщепление субстрата по 2-кето-3-дезокси-6-фосфоглюконатному пути,-это, очевидно, глюкозо-6-фосфатдегидрогеназа. Ее тоже в сильной степени ингибируют АТР и NADHj. [c.495]

    Особый интерес представляют полиненасыщенные жирные кислоты, Линоле-вЗ Я (С 8 2) и линоленовая (С18 з) кислоты не синтезируются в организме животных. Арахидоновая кислота (Сгоч) может образовываться в организме из линолевой. Еще 50 лет назад была показана необходимость этих кислот для роста животных. Полийенасыщенные (эссенциальные) жирные кислоты составляют значительную долю растительных масел и играют большую роль в синтезе простаглан-динов, представляющих собой гормоноподобные вещества, принимающие участие в регуляции многих процессов в организме. [c.12]

    Витамин Р — полиненасыщенные, эссенциальные (незаменимые) жирные кислоты. К ним относят линолевую, линоленовую и арахидоновую кислоты (см. Липиды). Отсутствие их в пище приводит к избыточному отложению холестерола в стенках кровеносных сосудов. В эксперименте на крысах были установлены признаки Р-авитами-ноза сухость и шелушение кожи, выпадение шерсти, омертвение кончика хвоста, задержка роста и падение веса, которые устранялись введением линолевой, линоле-новой и арахидоновой кислот. Биологическое действие полиненасыщенных жирных кислот состоит в регуляции обмена липидов, усилении липотропного действия хадина. Основное влияние они оказывают на выделение из организма холестерола, переводя нерастворимые его эфиры в растворимые. Установлено, что витамин Р стимулирует биологическое действие водорастворимых витаминов. Витамин Ве (пнродок-син) способствует синтезу витамина Р, из которого в тканях образуются простаглан-дины, относящиеся к гормонам (см. Гормоны). Механизм его действия неизвестен. Этот витамин накопляется в печени, селезенке и надпочечниках. Получают его из льняного и подсолнечного масла. В суточной дозе (20—30 г) растительного масла содержится 1000 мг витамина Р. [c.149]

    Итак, анаболизм — это совокупность реакций построения сложных молекул и структур из более простых и небольших предшественников с использованием метаболической энергии, Катаболические и анаболические пути могут различаться ферментами, их регуляцией, внутриклеточной локализацией и использованием кофакторов и переносчиков. Многие ферменты амфиболических путей участвуют как в реакциях анаболизма, так и в катаболи-ческих реакциях. Например, большинство гликолитических ферментов принимает участие как в синтезе, так и в катаболизме глюкозы, тогда как жирные кислоты синтезируются из ацетил-КоА и малонил-КоА путем, совершенно отличным от (3-окисления. В активных клетках всегда поддерживается равновесие между процессами анаболизма и катаболизма. На рис. 144 изображена простейшая схема, показывающая за счет чего можно амфи-болические ферменты заставлять работать либо в сторону биосинтеза ( включая Ез-фермент), либо в сторону деградации ( активируя Е -фермент). [c.216]

    Биологическое действие. Витамин Вд (пиридоксин) участвует в регуляции обмена аминокислот и в синтезе белка, проявляя анаболический эффект. Он также регулирует липидный обмен, усиливая усвоение ненасыщенных жирных кислот. Этот витамин входит в состав фермента фосфорилазы, который усиливает распад гликогена в тканях, способствует повышению содержания креатина в мышцах, влияет на образование серотонина, гистамина, ГАМК, которые участвуют в регуляции процессов сокращения мышц и функций нервной системы. [c.117]

    Важную роль в регуляции постоянного содержания глюкозы в крови играют гормоны, главным образом инсулин и глюкагон, проявляющие вза-имопротивоположное действие. Инсулин усиленно секретируется поджелудочной железой при повышении глюкозы в крови после приема пищи и стимулирует поступление глюкозы в скелетные мышцы, печень и жировую ткань, что активирует синтез гликогена или жира (в жировой ткани). Глюкагон усиленно выделяется при снижении глюкозы в крови и запускает процесс расщепления (мобилизации) гликогена в печени, выделение глюкозы в кровь. При уменьшении концентрации глюкозы в крови скелетные мышцы и печень в качестве источника энергии начинают использовать жирные кислоты. Это также вносит свой вклад в поддержание определенной концентрации глюкозы в крови. [c.166]

    При дефиците инсулина развивается сахарный диабет — одно из распространенных заболеваний (в мире насчитывается около 100 млн больных диабетом). Причиной дефицита инсулина является снижение скорости его синтеза, что, в свою очередь, может быть спровоцировано различными эндокринными нарушениями, механизм которых во многом еще не изучен. При сахарном диабете катаболические пути обмена преобладают над анаболическими, в результате чего в крови возрастает содержание глюкозы, которая плохо усваивается тканями. Вследствие этого в организме мобилизуются липиды, ускоряются процессы окисления жирных кислот, вьщеляется большое количество кетоновых тел, понижающих pH крови, что в итоге может привести к гибели организма. При пониженном содержании инсулина в крови диагностируется инсулинозависимый диабет, или диабет I типа, который поддается лечению инсулином. Но есть формы диабета, при которых содержание инсулина в крови находится в пределах нормальных значений, это так называемый инсулинонезависимый диабет, или диабет И типа. Эта форма диабета, по-видимому, вызвана нарушением не синтеза инсулина, а повреждениями в других звеньях инсулиновой регуляции. [c.299]

    Фосфолипазы Аг являются Са -зависимыми эстеразами, специфически катализирующими гидролиз сложноэфирной связи между жирной кислотой (ЖК) и 1,2-диaцил-3-sn-фo фoглицepидoм в положении sn-2. В результате образуются свободная ЖК и лизофосфолипид. В настоящее время фосфолипазы Аг образуют быстро растущее большое суперсемейство различных ферментов, продукты деятельности которых играют важную роль в процессах внутриклеточной сигнализации, синтезе эйкозаноидов или фактора активации тромбоцитов, а также общем метаболизме липидов (Dennis, 1994, 1997). Ферменты, входящие в это суперсемейство, различаются по функции, локализации, регуляции, механизму действия, аминокислотной последовательности, структуре и роли в их регуляции двухвалентных катионов. Фосфолипазы Аг, выделяемые из тканей млекопитающих, подразделяются на внутри- и внеклеточные. [c.43]

    Б. Регуляция секреции и синтеза. На секрецию ГР влияет ряд стимулов (сон, стресс), и она, подобно секреции многих гипофизарных гормонов, носит эпизодический и пульсирующий характер. В течение нескольких минут уровень ГР в плазме может измениться в 10 раз. Один из самых больших пиков отмечается вскоре после засыпания, что подтверждает поговорку Кто не спит, тот не растет . К другим стимулам относятся стресс (боль, холод, тревога, хирургическое вмешательство), физические упражнения, острая гипогликемия или голодание, белковая пища или аминокислота аргинин. Реакции на стресс могут быть опосредованы катехоламинами, действующими через гипоталамус. Возможна связь этих и многих других эффекторов с основным физиологическим действием ГР, состоящим в сберегании глюкозы. При стрессе, гипогликемии, во время сна или голодания ГР стимулирует липолиз (поступление жирных кислот) и проникновение в клетки аминокислот (потенциальных субстратов глюконеогенеза), сберегая таким образом глюкозу для метаболизма мозга. Ключевую роль может играть внутриклеточ- [c.173]

    Точка плавления, а следовательно, и текучесть жиров зависят от содержания в них ненасыщенных жирных кислот. Фосфолипиды клеточных мембран содержат ненасыщенные кислоты, которые играют важную роль в обеспечении текучести мембран. Достаточно высокая величина отношения полиненасыщенных и насыщенных жирных кислот в пищевом рационе является основным фактором, обеспечивающим снижение холестерола в плазме крови, и, как полагают, способствует предотвращению развития ишемической болезни сердца. Простаглаидины и тромбоксаны являются гормонами местного действия при необходимости они быстро синтезируются и действуют в непосредственной близости от места их синтеза. Противовоспалительное действие лекарственных препаратов нестероидной природы, например аспирина, обусловлено ингибированием синтеза простагландинов. Основная физиологическая функция простагландинов состоит в модулировании активности аденилатциклазы и выражается, например, в регуляции агрегации тромбоцитов или ингибировании действия антидиуретического гормона в почках. Лейкотриены обладают свойством вызывать мышечное сокращение и хемотаксис, это позволяет предполагать, что они играют существенную роль в аллергических реакциях и при воспалении. [c.238]

    Быстрая регуляция синтеза длинноцепочечных жирных кислот осуществляется путем алостериче-ской и ковалентной модификации ферментов, а медленная регуляция—путем изменения скорости синтеза и деградации ферментов. [c.288]


Смотреть страницы где упоминается термин Регуляция синтеза жирных кислот: [c.550]    [c.271]    [c.232]    [c.99]    [c.296]    [c.151]    [c.180]    [c.521]    [c.157]    [c.101]    [c.255]    [c.186]   
Смотреть главы в:

Биохимия Т.2 -> Регуляция синтеза жирных кислот




ПОИСК





Смотрите так же термины и статьи:

Жирные кислоты регуляция

Регуляция



© 2025 chem21.info Реклама на сайте