Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инсулин содержание аминокислот

    Гормоны панкреатической (поджелудочной) железы. Панкреатическая железа — железа и внешней и внутренней секреции. В ткани поджелудочной железы имеются группы клеток в виде маленьких островков, которые не связаны с протоками железы. Эти островки получили название островков Лангерганса в них вырабатывается гормон панкреатической железы — инсулин. Островки Лангерганса обильно снабжены кровеносными сосудами, поэтому инсулин легко проникает в кровяное русло. Инсулин оказывает сильное влияние на углеводный обмен понижает содержание сахара в крови, активирует синтез гликогена из глюкозы, увеличивает клеточную проницаемость по отношению к глюкозе кроме того, инсулин активирует синтез белков из аминокислот и тормозит образование углеводов из белков и жиров. [c.146]


    Адреналин и глюкагон осуществляют регуляцию метаболизма гликогена путем изменения активности гликогенфосфорилазы и гликогенсинтазы (через цАМФ) таким образом, что торможение гликогеногенеза и стимуляция гликогенолиза осуществляются одновременно, т. е. реципропно. Глюкокортикоиды (11-гидроксистероиды) усиливают глюконеогенез за счет интенсификации катаболизма белков и аминокислот в тканях и вовлечения промежуточных метаболитов в процесс глюконеогенеза. Таким образом, в рассмотренных случаях адреналин, глюкагон, глюкокортикоиды действуют как антагонисты инсулина. На содержание сахара в крови влияет также гормон щитовидной железы тироксин (подобно инсулину). Гормоны передней доли гипофиза — гормон роста (соматотропин), АКТГ и, вероятно, другие факторы повышают уровень сахара в крови, однако механизмы действия этих гормонов в значительной степени являются опосредованными, поскольку они стимулируют мобилизацию из жировой ткани свободных жирньгх кислот, которые являются ингибиторами потребления глюкозы. [c.283]

    Углеводный обмен. В плане влияния на углеводный обмен гормон роста является антагонистом инсулина. Гипергликемия, возникающая после введения ГР,— результат сочетания сниженной периферической утилизации глюкозы и ее повышенной продукции печенью в процессе глюконеогенеза. Действуя на печень, ГР увеличивает содержание в ней гликогена, вероятно, вследствие активации глюконеогенеза из аминокислот. ГР может вызывать нарушение некоторых стадий гликолиза, а также торможение транспорта глюкозы. Обусловлен ли данный эффект прямым действием ГР на транспорт или он является результатом подавления гликолиза, пока не установлено. Ингибирование гликолиза в мышцах может быть также связано с мобилизацией жирных кислот из триацилглицероловых резервов. При длительном введении ГР существует опасность возникновения сахарного диабета. [c.175]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]


    У человека и высщих животных имеется ряд специальных органов (эндокринных желез или, как их раньше называли, желез внутренней секреции ), которые вырабатывают и направляют в кровь или лимфу особые вещества, являющиеся внутренними химическими регуляторами многочисленных биологических процессов, происходящих в организме. У человека различные гормоны вырабатываются щитовидной железой (тироксин и родственные йодированные аминокислоты), па-ращитовидными железами (особый гормон, регулирующий обмен кальция и фосфора), надпочечниками (адреналин, стероидные гормоны, регулирующие либо обмен углеводов, либо содержание неорганических ионов в крови), поджелудочной железой (инсулин, глюкагон), гипофизом (большое число пептидных и белковых гормонов, регулирующих ряд функций), семенниками и яичниками (половые гормоны) некоторые гормоны образуются в кишечнике и желудке. [c.81]

    Сера. По содержанию в организме человека (мае. доля 0,16 %) (см. табл. 5.3) сера относится к макроэлементам. Как и кислород, она жизненно необходима. Суточная потребность взрослого человека в сере около 4—5 г. Сера входит в состав многих биомолекул — белков, аминокислот (цистина, цистеина, метионина и др.), гормонов (инсулина), витаминов (витамин Bi). Много серы содержится в каротине волос, костях, нервной ткани. [c.365]

    В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Так, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот,— замедление секреции инсулина. Этот феномен контроля по типу обратной связи рассматривается как один из важнейших механизмов регуляции содержания глюкозы в крови. На секрецию инсулина оказывают влияние, кроме того, электролиты (особенно ионы кальция), аминокислоты, глюкагон и секретин. Приводятся доказательства роли циклазной системы в секреции инсулина. Предполагают, что глюкоза действует в качестве сигнала для активирования аденилатциклазы, а образовавшийся в этой системе цАМФ —в качестве сигнала для секреции инсулина. [c.269]

    За последнее десятилетие были достигнуты значительные успехи в дальнейшем установлении точного строения различных белков. Хотя гидролиз белков и последующий анализ гидролизата, который широко использовался раньше, давал возможность получать данные об относительном содержании и природе входящих в состав белка аминокислот, он не позволял сделать какие-либо выводы о распределении аминокислот в полипептидной цепи молекулы белка. Методы анализа и разделения аминокислот до сороковых годов были очень длительными и трудоемкими н требовали сравнительно больших количеств исходного продукта. Разработанные в 40-х годах новые методы анализа и разделения аминокислот и определения концевых групп в молекулах белков и не слишком высокомолекулярных полипептидов создали возможность наметить основные направления решения исключительно важной проблемы выяснения специфической последовательности аминокислот в молекулах некоторых сравнительно простых белков. Первым большим достижением в этой области химии была расшифровка Сангера с сотр. [4] последовательности аминокислот в молекуле инсулина. С момента опубликования этой важнейшей работы, достигшей цели, которая в течение длительного времени казалась неосуществимой, была полностью выяснена последовательность аминокислот у нескольких белков. Установление того факта, что молекулы специфического белка являются однородными по молекулярному весу и содержат строго определенную последовательность аминокислотных звеньев, неизменную для всех макромолекул, явилось одним из наиболее важных достижений химии белка. В число белков, для которых была выяснена последовательность аминокислот, входят инсулин [4], цитохром С [5—7 , белок вируса табачной мозаики [8—10], рибонуклеаза [11 — 13], а- и Р-цепи гемоглобина человека [14, 15], миоглобин кита [16—18], кортикотропин [19—21], глюкагон [22] кроме того, была установлена последовательность аминокислот в некоторых полипептидах более низкого молекулярного веса и частично выяснена последовательность аминокислот у нескольких высокомолекулярных белков [23]. [c.329]

    Приведенные в табл. 6.1 данные показывают, что аминокислотный состав представленных белков существенно различается. Например, в гормоне инсулине отсутствуют триптофан и метионин, а В миоглобине — цистеин н цистин. В табл. 6.1 содержание различных аминокислот выражено в граммах на 100 г исходного белка при суммировании получим, что на 100 г белка приходится 118 г аминокислот (с учетом одной молекулы воды на каждую гидролизуемую пептидную связь). Если же при расчете содержания аминокислот учитывать массу аминокислотных остатков, а ие свободных аминокислот, то суммарное содержание аминокислот в белке, не содержащем неаминокислотных компонентов, должно составлять 100%. Приведем пример такого расчета. При гидролизе инсулина образуется 8,6 г свободного фенилаланина на 100 г белка (табл. 6.1). В пересчете на массу аминокислотного остатка это составляет 8,6-147/165=7,7 г на 100 г белка, поскольку молекулярная масса фенилаланина 165, а масса остатка фенилаланина в белках 147. [c.168]


    Синтез белка. ГР стимулирует транспорт аминокислот в мышечные клетки и, кроме того, усиливает синтез белка, причем независимо от влияния на транспорт аминокислот. У животных, получающих ГР, возникает положительный азотный баланс, что отражает общее повышение белкового синтеза и снижение содержания аминокислот и мочевины в плазме и моче. Указанные изменения сопровождаются повышением уровня синтеза РНК и ДНК в отдельных тканях. В этом отношении действие ГР сходно с некоторыми эффектами инсулина. [c.175]

    Избыточная секреция инсулина поджелудочной железой способствует повышенной утилизации печенью глюкозы, находящейся в крови это приводит к гипогликемии. Кроме того, при высоком содержании инсулина происходит замедление катаболизма аминокислот и жирных кислот. Таким образом, в крови больных оказывается мало субстратов энергетического обмена, необходимых для образования АТР, Если состояние гиперинсулинизма продолжается долго, то возникает поражение клеток мозга, поскольку глюкоза служит для мозга основным источником энергии. [c.1000]

    Инсулин. Интересно, что инсулин отличается относительно высоким содержанием цистина и не содержит метионина, так же как из ароматических аминокислот в нем преобладает тирозин и совсем нет триптофана. [c.234]

    В отсутствие инсулина снижается биосинтез белка, что отчасти объясняется уменьшением транспорта аминокислот в мышцы (аминокислоты служат субстратами для глюконеогенеза). Таким образом, инсулиновая недостаточность у человека сопровождается отрицательным азотным балансом. Характерное для этой ситуации отсутствие антилиполити-ческого действия инсулина, равно как и его липогенного действия, приводит к тому, что содержание жирных кислот в плазме возрастает. Когда оно достигает уровня, превышающего способность печени окислять жирные кислоты до СО,, в крови накапливаются Р-гидроксимасляная и ацетоуксусная кислоты (кетоз). Вначале организм компенсирует накопление этих органических кислот увеличением количества выдыхаемого СО2. Однако если развитие кетоза не сдерживается введением инсулина, то развивается тяжелый метаболический ацидоз и больной погибает от диабетической комы. Механизм инсулиновой недостаточности схематически представлен на рис. 51.11. [c.255]

    Глубокий распад аминокислот, их диссимиляция, имеет место не только при нормальном питании, когда они образуются в результате переваривания белков. Распад аминокислот, правда в меньшем объеме, происходит также при низком содержании и даже при отсутствии белков в пище. Известно, что при безбелковом питании из организма с мочою выделяют конечные продукты азотистого обмена, освобождающиеся в результате превращений аминокислот. Следует также учесть, что часть аминокислот, образующаяся при распаде тканевых белков, используется для синтеза ряда азотистых соединений, входящих в состав тканей. Так, например, для синтеза креатина (стр. 403) используются глицин, аргинин и метионин (последние две аминокислоты относятся к числу незаменимых аминокислот) карнозин и ансерин синтезируются (стр. 409) из незаменимой аминокислоты гистидина. Аминокислоты используются также для синтеза гормонов белковой природы (инсулина, глюкагона, гормонов гипофиза и др.). Адреналин и тироксин синтезируются из незаменимой аминокислоты фенилаланина. Следовательно, некоторая часть аминокислот, образующаяся в результате распада белков тканей в организме при недостатке или отсутствии белков в пище, расходуется на синтез различных биологически важных веществ Часть незаменимых аминокислот постоянно расходуется как при нормаль ном питании, так и при белковом голодании. В последнем случае, т. е при белковом голодании (само собой разумеется, что и при полном голо Дании) должен ощущаться недостаток в незаменимых аминокислотах Между тем для синтеза подвергающихся распаду тканевых белков, необхо димо наличие полного набора всех аминокислот в соответствующих количе-ствах. При недостатке, а тем более при отсутствии тех или иных незаменимых аминокислот, синтез белков тканей уменьшается или вовсе прекращается. Следовательно, аминокислоты, образующиеся в процессе распада тканевых белков при голодании, если не полностью, то в значительной мере, не могут быть использованы для синтеза белков и подвергаются распаду с освобождением конечных продуктов аммиака, углекислого газа и воды. При наличии белков в пигце избыточное количество аминокислот, всасывающееся [c.343]

    Из физико-химических констант белков важнейшая — это молекулярный вес. Сейчас имеется много методов измерения молекулярного веса белков. В частности, химический анализ зачастую дает возможность очень точного определения молекулярного веса. Так, например, в ципк-ннсулине один атом цинка связан с одной молекулой белка, п потому достаточно точно определить весовое содержание цинка в кристаллическом инсулине, чтобы рассчитать молекулярны11 вес. Таким же образом в мио-глобине имеется геминовая группа, т. е. один атом железа на белковую макромолекулу. Иногда белок содержит очень мало какой-либо одной аминокислоты и можно воспользоваться анализом на содержание этой аминокислоты, чтобы рассчитать молекулярный вес. Часто этот метод применяется в сочетании с другими. [c.111]

    В 1964 г. инсулин был синтезирован из отдельных аминокислот. Этот гормон снижает содержание глюкозы в крови, усиливая образование гликогена в печени и мышцах, стимулирует процессы окислительного фосфорилирования, синтез жирных кислот и белков. [c.57]

    Применение динитрофенильных производных, введенных в практику Зангером [25] с целью идентификации и количественного определения концевых аминогрупп, позволяет получить ценные сведения о количестве открытых цепей в белке. Кроме того, такие меченые аминокислоты служат в качестве реперных точек при исследовании неполного гидролиза (1346). В этом отношении полезными являются также е -аминогруппы лизина. Путем неполного гидролиза, осуществляемого с помощью кислоты и различных типов ферментов, оказалось возможным разрывать длинные полипептидные цепи в различных точках и путем анализа установить единственно возможную конфигурацию. Этим способом Зангер и Таппи[99]и Зангер и Томпсон [100] определили порядок чередования аминокислот в двух типах цепей, входящих в состав инсулина (табл. 27). Такой подход к проблеме структуры белка был облегчен широким применением новейших микрометодов хроматографии на бумаге и силикагеле и ионофореза. Таким образом, оказывается, что одна из крупнейших проблем химии белка поддается изучению с помощью весьма простых и экономичных методов. Цепи в инсулине имеют различную длину, причем цепь с N-концевым фенилаланином (цепь В) состоит из 30 остатков, а соответствующая глициновая цепь (цепь А) — из 21 остатка. Порядок чередования аминокислот и их содержание даны в табл. 27. Можно отметить следующее. Цепь А не содержит лизина, гистидина, аргинина, треонина, фенилаланина и пролина все эти компоненты входят в состав цепи В, в которой, в свою очередь, совсем нет изолейцина. Не наблюдается ни регулярного чередования аминокислот, ни тенденции к чередованию полярных и неполярных групп. Три ароматические аминокислоты (фен.фен.тир.) расположены последовательно, и два остатка глутаминовой кислоты связаны с двумя остатками ци-стеина (глу.глу.цис.цис.). В обеих цепях содержится шесть цистеиновых остатков, четыре из которых расположены врозь, а только что упомянутые два — рядом друг с другом в молекуле нативного белка все они существуют в форме цистина, но какие из них расположены между пептидными цепями, а какие в самих пептидных цепях — неизвестно. Часть дикарбоновых кислот присутствует в виде амидов — четыре в цепи А и две в цепи В. [c.255]

    Было бы полезно определять у пациентов, страдающих диабетом, и другие субстраты (табл. 36.1). При физиологически наиболее целесообразном ежедневном введении инсулина возрастает риск острых обострений диабета при других болезнях (например, инфекции), и желательно было бы иметь прибор, предупреждающий о высоком уровне содержания кетонов (например, 3-гидроксибутирата) в крови. Для этой цели снова наиболее пригодны накожные и подкожные сенсоры (или детекторы ацетона в выдыхаемом воздухе). Быстрое увеличение концентрации лактата в крови может наблюдаться не только в отделениях интенсивной терапии. В отсутствие физической нагрузки это свидетельствует о сверхбыстром увеличении скорости оборота глюкозы, связанном с передозировкой инсулина. Объединение лактатного сенсора и сенсора глюкозы, контролирующего подачу инсулина, могло бы быть первым шагом к достижению совершенства, свойственного природным В-клеткам. Следующими кандидатами на постоянный контроль в системе искусственной поджелудочной железы являются аминокислоты. [c.574]

    На обмен белков соматотропин действует подобно (синергично) инсулину увеличивает транспорт аминокислот в мыщцы усиливает биосинтез ДНК, РНК и белков снижает содержание аминокислот и мочевины в моче обеспечивает положительный азотистый баланс. [c.404]

    Инсулин — белково-пептидный гормон, вырабатываемый островками поджелудочной железы. Является регулятором углеводного обмена в органиа-ме — стимулирует усвоение глюкозы и ее превращение в гликоген, при введении в организм понижает содержание сахара в крови. Молекула инсулина включает не менее 707 атомов и состоит из двух пептидных цепей, включающих 21 и 30 остатков аминокислот, цепи соединены двумя мостиками —8—5—, а один дисульфидный мостик имеется в более короткой цепи. Молекулы инсулина склонны к агрегации (с обраэованц от димеров до гексамеров) в присутствии ионов 2п +. Инсулин — первый белок, строение которого было расшифровано и воспроизведено в лаборатории. Используется для лечения диабета (сахарной болезни), [c.557]

    Препараты окситоцина и питрессина содержат соответственно 3,06 и 3,10% серы и 14,3 и 10,5% тирозина [58]. Следует напомнить, что высокое содержание серы и тирозина характерно также и для препаратов инсулина. Гормоны задней доли гипофиза во многом напоминают инсулин и по физико-химическим свойствам. Они также расщепляются протеолитическими ферментами на аминокислоты [59] и инактивируются восстановителями, например цистеином [60]. Однако в отличие от инсулина они реактиви- [c.318]

    Последние четыре белка, приведенные в табл. 42, — гормоны, но и здесь нет заметного. различия в содержании разных аминокислот, кроме тиреогло 5улина, в состав которого входят иодированные аминокислоты. В инсулине много цистеина и цистина, но их много и в кератине. Известно также, что аминокислотный состав высокоспецифичных белков зависит от источника выделения, что было показано, например, на инсулине (Хкрфенист, 1953). [c.656]

    В первых опытах Мишера по выделению нуклеина из клеток гноя, проведенных около века назад, было установлено, что в ядрах эукариотов отрицательно заряженная ДНК находится в комплексе с примерно равным по массе количеством положительно заряженных основных белков. В своей работе, проведенной в начале века, Коссель установил не только природу химических компонентов ДНК, но также выяснил состав связанных с ДНК основных белков. Из этих белков наиболее важное значение имеют гистоны, которые представляют собой полипептидные цепи длиной от 50 до 200 аминокислотных остатков. Положительный заряд ги-стонов обусловлен высоким содержанием в них трех основных аминокислот аргинина, лизина и гистидина, в боковых цепях которых имеется вторая аминогруппа (фиг. 15) па их долю приходится почти 25% всех аминокислот гистонов. Интересно сравнить высокое содержание основных аминокислот в гистонах с данными об аминокислотном составе различных белков, представленными в табл. 2, из которых видно, что основные аминокислоты составляют лишь от 8 до 12% всех аминокислотных остатков таких белков, как р-галактозидаза, А-полипептид триптофан-синтазы Е. oli и бычий инсулин. Взаимодействие между ДНК и гистонами в хромосоме происходит, вероятно, благодаря образованию ионных связей между фосфатными группами полинуклеотидной цепи и боковыми аминогруппами полипептидной цепи. На долю ДНК и гистонов приходится около 3 всей массы большинства хромосом остальную часть обычно относят на счет негистонных белков и РНК. [c.498]

    Противоинсулярное действие гормонов передней доли гипофиза было показано с особой наглядностью на депанкреатизированных (т. е. лишенных поджелудочной железы) собаках с тяжелой формой диабета. Как оказалось, у таких оперированных животных можно резко снизить концентрацию сахара в крови не только путем введения инсулина, ио и путем удаления гипофиза. Это говорит о том, что у нормальных животных стимулирующее действие гормона передней доли гипофиза на процессы сахарообразования в печени уравновешивается тормозящим действием на эти же процессы инсулина, в результате чего содержание сахара в плазме крови удерживается в пределах нормы. При удалении же поджелудочной железы, т. е. при отсутствии инсулина, образование сахара из гликогена и безазотистых остатков аминокислот в печени, стимулируемое гормонами передней доли гипофиза, происходит с большей интенсивностью и приводит к развитию тяжелой гипергликемии. [c.247]

    В жировой ткани уменьшается утилизация глюкозы и снижается ингибирующее действие инсулина на липолиз, жир мобилизуется в виде свободных жирных кислот и глицерола. Свободные жирные кислоты переносятся в другие ткани, где они либо окисляются, либо эстерифицируются. Глицерол после активации (превращения в глицерол-З-фосфат) поступает в углеводный пул (в основном в печени и почках). Во время перехода от сытого состояния к голоданию эндогенное образование глюкозы (из аминокислот и глицерола) отстает от ее использования и окисления, запасы гликогена в печени истощаются и концентрация глюкозы в крови падает. Мобилизация жира возрастает в течение нескольких часов, затем содержание свободных жирных кислот в плазме и глюкозы в крови стабилизируется на уровне, характерном для состояния голодания (0,7 —0,8 мкмоль мл и 60—70 мг/100 мл соответственно). Можно полагать, что при этом уровне глюкозы в крови животного ее поступление в ткани обеспечивает потребности утилизации и окисления. Компенсаторное увеличение окисления жирных кислот и ке тоновых тел позволяет снизить уровень окисления [c.297]

    Инсулин состоит из 51 аминокислотного остатка, которые составляют две цепи цепь А (21 остаток), цепь В (30 остатков). Обе цепи связаны двумя дисульфидными мостиками. Цепь А содержит третий дисульфидный мостик, замыкающий петлю, состоящую -из шести аминокислотных остатков. Последовательность аминокислот в инсулине определена [78] и проведено его рентгеноструктурное исследование [79]. Цепь А имеет сильно свернутую структуру с короткими квазиспиральными участками. Участки а-опиралей имеются в цепи В между дисульфидными мостиками. Низкая молекулярная масса (5780), казалось бы, делает инсулин привлекательным объектом для исследования с помощью ЯМР, тем не менее еще нет публикаций об изучении этим методом нативного белка. Отчасти, видимо, это объясняется тем, что в нем не выделен активный центр . Гормональная функция инсулина — способность понижать содержание сахара в крови —хорошо известна, но непонятна с химической точки зрения. Инсулин обладает ярко выраженной способностью образовывать полимеры. Димер и гексамер хорошо охарактеризованы [79]. В димере наблюдается интересное окружение (по типу ящика ) остатков Тир-26 (В) и Фен-24 (В), а также остатков во второй входящей в димер молекуле, связанных с двумя первыми осью симметрии второго порядка. Это явление представляет несомненный интерес для изучения на частоте 220 МГц. [c.384]

    Отмеченная выше оговорка имеет особое значение в случае кератинов. Это связано с тем, что белки кератинов содержат аномально большое количество одной из аминокислот—цистина. Пептидные остатки такой аминокислоты содержат дисульфидные связи, которые образуют сшивки между удаленнымн друг от друга остатками одной и той же или различных полипептидных цепей. (См., например, дисульфидные сшивки в инсулине, показанные на рис. 2). Если многие из этих поперечных связей существуют между участками одной и той же цепи, то в этом случае, очевидно, нельзя ожидать образования непрерывной а-спирали, однако рентгенограммы кератина, как правило, свидетельствуют об а-спиральной структуре. Этот факт, несомненно, объясняется составом кератинов. Недавно было открыто , что кератин шерсти состоит из нескольких различных по химическому составу белков и что некоторые из них (составляющие от 30 до 40% от общего количества белка) характеризуются очень низким содержанием серы в противоположность кератину как целому, который содержит много серы. Несомненно, что именно эти белки обусловливают а-спираль-ную структуру кератина шерсти. Вероятно, подобное положение имеет место и для других кератинов. [c.72]

    На обмен углеводов соматотропин действует противоположно (антагонист) инсулину вызывает гипергликемию (снижение периферической утилизации глюкозы и повыщение продукции глюкозы печенью в глюконеогенезе) повыщает содержание гликогена в печени, возможно, за счет глюконеогенеза из аминокислот тормозит гликолиз в мыщцах из-за ингибирующего действия жирных кислот, освобождающихся при липолизе жира в липоцитах при длительном введении вызывает сахарный диабет. [c.404]

    На содержание фиптофана, а следовательно, и серотонина в мозге оказывает влияние характер используемой пищи оно возрастает при приеме полноценных белков и богатой углеводами пищи. Углеводы стимулируют освобождение инсулина, который способствует поступлению в мыщцы, а следовательно, удалению из циркуляции разветвленных аминокислот — конкурентов ароматических аминокислот за транспортные системы ГЭБ мозга. Таким образом, снижение уровня разветвленньга аминокислот в плазме крови приводит к повышению транспорта ароматических аминокислот в мозг. Влияние пищи на поведение людей многие исследователи связывают отчасти с изменением уровня ароматических аминокислот в мозге, а отсюда и уровня биогенных аминов. [c.63]

    Глюкагон синтезируется альфа-клетками островковой ткани поджелудочной железы. Его действие противоположно действию инсулина. Глюкагон стимулирует расщепление гликогена в печени и таким образом повышает содержание глюкозы в крови, а также способствует образованию глюкозы в печени из аминокислот и жиров при истош ении запасов гликогена, активирует распад жиров (липолиз) в жировой ткани. Следовательно, действие его направлено на мобилизацию энергетических запасов организма при увеличении энергетических потребностей. [c.144]

    Глюкагон. Повышение содержания сахара в крови после введения экстрактов поджелудочной железы происходит не только вследствие действия фермента инсулиназы, влияющей на активность инсулина, но и под влиянием полипептида, получившего название глюкагон. Этот гипер-гликемический фактор образуется в а-клетках островковой ткани поджелудочной железы его молекулярный вес составляет около 3500. Последовательность аминокислот в этом полипептиде определена. Внизу страницы приведено его строение. [c.351]

    Г. Свойства проинсулина и С-пептида. Длина про-инсулинов колеблется от 78 до 86 аминокислот, причем эти различия обусловлены длиной С-пептида. Проинсулин имеет ту же растворимость и изоэлек-трическую точку, что и инсулин. Он также образует гексамеры с кристаллами цинка и реагирует с антисывороткой к инсулину. Биологическая активность лроинсулина составляет менее 5% биологической активности инсулина. Отсюда следует, что большая часть активного центра инсулина в молекуле предшественника замаскирована. Некоторая часть проинсулина секретируется вместе с инсулином, а в определенных ситуациях (опухоль из островковых клеток) он высвобождается в больших количествах, чем в норме. Поскольку период полужизни проинсулина в плазме значительно выше, чем у инсулина, и при этом проинсулин дает сильную перекрестную реакцию с антисывороткой к инсулину, уровень инсулина , определяемый радиоиммунологическим методом, в некоторых случаях может превышать содержание биологически активного гормона. [c.251]

    На содержание глюкозы в крови, кроме адреналина, инсулина и глюкагона, влияют также и некоторые другие гормоны. Так, например, установлено, что гормон коры надпочечников, кортикостерон при введении ertj в организм вызывает гипергликемию. Подобным же образом действует гормон щитовидной железы тироксин. Следует, однако, отметить, что кортикостерон, в отличие от адреналина и глюкагона, не стимулирует распад гликогена в печени, а вызывает гипергликемию, усиливая образование глюкозы в организме из других веществ (из продуктов дезаминирования аминокислот и возможно из глицерина и жирных кислот). На содержание глюкозы в крови и гликогена в печени ] лияют и гормоны передней доли гипофиза. Действие их, однако, не прямое, а косвенное. В передней доле гипофиза образуются адренокортикотропный (стр. 158) и тиреотропный гормоны. Первый из них стимулирует образование в корковой части надпочечников гормонов (кортизона), второй— образование в щитовидной железе тироксина. Как кортизон, так и тироксин повышают содержание глюкозы в крови. [c.275]

    Содержание ам1шогрупп белков проверяли определением лизина на анализаторе аминокислот "LKB 3201". Найдено количество лизиновых остатков для оС гказеина в расчете на молек. массу 23616 составило 15,1 (лит. -14), для инсулина в расчете на молек. массу 5730-0,93 (лит. -1). [c.213]

    Повыщенное содержание сАМР индуцирует ряд ферментов глюконеогенеза, стимулируя превращение аминокислот в глюкозу. Главная роль среди этих ферментов принадлежит ФЕПКК. Глюкагон опосредованно через с АМР повышает скорость транскрипции гена ФЕПКК, стимулируя тем самым синтез больших количеств ФЕПКК. Этот эффект противоположен действию инсулина, который подавляет транскрипцию гена ФЕПКК. Другие примеры приведены в табл. 51.7. Суммарный эффект тлю- [c.264]


Смотреть страницы где упоминается термин Инсулин содержание аминокислот: [c.180]    [c.104]    [c.248]    [c.262]    [c.260]    [c.260]    [c.47]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты инсулина

Инсулин

Инсулин, содержание серусодержащих аминокислот

Инсулинома



© 2025 chem21.info Реклама на сайте