Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Добавки, технологические

    Предотвращение образования взрывоопасной среды и обеспечение в воздухе производственных помещений содержания взрывоопасных веществ, не превышающего нижнего концентрационного предела воспламенения с учетом коэффициента безопасности, должно быть достигнуто контролем состава воздушной среды, применением герметичного технологического оборудования, рабочей и аварийной вентиляцией, отводом взрывоопасной среды. Чтобы предотвратить образование взрывоопасной среды внутри технологического оборудования, необходимо применять герметичное оборудование, поддерживать состав среды вне области воспламенения, использовать ингибирующие (химически активные) и флегматизирующие (инертные) добавки, подбирать соответствующие скоростные режимы движения среды. Взрывобезопасные составы среды внутри технологического оборудования должны быть установлены нормативно-технической документацией на конкретный производственный процесс. [c.21]


    Для изготовления обуви методом литья под давлением разработана композиция на основе ДСТ-30. В этой композиции в качестве эластичной и термостойкой добавки используется ДСТ-50, в качестве мягчителя — масло МС-20, теплопроводящего и пигментирующего ингредиента — окись цинка. Такой состав обеспечивает удовлетворительные технологические и эксплуатационные свойства обуви [29]. [c.290]

    Принципиальная технологическая схема агрегата УКЛ-7 (7,3-10 Па) приведена на рис. УП1-4. Атмосферный воздух очищается на суконном фильтре воздухозаборника 15, затем очищенный воздух сжимается в первой ступени турбокомпрессора 14 до давления 3,5-10 Па. Воздух при этом нагревается до 175 °С. Затем он охлаждается водой в промежуточном холодильнике 12 до 40—45 °С и сжимается во второй ступени турбокомпрессора 14 до давления 7,3-10 Па. Далее сжатый воздух идет на окисление аммиака, в качестве добавки в процессе кислой абсорбции, а также на отдувку оксидов азота от азотной кислоты и на сжигание природного газа в топках 16. [c.212]

    Рабочий состав бетона с добавкой, ее оптимальную дозировку следует уточнять при изменении на предприятии качества материалов, партии добавки, технологического процесса изготовления бетонных и железобетонных изделий и конструкций. [c.211]

    Несколько лучше показатели у процессов с наиболее селективными экстрагентами — АН, ДМФА и МП. Все указанные экстрагенты могут быть успешно использованы для экономичного выделения и очистки бутадиена и изопрена. Выбор будет зависеть от различных технологических и конъюнктурных факторов и может с течением времени меняться. Процессы с АН отличаются наибольшей технологической надежностью, наиболее полным ингибированием термополимеризации алкадиенов, отсутствием компрессоров в технологической схеме, а также наибольшей доступностью самого экстрагента. Недостатком процесса с ДМФА является малая гидролитическая стабильность экстрагента, для повышения которой в последние годы успешно применяются добавки карбонильных соединений. МП обладает наименьшей токсичностью, и применение его благоприятно для обеспечения лучших санитарно-гигиенических условий. [c.675]

    После накопления достаточных данных о влиянии ингибирования процесса коксообразования различными добавками на весь технологический процесс пиролиза и иа состояние материальной части печи будут составлены рекомендации по рациональному использованию этих добавок. [c.275]

    Так, например, для разработки технологических процессов гидрирования сырья без его изомеризации и расщепления удобнее применять окислы, а не сульфиды переходных металлов, наносить гидрирующий агент на носители, лишенные кислотных свойств, устранять примеси, могущие быть акцепторными добавками (сера,, вода, кислород). В этих условиях реакции изомеризации и расщепления, протекаюш ие по ионному механизму, будут подавлены. Для максимальной изомеризации и расщепления сырья будут выгодны противоположные меры использование сульфидов вместо-окислов, применение кислотных носителей, добавка электроноакцепторных веществ. Многие из этих приемов, как это видно из таблиц первой главы, уже применяются на практике. [c.274]


    В одном из крупнотоннажных агрегатов аммиака с применением высоко-и низкотемпературной конверсии оксида углерода было предусмотрено внешнее использование избыточного высокопотенциального пара, получаемого при рекуперации внутренней тепловой энергии экзотермического технологического процесса. Получение пара было предусмотрено из глубоко деминерализованной воды с добавкой к ней конденсата, образующегося при охлаждении реакционных смесей пара с синтез-газом. [c.24]

    Для обобщения данных, полученных при анализе поступающих на заводы углей, их влияния на качество шихты и кокса, то есть для управления технологическим процессом подготовки, целесообразно составление так называемых шихтовочных диаграмм. При составлении шихтовочной диаграммы на оси ординат откладываются показатели состава шихты, вводимой добавки, качества шихты и кокса, технологического режима коксования, а на оси абсцисс — временные показатели смены, сутки. При анализе шихтовочных диаграмм следует иметь в виду наличие разрыва во времени между составлением угольной шихты и получением из нее кокса, поэтому данные по качеству кокса следует увязывать с данными по качеству шихты, сдвигая данные по анализу кокса на 2—3 смены по времени назад. [c.61]

    Вследствие высокой обводненности и загрязненности ловушечную нефть нельзя добавлять к сырой нефти, даже в небольших количествах, так как такая добавка нарушает технологический режим переработки и [c.111]

    Величина 5 зависит от массы контрольной пробы (число частиц в пробе). На стадии смешения компонентов в катализатор вносят различные технологические добавки, способствующие порообразованию (вода, глицерин, смолы), упрочнению катализатора (растворимое стекло, алюминат натрия, полиуретановый клей и т. д.) и облегчению процесса формования гранул (растворимое стекло, некоторые кислоты, вода и др.). [c.152]

    В качестве проточного реактора использовался аппарат полезной емкостью 650 см снабженный диффузором и винтовой мешалкой, скорость вращения которой была 2800 об/мин. При гидрогенолизе инвертированного сахара [23] сырьевая суспензия, содержавшая 15%-ный раствор моносахаридов с добавлением 3% извести, 0,5% ионов железа 111), 3% свежего или регенерированного катализатора никель на кизельгуре и 9% возвратного катализатора к массе моноз, подавалась на смешение с 8—10-кратным объемом компримированного водорода, далее подогревалась в змеевиковом подогревателе и направлялась в реактор, откуда после охлаждения и сепарации газа выдавалась в приемник низкого давления. Из суспензии отфильтровывали катализатор, 75% которого смешивали с раствором моносахаридов и добавками, указанными выше, после чего процесс повторяли. Технологический режим работы установки давление водорода 10 МПа, объемная скорость по сырью около 2 ч , температура смеси после подогревателя 120—125 °С, в реакторе 220—230 °С. [c.109]

    Составление смесей, у которых />/,.р, обычно наиболее надежно обеспечивает взрывобезопасность аналогичны и смеси взрывчатых эндотермических соединений с инертными добавками. Однако такой прием для технологических процессов нежелателен, так как связан со значительным разбавлением перерабатываемых продуктов и расходованием инертного флегматизатора для смесей углеродсодержащих горючих, кислорода и азота /кр обычно близко к 80%. [c.62]

    Наиболее существенное влияние на величину а оказывает присутствие в жидкости поверхностно-активных веществ. Учитывая сложность физико-химических свойств систем газ—жидкость в реальных технологических процессах, когда небольшие и часто практически нефиксируемые добавки поверхностно-активных веществ сильно изменяют их структуры, следует, вероятно, согласиться с практической нецелесообразностью попыток поиска обобщающих уравнений, пригодных для расчета удельной межфазной поверхности в промышленных барботажных реакторах. [c.19]

    По рассмотренным технологическим схемам возможно получать газ с содержанием метана 98-995 ( /1 - 0,7 + 2,5 - 0,2 + 1,0 СО -следы) и низшей теплотворной способностью 35170 - 35690 кДк/м . Это полноценный заменитель природного газа. Но если требуется газ с более высокой теплотворной способностью, то этого добиваются добавлением к нему сжиженного газа. Добавка 456 пропана позволяет повысить теплотворную способность гаэа до 37680 кДж/м . [c.279]

    Активирующие добавки (литий, натрий, калий и другие элементы) при введении их в сырье в виде гидроокисей или солей щелочных металлов заметно снижают масляное число саж. По-видимому, МОЖНО найти добавки, которые при необходимости могут повышать структурность саж. Однако при этом необходимо установить влияние этих добавок на реакционную способность саж. Известно, что жидкое сажевое сырье, кроме высококонденсированных ароматических углеводородов, содержит в небольших количествах асфальтены [35]. На основе механизма превращения компонентов нефтяных остатков в углерод [112] следует ожидать более быстрого превращения асфальтенов в кокс, чем высококонденсированных ароматических углеводородов в сажу. Наличие асфальтенов в сырье должно при прочих равных условиях снижать структурность саж. Высказанные предположения находятся в согласии с данными ряда авторов, занимающихся выявлением зависимостей между структурностью саж и технологическими факторами. [c.136]


    Помимо трубчатых реакторов непрерывного действия, СНГ весьма часто конвертируются в каталитических установках периодического действия. В этом случае процесс парового риформинга осуществляется при контакте с горячим слоем никельсодержащего катализатора. Как только температура слоя упадет, прекращается подача пара и СНГ и начинается подача воздуха с добавкой некоторого количества СНГ. Отложившиеся углерод, сернистые соединения и добавляемое топливо сгорают в слое, восстанавливая катализатор и поднимая до технологически необходимого уровня температуру реактора. Основной недостаток установок периодического действия — невозможность осуществления в них процесса риформинга при повышенных давлениях. Кроме того, их производительность зависит от размера установки. [c.241]

    Важным технологическим моментом является то, что коэффициент добавки связующего может колебаты я не более чем 0,1% от заданного к расходу шихты. Фактическая добавка связующего определяется как Р = и 100/Ж1--И 7100>Ю, где Р - добавка связующего, А - расход угольной шихты (в мокром весе), т, Ь - расход связующего, т И"" - влага шихты, %. [c.215]

    Технологические операции, связанные с нагревом жидкостей выше температур вспышки паров, необходимо относить к числу взрывоопасных. Так, любой процесс, связанный с нагревом высококипящих жидкостей (нефтепродуктов, растительных масел) до температуры выше 250 °С, следует относить к взрывоопасным, так как температура нагрева при таких режимах (250°С) близка к температуре самовоспламенения паров этих жидкостей. Заметное влияние на область воспламенения газовых смесей оказывает замена одних компонентов смеси другими. В атмосфере кислорода область воспламенения значительно расширяется. При этом нижний предел почти не изменяется, а верхний резко возрастает. Горючие добавки снижают пределы воспламенения, так как снижается верхний предел. Особенно эффективно снижается верхний предел при введении галлоидированных углеводородов. [c.357]

    Синтез изобутилового спирта из СО-водородной смеси осуществляется по схеме, аналогичной технологической схеме синтеза метанола (см. рис. 1). Отличия заключаются в параметрах процесса и в применении цпнкхромового катализатора с добавкой К2О. Срок службы катализатора 75 суток. Процесс ведется прп температуре 440—470° С и давленип 320 ат. [c.72]

    По способу, разработанному в СССР [15], термоэластопласт с двумя концевыми поли-а-метилстирольными блоками получают следующим образом. Вначале проводят полимеризацию а-метилстирола в углеводороде в присутствии втор-бутиллития до образования поли-а-метилстирольного блока. Специальный технологический прием позволяет вести полимеризацию а-метилстирола в углеводородной среде с достаточно высокой скоростью. Затем осуществляется полимеризация бутадиена на живом поли-а-метил-стирольном блоке до образования двухблочного сополимера. После полного исчерпывания бутадиена в систему вводят полярную добавку II проводят полимеризацию второй части а-метилстирола до образования трехблочного сополимера. Степень превращения а-метилстирола зависит от температуры на третьей стадии полимеризации. [c.286]

    Принципиальная технологическая схема разработанного процесса очистки головки стабилизации (С3-С5 каталитического крекинга) представлена на рис.3.3. Головка стабилизации (поток I) после моноэтаноламиновой очистки и очистки от сероводорода 1 %-ным раствором щелочи поступает в инжекторный смеситель С-2, куда подается регенерированный щелочной раствор катализатора (поток И) из емкости Е-28а и свежая щелочь (поток III) из щелочного бачка Е-28. В качестве щелочного катгшизаторного раствора нами было рекомендовано использовать 0,05 % мае. раствор натриевой соли дисульфофталоцианина кобальта в 10-15 % мае. растворе едкого натра с добавкой 2 % мае. ДЭГ. Д шее смесь щелочи и головки стабилизации поступает [c.60]

    Технологический процесс производства прессма-териала — мелалита (рис. 47) состоит из следующих стадий приготовление конденсационного раствора, смешение его с наполнителем и добавками, сушка и измельчение массы, просев и упаковка мелалита. [c.72]

    Кислый алкилат подготавливают к ректификации в три ступени, на каждой из которых расход реагента (вода — на I и П1 ступенях, раствор щелочи на И ступени) достигает 100% на промываемый алкилатт В результате образуется большое количество сточных вод (10—12 м на 1 т алкилбензола), загрязненных хлоридом натрия, гидроксидом алюминия и органическими веществами. Наличие А1(0Н)з осложняет отде/ е-ние алкилата от воды — увеличивается время отстоя, час1гь алкилата теряется в виде неотделенного от воды слоя. Очи< т-ка сточных вод от гидроксида алюминия проводится по сложной технологической схеме. При отмывке алкилата 15—16% м раствором хлорида водорода с добавкой 1%, ( а алкилат) вЬ- ды, извлекается в среднем 90% хлорида алюминия. Отмывка оставшегося комплекса осуществляется щело 1ью и водой. [c.233]

    Рекомендуемые технологические режимы пиролиза прямогопных бензиновых фракций приведены в Приложениях I—3. Обычно с целью получения максимального выхода этилена пиролиз прямогонного бензина (фракция 30—180°С), а также рафинагоп и газового бензина проводят при 750—780"С длительность пребывания в зоне реакции 1 сек, добавка водяного наря 507о отвеса сырья. [c.24]

    Обеспечение алюминиевых и зшектродных заводов нефтяным пеком актуально и в настоящее время. Пеки с заданными свойствами можно получить подбором оптимальных режимных параметров, технологических способов переработки, а также для этой цели можно использовать различные химически активные добавки, влияющие на реологические и адгезионные свойства пеков. [c.87]

    Процесс гидрогенизации на суспендированном катализаторе имеет известные. технологические достоинства, к которым в первую очередь относится непрерыв- юсть работы реактора при сменно-циклических процессах подготовки сырьевой <шеси и отделения катализатора от гидрогенизата. Несомненным преимуществом является также возможность компенсировать (в определенных пределах) ухуд--оевие качества сырья путем повышения концентрации катализатора в реак- адонной зоне или добавки большого количества свежего катализатора. [c.33]

    Технологическая схема процесса получения винилтолуола на основе толуола и ацетилена представлена на рис. 4.4. Потоки толуола и Н2804 с добавкой НеЗО из дозатора / подают последовательно в каскад реакторов 2 с мешалками, в которые параллельно поступает ацетилен. После отделения катализатррного слоя в разделителе 5 алкилат нейтрализуют в аппарате 4 и разделяют в комбинированной колонне /О, откуда дитолилэтан подают через перегреватель 5 в секцию крекинга 6. Катализат крекинга через систему утилизации теплоты и сепарации (7—9) поступает в колонну 10 и в колонны И и /2 для выделения толуола, дитолилэтана, винилтолуола и побочно образующегося при крекинге ДТЭ этйлтолуола. Слой катализатора из разделителя 3 направляют в секцию регенерации 13. [c.109]

    Технологическая схема пронзводства хлорметанов по способу Тгапзса представлена на рис. 12.4. Отходы производства хлоруглеводородов смешивают с избытком воздуха (иногда с добавкой топлива) и подают в реактор пиролиза 1. При сгорании образуется смесь хлора, хлористого водорода, углекислого газа и паров воды. Температура газовой смеси не превышает ИОО °С, поэтому в реакторе пиролиза образуется лишь небольшое количество окислов азота, и коррозия аппарата незначительна. В традиционных реакторах пиролиза сжигание хлоруглеводородов осуществлялось в горелках примерно при 1550 °С и выше, чтобы обеспечить [c.397]

    При таком подходе проблемы улучшения качества битумов за счет модификации решаются более полно. Например, при модификации неокйсленного битума ТЭП типа СБС - ДСТ-30, Кратон (фирма Шелл ), Вектор (фирма Экссон ) -можно увеличить показатель температура размягчения в 3 раза (с 40-41°С до 120-125°С) с сохранением полной однородности композиции. То есть из маловязкого дорожного битума без особых энергетических и технологических затрат получаются высококачественные строительные, кровельные, изоляционные битумы, обладающие очень высокими эксплуатационными характеристиками. Предложенный способ пластификации таких систем позволяет существенно расширить область применения новых материалов. Мы получали композиции с морозостойкостью до минус 60 С и ниже. Поэтому при выборе модифицирующей полимерной добавки к битумам необходимо учитывать свойства и природу полимера, битума и пластификатора. [c.39]

    Повторная промывка бензола с добавкой непредельных соединений в присутствии кислоты умеренной концентрации углубляет очистку, сокращает расход серной кислоты. В качестве веществ, способных облегчить очистку бензола от тиофена, предлагались и испытывались многие индивидуальные соединения и технические продукты дициклопентадиеновая [28] и инден-кумароновая [34] оракции сырого бензола, ангидриды и альдегиды жирных кислот 35], смесь альдегидов и фенола [36], гексаметилентетрамин 37], полиоксиметилен [38], различные жиры животного и растительного происхождения [39]. Многие из испытанных соединений дороги или дефицитны. Некоторые из них, обеспечивая глубокое удаление тиофена, осложняют технологический процесс или загрязняют получающийся бензол другими примесями. [c.219]

    Одним из подобных процессов можно назвать разработанный в США процесс Мидреке ( Мидлен Росс ), по которому работают промышленные установки в США, Канаде, ФРГ, странах Южной Америки. В РФ этот процесс используется на Старо-Оскольском электрометаллургическом комбинате для получения металлизированных окатышей, переплавляемых в сталь. Комбинат работает на железистых кварцитах КМА, которые непосредственно в карьере перерабатываются в концентрат, который после добавки к нему оксида кальция транспортируется в виде пульпы по трубопроводу на расстояние 26 км до комбината. На рис. 5.9 представлена принципиальная и на рис. 5.10 технологическая схемы этого производства. [c.104]

    Асфальт с установок деасфальтизации прямогоиных остатков имеет значительно большую коксуемость, чем исходный остаток, и часто используется в качестве добавки или сырья коксования. При окислении остатков коксуемость может быть увеличена в 1,5— 2,0 раза [26]. Технологический режим окисления примерно такой же, как и при окислении битума. [c.74]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Перспективными направлениями в области флотационных методов обогащения являются перечистка флотоконцентратов на отдельных машинах, а также "масляная флотация" (добавка продуктов нефтепереработки в жидкую среду при флотации). На отечественных углеобогатительных фабриках широкое применение получили флотационные машины механического типа ФМУ-6,3 и МФУ2-6.3, новые машины МФУ2-8 и 10. Производительность этих машин по твердому углю 40-80 т/ч, по пульпе 220—800 мУч. Технологический процесс углеобогащения во многом определяет важнейший показатель качества угольной шихты — влажность. Причем равное значение имеют как абсолютные значения влажности, так и ее равномерность во времени. От влажности углей и угольной шихты зависят смерзаемость их при транспортировании, плотность насьшной массы угольной шихты в камере коксования, ее равномерность по длине и высоте камеры коксования и, значит, В конечном счете качество кокса. Поэтому технологический процесс обогащения завершается сушкой продуктов обогащения иногда всех, включая промежуточный продукт, в некоторых случаях сушке подвергаются только флотоконцентрат, шламы, мелкий концентрат. Сушка проводится в сушильных барабанах, аппаратах кипящего слоя, трубах-сушилках. Преимуществом барабанных сушилок является возможность сушки угольных концентратов разной крупности и их смеси гибкость регулировки процесса простота и надежность в эксплуатации относительно невысокий расход электроэнергии. К недостаткам барабанных сушилок можно отнести низкий коэффициент использования рабочего объема (громоздкость установки) залипание насадки, образование большого количества комков. [c.37]

    Отстой жидких парафинов от ка])бамидного раствора происходит в обогреваемой емкости Е-3. Жидкие парафины из верхней части емкости Е-3 поступают в емкость Е-4, а спиртовой раствор карбамида возвращается на смешение с сырьем. Лигроин из емкости Е-2 подается насосом Н-6 через теплообменник Т-1 в колонну К-1, где отгоняется от дизельного топлива. Отогнанный лигроин вновь используется для отмывки комплекса, а дизельное топливо отводится с установки и может быть использовано как добавка к летнему дизельному топливу. Основные параметры технологического процесса приводится ниже  [c.314]


Смотреть страницы где упоминается термин Добавки, технологические: [c.234]    [c.343]    [c.349]    [c.197]    [c.101]    [c.205]    [c.101]    [c.52]    [c.234]    [c.13]    [c.21]    [c.140]    [c.150]   
Структура коррозия металлов и сплавов (1989) -- [ c.57 ]




ПОИСК







© 2025 chem21.info Реклама на сайте