Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разложение органических соединений метана

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. [c.69]


    Образование метана. Метан образуется в результате разложения органических соединений. Механизм образования метана в результате разложения органических соединений уже рассмотрен в гл. П, 2 и гл. 1П, 1. Кроме того, образование метана может [c.194]

    Продуктами разложения органических соединений в диффузионных пламенах и пламенах гомогенных смесей являются водород и простейшие углеводороды. Общим простейшим углеводородом при разложении исследованных органических (соединений является метан. В пламенах кислородсодержащих соединений кроме этого образуются простейшие кислородсодержащие соединения типа СН2О, а в пламенах азотсодержащих соединений, вероятно, образуется азот, В процессе разложения некоторых соединений образуется этан, максимальное содержание которого составляет доли %. В качестве продукта разложения высокомолекулярных предельных углеводородов (парафина) обнаружен в незначительном количестве пропан. Наличие бутана в пламенах исследованных соединений не установлено. Продуктом разложения некоторых органических соединений является этилен. При горении высокомолекулярных предельных углеводородов (парафина) образуются кроме этилена другие непредельные соединения пропилен и в небольших количествах бутилен и бутадиен (дивинил). Характер распределения концентраций ацетилена в пламенах позволяет предположить, что он не является первичным продуктом разложения исходных соединений неароматического строения. [c.112]

    Характеристическим летучим водородным соединением углерода является метан. В обычных условиях водород с углеродом не реагирует. Синтез метана идет только при достаточно высокой температуре и в присутствии катализатора (мелкораздробленный никель). Применяются также и другие способы получения метана из сложных органических веществ. В лаборатории метан можно получить разложением карбида алюминия водой. В природе метан постоянно образуется при разложении органических веществ без доступа воздуха. Химическое строение метана определяется р -гибридизацией атома углерода. Молекула метана представляет собой правильный тетраэдр, в центре которого находится атом углерода, а по вершинам — атомы водорода. Метан — газ легче воздуха, почти нерастворим в воде, устойчив вплоть до 1000° С. Выше этой температуры разлагается с образованием ацетилена и водорода  [c.362]


    Метан всегда образуется в природе при гниении и разложении органических соединений с ограниченным доступом воздуха, например в канализационных осадках очистных городских установок (здесь он улавливается и используется для промышленных [c.224]

    Метан СН4 представляет собой бесцветный, не имеющий запаха газ с т. кип. —161,4° С, т. замерз. —184° С. Он является главнейшей составной частью природных газов. Выделяется со дна болот как один из продуктов бескислородного (анаэробного) гнилостного разложения органических остатков растительного и животного происхождения, содержится в воздухе каменноугольных шахт (рудничный газ). Метан получа.ют непосредственным соединением углерода с водородом при нагревании в присутствии катализатора  [c.262]

    В надводной части коллекторов скапливаются вредные газы сероводород, аммиак, диоксид углерода, метан, пары бензина и др. Газы попадают в сеть через неплотности соединений труб, через колодцы, а также образуются в результате разложения органических составляющих осадков сточных вод. [c.47]

    В природных условиях метан образуется высокоспециализированными анаэробными микроорганизмами-метаногенами. Субстратами для них служат уксусная кислота, метанол, метиламин, метилмеркаптан и смесь СО2 + Нз- Все эти соединения -продукты жизнедеятельности целого сообщества других анаэробных микроорганизмов-деструкторов, осуществляющих по-стадийное разложение мертвого органического вещества. В общем виде образование метана может быть представлено уравнениями  [c.106]

    Для очистки стоков по второму варианту (с высокой концентрацией органических веществ) применяют анаэробное разложение нх, состоящее из двух основных стадий 1) ферментативный гидролиз углеводов, белков и жиров, содержащихся в сточных водах 2) превращение образовавшихся продуктов гидролиза органических соединений в углекислый газ и метан. На второй стадии анаэробной очистки сточных вод могут образовываться минеральные соли и гумусоподобные вещества. [c.408]

    По-видимому, любое органическое соединение, содержащее ацетильную группу, будет при пиролизе давать некоторое количество кетена. Хотя этот синтез применим и для высших членов ряда, но его использование ограничено в основном первым членом ряда, который лучше всего может быть получен по этому методу как в промышленности, так и в лаборатории. Из различных лабораторных способов [5] наилучший выход (90—95%) был получен при пропускании ацетона над проволокой из хромеля А при 700—750 °С. При проведении пиролиза в камере предпочтительными являются более низкие температуры (около 500 С) для предотвращения дальнейшего разложения на окись углерода и газообразные олефины. Кетен, получаемый из ацетона, смешан с метаном, что может осложнять его абсорбцию. С другой стороны, при пиролизе уксусного ангидрида [6] или дикетена (разд. А.4) подобные газообразные продукты не образуются. [c.376]

    Для каждой из этих зон характерны определенные процессы превращения органического вещества, сопровождающиеся образованием различных углеводородов. Самая верхняя зона — биохимическая. В этой зоне под воздействием микроорганизмов, в основном бактерий, происходит разложение органических остатков с образованием соединений, уже более устойчивых к действию бактерий. В биохимической зоне генерируются в основном метан и углекислый газ. [c.95]

    Метан требует особо детального рассмотрения и вот по каким причинам во-первых, он представляет начальный член всего ряда во-BfrapiHx, он встречается в газах всякого нирогенетического разложения органических соединений наконец потому, что из всех углеводо-родо В парафинового ряда он является веществом с наибольшим содержанием водорода С — 75%, Н — 25 %, и потому обладает большей термической устойчивостью и реакционной способностью особенного xJapaiKrrepa. [c.24]

    Полисапробная зона характерна для свежезагрязненной воды, где протекают начальные этапы разложения органических соединений. Полисапробные воды содержат большое количество органических веществ, в первую очередь белков и углеводов. При разложении этих веществ в большом количестве выделяются углекислота, сероводород, метан. Вода бедна кислородом, поэтому химические процессы носят восстановительный характер. Резко выраженные неблагоприятные условия среды ведут к ограничению числа видов в растительном и животном населении водоема. Основными обитателями являются бактерии, количество которых достигает сотен миллионов в I мл воды. Очень много серобактерий и инфузорий. Все обитатели полисапробной зоны по способу питания относятся к консуйентам (потребителям), или иначе гетеротрофам. Они нуждаются в готовом органическом веществе. Продуценты (производители), т. е. автотрофы, к которым относятся зеленые растения, создающие органическое вещество из минеральных соединений, здесь совершенно отсутствуют. [c.156]

    Осадок сточных вод и концентрированные производственные сточные воды с БПК выше 5 г/л подвергаются биохимическому разложению Б анаэробных условиях. Оно может происходить в сооружениях-септиках, представляющих собой отстойник, через который медленно проходит сточная жидкость. В двухъярусном отстойнике осадок отделен от проходящей сточной жидкости, его разложение осуществляется в иловой камере. На очистных сооружениях большой производительности осадок сточных вод выделяется в первичных отстойниках и вместе с избыточным активным илом подвергается сбраживанию в метантенках. Интенсивность и глубина разложения осадка прежде всего определяются его составом, который колеблется по соотношению содержания основных органических компонентов (углеводов, белков, жироподобных соединений) и неорганических веществ. Обычно в осадке городских сточных вод содержится 70—80% органических веществ. Так, примерный состав осадка ( % ) белки 24, углеводы 23, жироподобные вещества до 30. Чаще всего при кислом брожении осадка получаются уксусная, масляная, пропионовая кислоты. Образующиеся газы содержат диоксид углерода, метан, водород, сероводород. Водная фаза имеет кислую реакцию среды (рН<5), не обладает буферными свойствами, имеет резкий неприятный запах. [c.274]


    Полисанробная зона (зона сильного загрязнения) соответствует свежему загрязнению водоема бытовыми сточными водами. Она характеризуется наличием большого количества сложных белковых соединений. Свободный кислород отсутствует, поэтому протекают биохимические процессы, имеющие восстановительный характер. В результате разложения органических соединений образуются сероводород, метан, диоксид углерода, аммиак. Основное население этой зоны представлено большим количеством бактерий. Численность их может достигать миллиона и более в 1 мл воды. Наряду с бактериями в этой зоне развиваются бесцветные жгутиковые, грибы, в иле находятся малощетинковые черви — тубифициды. Общее количество видов 30—36, возможны колебания видового состава в зависимости от времени года. [c.242]

    Анаэробные биохимические процессы используются для разложения осадка сточных вод и иногда в качестве предварительной ступени очистки концентрированных производственных сточных вод. Разложение органических веществ идет с образованием метана, диоксида углерода, азота, сероводорода, водорода и продуктов неполного распада органических соединений. Этот способ обработки осадка сточных вод называется сбраживанием, которое осуществляется в септиках, двухъярз сных отстойниках и метан-тенках. [c.256]

    Углеводороды в нефти своим происхождением обязаны, по-видимому, различным исто шикам и механизмам. Легкие углеводороды и газы, в которых ббычно содержится менее девяти атомов углерода, образуются в осадках в течение всего геологического времени в результате разложения органических соединений с большим числом углеродных атомов. Более тяжелые углеводороды синтезируются живыми организмами и образуются в осадках. По-видимому, образование углеводородов (УВ) продолжается до тех пор, пока из сильно измененных катагенезом пород не начнет выделяться только один метан. Вероятно, карбонатные осадки являются такими же эффективными материнскими породами, как и глинистые, хотя между ними существуют различия во времени и условиях образования, миграции и аккумуляции нефти. [c.278]

    Самым простым но химическому составу углеводородным соединением является метан СИ4. Метан — газ, имеющий темпера- УРУ кипения —161,6°. Его часто называют болотным газом , так как он образуется при разложении органических веществ и выде- [c.174]

    Первая стадия заключается в разложении крупных органических соединений и превращении их в органические кислоты с выделением газообразных побочных продуктов углекислого газа, метана и следов сероводорода. Эта стадия осуществляется разнообразными факультативными бактериями, функционирующими в лишенной кислорода среде. Если бы процесс на этом остановился, скопившиеся кислоты привели бы к понижению pH и к ингибированию последующего распада при закисании оставшихся сырых сточных вод. Для того чтобьг произошло сбраживание, на второй стадии необходима газификация для превращения органических кислот в метан и углекислый газ. Бактерии, расщепляющие кислоты с образованием метана, являются строгими анаэробами и очень чувствительны к условиям окружающей среды, т. е. к температуре, pH и анаэробиозу. [c.340]

    А. П. Терентьев, Н. М. Туркельтауб, Е. А. Бондарев-ская, Л. А. Домочкина [39] разработали метод одновременного определения азота и кислорода. Анализируемую пробу органического соединения (5—10 мг) в платиновой или кварцевой лодочке разлагали в статических условиях в кварцевой трубке в атмосфере гелия, очищенного от кислорода, при разрежении 20 мм рт. ст. В присутствии никелированной сажи при 900° С конечными продуктами превращения кислорода и азота, содержащихся в анализируемом соединении, были окись углерода и азот. Авторы отмечают, что в некоторых случаях (по-видимому, в результате частичного гидрирования окиси и двуокиси углерода) в продуктах разложения в незначительных количествах появляется метан. [После разложения пробы простые продукты окисления [c.154]

    Дёринг с сотр. [54] разработали реакционный метод определения муравьиной кислоты и ее производных. Метод основан на каталитическом разложении муравьиной кислоты на воду и оксид углерода и на количественном гидрировании оксида углерода в метан, который регистрируется пламенно-ионизационным детектором. Предел обнаружения 3-10 %. Относительное стандартное отклонение составляет 20% для области концентраций ниже 20-10 % и 5% для области концентраций 20- -100-10 %. Предложенный метод можно сочетать с газохроматографическим анализом компонентов смеси органических соединений. [c.238]

    В контактных печах попутно с основной реакцией каталитического разложения спирта протекает много побочных реакций,, в результате чего, кроме бутадиена, образуются десятки других органических соединений. В состав высококипящей части контактного газа входят непрореагировавший этиловый спирт, образовавшаяся при реакции вода, пиперилен, этиловый эфир, альдегиды, высшие спирты и углеводороды. Низкокипящая часть содержит бутадиен, псевдОбутилен, этилен и другие непредельные углеводороды, метан, водород, а также углекислый газ, окисъ углерода и воздух. Экспериментально доказано, что коррозия углеродистой стали возрастает с увеличением содержания в контактном газе воздуха, который может попадать в систему из-за недостаточной герметичности. [c.167]

    Между углеродистыми водородами известен лишь один, заключающий в частице 1 атом углерода и 4 атома водорода следовательно, это есть соединение с наивысшим процентным содержанием водорода (СН содержит 25°/о водорода). Этот предельный углеродистый водород СН называется болотным газом или метаном. Если приток воздуха к остаткам растений и животных ограничен, или даже не существует, то их разложение сопровождается образованием болотного газа, будет ли это разложение происходить при обыкновенной тем-температуре, или при температуре сравнительно весьма высокой. Оттого растения, разлагающиеся в болотах,под водою, выделяют этот газ. Всякий анает, что если тину болотного дна потрогать чем-нибудь, то из нее выделяется большое количество пузырей газа эти пузыри, хотя медленно, однако, выделяются и сами собою. Выделяющийся газ содержит преимущественно болотный газ, и его легко собрать, если стклянку опрокинуть в воде и в горло ее вставить (под водою же) воронку тогда пузыри газа легко уловить в отверстие воронки. Если дерево, каменный уголь и множество других растительных и животных веществ разлагаются действием жара без доступа воздуха, т.-е. подвергаются сухой перегонке, то они также выделяют вместе с другими газообразными продуктами разложения (углекислотою, водородом и различными другими веществами) много метана. Обыкновенно газ, употребляющийся для освещения — светильный газ, — получается именно этим способом, и потому он всегда содержит в себе болотный газ, смешанный с водородом и другими парами и газами, хотя он и очищается от некоторых из них [236]. А так как разложение органических остатков, образующих каменные угли, еще продолжается под землею, то в каменноугольных копях нередко продолжается еще выделение массы болотного газа, содержащего азот и СО . Смешиваясь с воздухом, он дает взрывчатую смесь, составляющую одно из бедствий копей этого рода, так как подземные работы приходится вести с лампами. Но эта опасность значительно уменьшается предохранительною лампою Гумфри Деви., который заметил, что если в пламя ввести плотную металлическую сетку, то поглощается столь много тепла, что за сеткой горение не продолжается (проходящие [c.259]

    Попытки прямого фторирования органических соединений, предпринятые сразу после получения элементарного фтора, были многочисленны и неудачны. Первые из них были сделаны Муассаном и Шаваном, которые, пытаясь снизить энергию действия фтора, фторировали твердый метан жидким фтором при низкой температуре и в темноте. Несмотря на это и на высокое мастерство экспериментаторов, единственным итогом опыта был разрушительный взрыв. Муассан установил, что фтор реагирует со многими органическими соединениями настолько бурно, что в результате деструкции молекул образуются четырехфтористый углерод, фтористый водород, уголь и другие продукты разложения. Другие исследователи стремились получить фторуглероды путем взаимодействия углерода или углеродсодержащих соединений с элементарным фтором. Однако, как и Муассану, им удавалось получить только четырехфтористый метан, причем опыты часто заканчивались взрывами. Лебо и Дамену удалось более подробно изучить эту реакцию и определить свойства образующегося четырехфтористого углерода. [c.60]

    Многие органические соединения разлагаются при относительно низкой температуре. Химическая природа и количество продуктов пиролкза зависят не только от строения исходного соединения, но также от конечной температуры разложения и от скорости нагревания. Характеристические фрагменты, главным образом, выделяются в интервале температур 300—700 °С. При более высокой температуре увеличивается степень образования простых веществ, таких как метан, монооксид и диоксид углерода, которые не могут достаточно полно характеризовать исходное соединение (рис. 3.1). [c.45]

    При сожжении азотсодержащих органических соединений происходят два процесса термическое разложение вещества и окисление как самого вещества, так и продуктов его распада. В том случае, когда сожжение прошло количественно, в газах горения в конечном итоге не должно присутствовать соединений, не окислившихся полностью. Поэтому, хотя при термическом разложении азотсодержащих веществ и могут, в зависимости от их свойств, образоваться такие продукты пиролиза, как аммиак, дициан, цианистый водород, закись, окись и двуокись азота, свободный азот, закись углерода и метан или другие летучие углеводороды, в действительности в газах горения присутствуют лишь азот, окись или двуокись азота. Значительно реже и лишь при сожжении некоторых азотсодержащих веществ появляется реальная возможность недоокисления углеводородов или нитрильной группы. Многие исследователи указывают также на возможность недогорания угля, содержащего азот В последнем случае получатся, конечно, пониженные результаты, так же как и при образовании N-гpyппы, которая [c.73]

    Синтезы соединений, меченных изотонами. Органические соединения, меченные изотопами, синтезируются при помощи известных методов, причем выбирают, разумеется, те реакции, в которых потери ценного изотопа наименьшие. Так, тяжелая серная кислота ОаЗО получается из 50з + ОаО, тяжелый хлористый водород из Ог Ч- Оз и т.д. При разложении карбида алюминия окисью дейтерия получается тетра-дейтерометан, или метан- СВ , при разложении карбида кальция окисью дейтерия образуется aцemuлeн-D2 СаОз. В результате присоединения дейтерия к различным соединениям с двойной связью получаются дейтеропроизводные [c.404]

    Сведения о фотохимическом разложении гербицидов других классов весьма скудны, но какова цена классификации, если она не содержит пункта прочие Токсикологически интересный пример прочих соединений, несомненно, представляют органические соединения ртути, из которых в качестве гербицида применяется только фенилмеркурацетат. Соединения ртути легко распадаются на свету, и это их свойство используется уже давно. Соединения ртути применяют в качестве инициаторов, они претерпевают разрыв связи С—Н5. Например, диметилртуть дает ртуть, метан и этан с квантовым выходом, равным единице [95]. Облучение окси-этилмеркурхлорида приводит к образованию каломели и бутан-диола-1,4 [96]. [c.350]

    В результате жизнедеятельности биоценоза метантенка происходит снижение концентрации органических загрязнений в отходах или сточных водах с одновременным образованием биогаза. В состав биогаза входят метан и диоксид углерода, общее количество и процентное соотношение компонентов биогаза во многом определяется исходным составом сбраживаемой среды. Так, при распаде 1 г жироподобных веществ в среднем образуется 1200 мл газа состава (в %) СН4 — 68, СО2 — 32. При распаде углеводоподобных соединений образуется около 800 мл газа из одного грамма, состав газа при этом (в %) СН4 — 50, СО2 — 50. Различным является и предел сбраживания различных органических соединений, например жироподобные вещества сбраживаются на 70, а углеводоподобные на 62,5 %. Предел сбраживания был найден экспериментально, по-видимо-му, если дальнейшее разложение органического вещества и имеет место, то оно не приводит к образованию газа. [c.136]

    Глеевые воды. Термин глей пришел в науки о Земле из украинского языка. Так издавна называли сизый грунт со дна болот и озер. Этому народному термину академик Г. Н. Высоцкий (1865—1940) в 1905 г. придал значение научного понятия. Он выделил в иочвах особые глеевые горизонты сизого и зеленоватого цвета, для которых характерны соединения двухвалентного железа, восстановительная среда. С тех пор в почвоведении, а позднее и в грунтоведении укрепилось понятие об оглеенпи почв и грунтов — восстановительных процессах, для которых характерно двухвалентное железо. Оглеение возникает там, где разложение растительных остатков идет без доступа свободного кислорода, т. е. в анаэробной среде, При этом микроорганизмы отнимают кислород у минеральных соединений и с его помощью окисляют органические остатки, частично до СОз и Н2О, а частично до промежуточных продуктов — различных кислот и других органических соединений. Синтезируются и специфические органические вещества ночв — фульвокислоты и. гуминовые кислоты. Продуктами реакций служат также метан, водород и другпе газообразные восстановители, [c.90]

    Таково влияние на характер нефтей динамометаморфизма . Теоретически говоря, более древние нефти подверглись и большему его влиянию. В общем, это подтверждается примером нефтей Соединенных Штатов, где палеозойские нефти, вообще говоря, легче мезозойских, мезозойские же — легче третичных. Но из этого правила много исключений, объясняемых особенностями исходного материала и геологической обстановкой того или иного месторождения. Из заводской практики нам хорошо известно, что если нефть будет перегрета, то начинается распадение ее тяжелых молекул на более легкие (на этом основан крекинг нефти). Если применить очень высокую температуру, то мы можем всю нефть превратить в газ, в составе которого главную роль будет играть метан. Вероятно, п в природе, если нефтяные залежи попадали в условия чрезвычайно высокого давления или очень больших температур, начиналось разложение нефти, которое заканчивалось разрушением углеводородов с выделением водорода и углерода. Это — крайняя степень метаморфизма органического вещества. Так, вероятно, образовался графпт — один пз крайних членов ряда битумов, а водород вследствие его малого атомного веса и крайней подвижности, вероятно, улетучился из литосферы в-атмосферу. [c.348]

    Углеводороды (содержащие только углерод и водород) составляют большой класс природных и синтетических соединений. Простейший углеводород метан (СН4) представляет собой конечный продукт анаэробного разложения живых организмов и главную составную часть природного газа. На другом конце шкалы молекулярных масс расположен политен, который получается полимеризацией тысячи или большего числа молекул этена (этилена С2Н4). Углеводороды используются как топливо и в качестве сырья для промышленности органической химии. [c.77]


Смотреть страницы где упоминается термин Разложение органических соединений метана: [c.150]    [c.210]    [c.94]    [c.19]    [c.297]    [c.283]    [c.273]    [c.22]    [c.147]    [c.19]    [c.16]    [c.11]    [c.37]    [c.21]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.5 , c.7 ]




ПОИСК







© 2024 chem21.info Реклама на сайте